SVAR Identification From Higher Moments: Has the Simultaneous Causality Problem Been Solved?

José Luis Montiel Olea Mikkel Plagborg-Møller Eric Qian Columbia Princeton Princeton

Slides: https://scholar.princeton.edu/mikkelpm

January 7, 2022

SVAR identification from higher moments

- Two recent strands of the SVAR literature exploit higher moments of the data to achieve point ID without imposing economic restrictions.
 - 1 ID from non-Gaussianity. Gouriéroux, Monfort & Renne (2017); Lanne, Meitz & Saikkonen (2017)
 - 2 ID from heteroskedasticity. Sentana & Fiorentini (2001); Rigobon (2003); Lewis (2021a)
- Has the old simultaneous causality problem been solved? Why does the applied micro literature continue to look for IVs and quasi-experiments?

SVAR identification from higher moments

- Two recent strands of the SVAR literature exploit higher moments of the data to achieve point ID without imposing economic restrictions.
 - 1 ID from non-Gaussianity. Gouriéroux, Monfort & Renne (2017); Lanne, Meitz & Saikkonen (2017)
 - 2 ID from heteroskedasticity. Sentana & Fiorentini (2001); Rigobon (2003); Lewis (2021a)
- Has the old simultaneous causality problem been solved? Why does the applied micro literature continue to look for IVs and quasi-experiments?
- This paper: Critical review of the literature on higher-moment ID.
 - Higher-moment methods rely on stronger assumptions about the shock process.
 - These assumptions can and should be tested.
 - Weak ID issues should be given high priority.

- 2 Identification from non-Gaussianity
- 3 Identification from heteroskedasticity
- 4 Sensitivity of higher-moment identification
- G Conclusion

Traditional SVAR identification from second moments

• Bivariate SVAR model with data $\mathbf{y}_t = (y_{1,t}, y_{2,t})$ and latent shocks $\varepsilon_t = (\varepsilon_{1,t}, \varepsilon_{2,t})$:

$$\mathbf{y}_t = \mathbf{c} + \sum_{\ell=1}^{p} \mathbf{A}_\ell \mathbf{y}_{t-\ell} + \mathbf{H} \boldsymbol{\varepsilon}_t, \quad \mathbf{H} = \begin{pmatrix} 1 & ? \\ ? & 1 \end{pmatrix},$$

• Assumption: Shocks are orthogonal white noise.

$$\mathsf{Cov}(\varepsilon_t, \varepsilon_{t-\ell}) = \mathbf{0} \ \text{ for } \ell \geq 1, \quad \mathsf{Cov}(\varepsilon_{1,t}, \varepsilon_{2,t}) = \mathbf{0}.$$

• White noise assumption only has implications for second moments:

$$\mathsf{Var}(\boldsymbol{\eta}_t) = \mathbf{H} \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix} \mathbf{H}', \quad \boldsymbol{\eta}_t \equiv \mathbf{y}_t - \mathsf{proj}(\mathbf{y}_t \mid \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \dots) = \mathbf{H} \boldsymbol{\varepsilon}_t.$$

• Simultaneous causality problem: 4 parameters, 3 non-redundant equations.

Economic content and robustness

- Traditional SVAR literature overcomes the simultaneous causality problem by imposing additional exclusion or sign restrictions.
 - Examples: External IV, timing restrictions, long-run neutrality, knowledge about policy rule.
 - Defended based on economic theory or institutional background.
 - Similar to applied micro. Nakamura & Steinsson (2018b); Stock & Watson (2018)
- Second-moment SVAR methods are usually robust to statistical properties of the data.
 - OLS estimator can be viewed as quasi-MLE of the SVAR model under the working assumptions that ε_t is i.i.d., homoskedastic, and Gaussian.
 - But none of these working as'ns are required for consistency of OLS. Gonçalves & Kilian (2004)

- **2** Identification from non-Gaussianity
- 3 Identification from heteroskedasticity
- 4 Sensitivity of higher-moment identification
- G Conclusion

Mutual shock independence

- Borrowing from Independent Components Analysis (ICA) in statistics, recent SVAR papers have proposed strengthening the white noise assumption. Comon (1994); Hyvärinen, Karhunen & Oja (2001); Gouriéroux, Monfort & Renne (2017); Lanne, Meitz & Saikkonen (2017)
- Additional assumption: $\varepsilon_{1,t} \perp \perp \varepsilon_{2,t}$.
- Question: If $(C_{11}\eta_{1,t} + C_{12}\eta_{2,t}) \perp (C_{21}\eta_{1,t} + C_{22}\eta_{2,t})$, must these linear combinations equal the true shocks $\varepsilon_{1,t}$ and $\varepsilon_{2,t}$ (up to scale and ordering)?
 - Answer, part 1: If $\varepsilon_{1,t}$ and $\varepsilon_{2,t}$ are Gaussian, then <u>no</u>. There exist many linear combinations that are uncorrelated and thus independent.
 - Answer, part 2: If either of the shocks is non-Gaussian, then yes (Darmois-Skitovich Th'm).

