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I. Bootstrap Test of Shock Independence

We herein describe a simple test of mutual
shock independence. The test is related to the
permutation test in Risk, James and Matteson
(2015), Matteson and Tsay (2017), and Davis
and Ng (2021). We use an alternative bootstrap
approach that is familiar to SVAR practitioners,
and we use a different test statistic that directs
power against economically salient alternatives.

If ¢;, are independent, then the squared
shocks 8?’[ should also be independent, and
hence, mutually uncorrelated. We focus on
this particular implication of independence, as
this will direct power towards economically
salient alternatives where the shocks have shared
volatility factors, as in Equation 3 in the main
paper. Thus, while other independence metrics
are possible, we here use the following intuitive
test statistic:
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i.e., the root mean squared sample cross-
correlation of the squared estimated shocks.

We reject the null hypothesis of shock inde-
pendence if S exceeds a bootstrap critical value.
The bootstrap takes into account estimation er-
ror in the VAR coefficients Ag and ICA estimate
H. Given significance level a, the critical value
equals the 1 —a quantile of the bootstrapped test
statistics $*, which are computed in the same
way as above but on the bootstrap data sets.

Importantly, we impose the null hypothesis
in the bootstrap sampling scheme by slightly
modifying the conventional recursive residual
VAR bootstrap (Kilian and Liitkepohl, 2017, Ch.
12.2.1): We resample each shock ¢;; indepen-
dently of the other shocks, instead of resampling
all components in the vector &, jointly. Note that
this test can be performed without labeling the

shocks, since their ordering does not matter.
II. Empirical Application

We now apply the bootstrap test to quarterly
U.S. macroeconomic data. Our specification
largely follows Gouriéroux, Monfort and Renne
(2017, Sec. 3.2), except that we omit an ex-
ogenous oil price variable from the SVAR for
simplicity. The three observed variables in the
VAR are inflation, the output gap, and the nom-
inal short-term interest rate.! We use 6 lags,
as selected by the Akaike Information Criterion
for the 1959-2019 sample. We use the OLS
estimator of the VAR coefficients A, and the
quasi-MLE ICA estimator of H proposed by
Gouriéroux, Monfort and Renne (2017).2

Table 1 shows that we can reject mutual in-
dependence of the shocks at a 5% significance
level on the post-1973 and post-1985 samples,
though not on the longest 1959-2019 sample.
On the post-1985 sample, the test statistic S
equals 0.166, which amounts to an economically
non-trivial root mean squared cross-correlation
Corr(él.z’t, éit). In contrast, we fail to reject in-
dependence at conventional levels under the pro-
cedure featured in Davis and Ng (2021).

Our results demonstrate that mutual shock in-
dependence can be tested, and should not be
viewed as an automatic, unobjectionable as-
sumption in practice. They also support Mat-
teson and Tsay’s (2017) call for additional re-
search into the Type II error properties of tests
for independence.

I These are obtained from the Federal Reserve Bank of St.
Louis FRED database. Inflation is the log change in the GDP
deflator (GDPDEF), the output gap is the log difference between
actual (GDPC1) and potential output (GDPPOT), and the interest
rate is the 3-month Treasury rate (TB3MS).

2The quasi-likelihood uses the same shock densities as
Gouriéroux, Monfort and Renne. We use Matlab’s fmincon
numerical optimization procedure, started at several different
points using the GlobalSearch algorithm. Bootstrap draws
are initialized at a single starting point (the MLE of H).
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MONTH YEAR

TABLE 1—TEST OF SHOCK INDEPENDENCE IN U.S. DATA.

Sample Our test Davis and Ng (2021)
Test statistic | 5% CV | 10% CV p-value
1959:1V-2019:1V 0.054 0.117 0.097 0.492
1973:1-2019:1V 0.168 0.120 0.100 0.641
1985:1-2019:1V 0.166 0.132 0.116 0.922

Note: Test statistic and corresponding 5% and 10% bootstrap critical values for testing mutual independence of shocks. SVAR
variables: inflation, output gap, nominal interest rate. ICA estimator of H: quasi-MLE of Gouriéroux, Monfort and Renne (2017).
Final column applies the testing procedure featured in Davis and Ng (2021) to the SVAR shocks.

III. Simulation Study

To illustrate the properties of our testing pro-
cedure, we run a simulation study calibrated to
our empirical application. The DGP is given by
a 3-variable VAR model with a sample length
of 200 and known lag length of 6. We take the
intercept vector ¢, autoregressive matrices Ay,
and H matrix from our estimation results on the
1973:1-2019:1V sample. The unobserved shocks
1,1, €2,+ and &3, are given by the product of an
ii.d. shared volatility process 7; and the i.i.d.,
mutually independent, mean zero, and unit vari-
ance disturbances (1 ¢, (2., and (3 ;:
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it =Tljt, Tt~ j= 1,2, 3,
where (;; is independent of 7, for j = 1,2, 3.
The chi-square distribution for z; is parameter-
ized as a gamma distribution to accommodate a
continuous degrees of freedom parameter. The
null hypothesis of mutual shock independence
holds in the limit kK = oo, while finite values
for k amount to violations of independence. We
consider a grid of step size 0.1 for 1/k on the
unit interval.

We consider three different specifications for
the processes ¢1,¢, (2,1, and (3 ;. These are a sub-
set of the DGPs considered by Fiorentini and
Sentana (2020):

e DGP1: Three homogeneous t-distributions
with 5 degrees of freedom.

e DGP2: Three homogeneous Laplace distri-
butions.

e DGP3: Three heterogeneous discrete loca-
tion scale mixtures of two normal distribu-
tions (DLSMN). Processes are distributed

according to

1.0 ~ DLSMN(0.8, 0.06, 0.52),
2.0 ~ DLSMN(1.2, 0.08, 0.4),
(3.0 ~ DLSMN(—1,0.2,0.2).

See Fiorentini and Sentana (2020) for details on
the parameterization.

We simulate 1,000 data sets per DGP. We
use OLS to estimate the VAR coefficients and
the quasi-MLE ICA estimator for the H matrix.
Critical values are computed using 500 boot-
strap draws.

Figure 1 shows that power appears to increase
monotonically for larger departures from the
null at both the 5% and 10% significance lev-
els. For the null model, the test slightly over-
rejects for DGP1 (16% rejection at 10% nomi-
nal level and 11% rejection at 5% nominal level)
and is approximately correctly sized for DGP2
and DGP3.
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FIGURE 1. EMPIRICAL REJECTION PROBABILITIES AS A FUNCTION OF 1/k.

Note: Panels plot empirical rejection probabilities at the 10% significance (solid line) and 5% significance (dashed line) nominal
levels. Blue reference lines on the vertical axis mark 5% and 10% rejection probabilities.
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