Identification from mutual independence and non-Gaussianity

- Hence, if shocks are mutually independent and non-Gaussian, the SVAR model is point-identified (up to labeling of the shocks)!
- Intuitively, though second moments are not enough for point-ID, shock independence has implications for higher moments of the data.
 - Higher moments are redundant if shocks are Gaussian, but there is no reason to believe they would be *exactly* Gaussian in reality.
- Several SVAR-ICA estimation procedures have been proposed, such as quasi-MLE or method of moments. Do not require knowledge of shock distribution.
 Fiorentini & Sentana (2020); Lanne & Luoto (2021); Sims (2021)
- This approach achieves point-ID, not by exploiting economic knowledge, but by strengthening the statistical assumptions on the shock process.

How strong is the mutual independence assumption?

• Mutual independence rules out shared volatility, e.g.,

$$\varepsilon_{j,t} = \tau_t \zeta_{j,t}, \quad j = 1, 2,$$
(†)

where τ_t is a shared scalar volatility factor, and $\zeta_{1,t} \perp \zeta_{2,t}$.

- Doesn't the impulse-propagation paradigm for macro demand that shocks should be independent? Perhaps, but it doesn't follow that these should enter linearly in the SVAR.
- Example: In SVAR model with shock process (†), one could think of the basic shocks as $\zeta_{1,t}$, $\zeta_{2,t}$, and shocks to τ_t .
 - Standard 2nd-moment methods estimate impulse responses wrt. $\varepsilon_{j,t}$, which is still meaningful.
 - Since $\varepsilon_{1,t} \not\perp \varepsilon_{2,t}$, SVAR-ICA may fail to estimate anything with a structural interpretation.

Take-aways for future work

- Our opinion: If we insist on imposing shock independence, it seems necessary to consider nonlinear SVAR models.
 - At least allow shared (and persistent) volatility dynamics, consistent with the data.
 - Nonlinear ICA methods exist, but have not been adapted to macro applications. Hyvärinen, Karhunen & Oja (2001)
- Reminder: Choice is <u>not</u> between assuming Gaussian or non-Gaussian shocks!
 - Traditional 2nd-moment approaches do not require shocks to be Gaussian or mutually independent.

Testing independence: Empirical example

- The mutual shock independence assumption is testable: Just check whether the estimated shocks $(\hat{\varepsilon}_{1,t},\hat{\varepsilon}_{2,t})' = \hat{\mathbf{H}}^{-1}\hat{\boldsymbol{\eta}}_t$ are in fact mutually independent. Matteson & Tsay (2017); Amengual, Fiorentini & Sentana (2021); Davis & Ng (2021)
- Empirical example:
 - SVAR in inflation, output gap, 3-month Treasury rate. GMR (2017)
 - Bootstrap test of $Corr(\varepsilon_{i,t}^2, \varepsilon_{j,t}^2) = 0$ for $i \neq j$:

Sample	Test statistic	5% CV	10% CV
1959–2019	0.055	0.121	0.091
1973–2019	0.169	0.129	0.108
1985–2019	0.170	0.130	0.116

p = 6 lags. OLS estimator of reduced-form VAR coef's. GMR (2017) quasi-MLE \hat{H} .

Suggests that independence as'n should not be viewed as unobjectionable.

9

- 2 Identification from non-Gaussianity
- 3 Identification from heteroskedasticity
- 4 Sensitivity of higher-moment identification
- G Conclusion

Conditional orthogonality

- Instead of assuming mutual shock independence, another strand of the literature has exploited heteroskedasticity in the data through the following assumption.
 Sentana & Fiorentini (2001); Rigobon (2003); Lewis (2021a); Sims (2021)
- Assumption: Shocks are conditionally unpredictable and orthogonal, given info set \mathcal{I}_{t-1} .

$$E(\varepsilon_t \mid \mathcal{I}_{t-1}) = 0, \quad \operatorname{Cov}(\varepsilon_{1,t}, \varepsilon_{2,t} \mid \mathcal{I}_{t-1}) = 0.$$

• Define $\sigma_{j,t-1}^2 \equiv \mathsf{Var}(\varepsilon_{j,t} \mid \mathcal{I}_{t-1})$ and $\mathbf{\Sigma}_{t-1} \equiv \mathsf{Var}(\boldsymbol{\eta}_t \mid \mathcal{I}_{t-1})$. Then

$$\mathbf{\Sigma}_{t-1} = \mathbf{H} \begin{pmatrix} \sigma_{1,t-1}^2 & 0 \\ 0 & \sigma_{2,t-1}^2 \end{pmatrix} \mathbf{H}' \implies \mathbf{\Sigma}_t \mathbf{\Sigma}_{t-1}^{-1} = \mathbf{H} \begin{pmatrix} \frac{\sigma_{1,t}^2}{\sigma_{1,t-1}^2} & 0 \\ 0 & \frac{\sigma_{2,t}^2}{\sigma_{2,t-1}^2} \end{pmatrix} \mathbf{H}^{-1}.$$

• Columns of \mathbf{H} = eigenvectors of $\mathbf{\Sigma}_t \mathbf{\Sigma}_{t-1}^{-1}$. Unique if eigval's $\frac{\sigma_{j,t}^2}{\sigma_{j,t-1}^2}$ are distinct for j = 1, 2.

ID through heteroskedasticity

- ID through heterosk. exploits *conditional* second moments across distinct volatility regimes. We needed to strengthen the white noise as'n to conditional orthogonality.
 - ID argument applies both with Markov-switching vol jumps and continuous vol changes.
- Reminder: Choice is <u>not</u> between assuming homoskedastic or heteroskedastic shocks!
 - Traditional 2nd-moment approaches do not require shocks to be homoskedastic.
- ID argument suggests test of conditional orthogonality as'n: Check that eigenvectors of $\Sigma_t \Sigma_{t-1}^{-1}$ are constant over time (only eigval's may vary). Rigobon (2003)
- Incongruity in literature: Many procedures for ID through heterosk. impose a vol process such that $\varepsilon_{1,t} \not\perp \varepsilon_{2,t}$, while many SVAR-ICA procedures impose homosk.

- 2 Identification from non-Gaussianity
- 3 Identification from heteroskedasticity
- Ø Sensitivity of higher-moment identification
- G Conclusion

Sensitivity of higher-moment identification

- Higher-moment ID necessarily fails when shocks are Gaussian \implies Potential weak ID.
- Relevant question is whether the shocks are *sufficiently* non-Gaussian relative to the (considerable) finite-sample estimation uncertainty in the higher moments.
- Higher-moment inference procedures likely to be more sensitive to minor perturbations of the data than second-moment procedures are. Lanne & Luoto (2021)
- Our opinion: Applied researchers should tackle potential weak ID head on.
 - Run simulation study calibrated to the application at hand.
 - Use weak-ID-robust procedures. Nakamura & Steinsson (2018a); Drautzburg & Wright (2021); Lee & Mesters (2021); Lewis (2021b)

- 2 Identification from non-Gaussianity
- 3 Identification from heteroskedasticity
- 4 Sensitivity of higher-moment identification
- **6** Conclusion

Summary: Our views

- ID from higher moments does not simply exploit more info in the data than traditional SVAR methods. It requires stronger assumptions on the shock process.
- 2 Applied work should routinely test the additional shock assumptions. Should also give high priority to issues of sensitivity and weak identification.
- ③ Second-moment ID methods remain relevant due to their robustness to statistical properties of the data. It is a virtue rather than a limitation that researchers must defend assumptions on economic grounds, instead of appealing to statistical assumptions.

Summary: Our views

- ID from higher moments does not simply exploit more info in the data than traditional SVAR methods. It requires stronger assumptions on the shock process.
- 2 Applied work should routinely test the additional shock assumptions. Should also give high priority to issues of sensitivity and weak identification.
- ③ Second-moment ID methods remain relevant due to their robustness to statistical properties of the data. It is a virtue rather than a limitation that researchers must defend assumptions on economic grounds, instead of appealing to statistical assumptions.

Thank you!

Appendix

Bootstrap test of mutual shock independence

• Simple bootstrap test for SVAR with *n* variables:

1 Compare root mean squared correlation of squared estimated shocks

$$\hat{S} \equiv \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} \widehat{\operatorname{Corr}}(\hat{\varepsilon}_{i,t}^{2}, \hat{\varepsilon}_{j,t}^{2})^{2}}$$

to critical value from bootstrapped null distribution.

2 Generate bootstrap data from estimated SVAR model, where shocks $\{\varepsilon_{j,t}^*\}_t$ are drawn with replacement from estimated shocks $\{\hat{\varepsilon}_{j,t}\}_t$, independently across $j = 1, \ldots, n$.