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Abstract

The literature on proper scoring rules has mostly studied the case
of risk neutral agents. We analytically investigate how risk averse, ex-
pected utility maximizing forecasters behave when presented with risk
neutral proper scoring rules. If the state variable is binary, risk averse
agents shade their reports toward saying that the states are equally
likely. In the non-binary case reported probabilities are compressed
relative to truthtelling. We show the implications of our results for the
use of elicited probabilities as inputs to decision-making and find that
naive elicitors may violate first-order stochastic dominance. Possible
resolutions of these problems are presented, including an estimator for
the mean population belief when the distribution of risk attitudes is
known. Finally, we discuss the relevance of our results to recent work
in experimental economics.

1 Introduction

The problem of incentivizing agents to truthfully reveal their subjective
probability estimates of given events is interesting from both a theoretical
and an applied viewpoint.1 One possible solution to this problem, proposed
by Brier (1950), Good (1952), McCarthy (1956) and Savage (1971), among
others, is the use of proper scoring rules. Scoring rules are mechanisms

∗Dept. of Economics, Harvard University. {apeysakh, plagborg}@fas.harvard.edu. We
thank Yiling Chen, Drew Fudenberg, Scott Kominers, Al Roth and seminar participants
at Harvard University for insightful comments (in light of our results, we chose not to use
proper scoring rules to elicit comments).

1For the less cynically inclined reader we quote Prelec (2004): “[. . . ] I do not suggest
that people are deceitful or unwilling to provide information without explicit financial
payoffs. The concern, rather, is that the absence of external criteria can promote self-
deception and false confidence even among the well-intentioned.”
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that can be applied in situations where uncertainty about a future event is
eventually resolved. Suppose that we are interested in eliciting the subjective
probability that an economic forecaster assigns to the federal funds rate
exceeding 1% next Monday. The forecaster reports a probability q of the
event occurring and on Monday we pay her s0(q) if the interest rate is at or
above 1% and s1(q) if it is not. A proper scoring rule is such a function whose
expectation with respect to the forecaster’s true subjective probability p is
maximized by reporting q = p. Proper scoring rules and their properties
are well studied in the literature (Gneiting and Raftery, 2007, provide a
very general overview), and they have been widely used in several applied
fields ranging from accounting to medicine (see the introduction in Offerman
et al., 2009, for a comprehensive list).

Though proper scoring rules induce expected payoff maximizing (i.e.,
risk neutral) agents to report truthfully, the case of risk averse forecasters
has not been given a full analysis in the literature. Savage (1971, Section
3) provides an informal treatment of the topic, while Bickel (2007) investi-
gates the numerical performance of certain commonly used scoring rules in
the face of risk aversion. Kadane and Winkler (1988, Section 3) study the
quadratic scoring rule when forecasters are risk averse, while Offerman et al.
(2009) expand the analysis of this particular scoring rule to non-expected
utility theory. In this paper we adopt a systematic, analytic approach to
characterizing the behavior of risk averse, expected utility maximizing fore-
casters who are faced with a proper scoring rule. Our main conclusion is
that truthful reporting is no longer incentive compatible in the generic case.
In fact, forecasters distort their subjective probabilities in a particular way:
When the state variable is binary, they report a distribution closer to 50-50
than their true opinion, and shading increases as agents become more risk
averse. Extending our analysis to the case of finite state spaces with more
than two outcomes, we show that optimal reports are compressions of true
subjective beliefs but not necessarily uniformly shaded toward the uniform
distribution.

Proper scoring rules offer an appealing framework for extracting sub-
jective probability estimates from an expert for decision-making purposes.
However, we show that a center that naively makes decisions based on re-
ported probabilities from risk averse agents may violate first-order stochastic
dominance with respect to the true subjective beliefs. Manski (2004) sug-
gests that empirical economists begin to measure expectations directly and
some experimental economists have turned to proper scoring rules to in-
centivize truthful revelation of beliefs (McKelvey and Page, 1990; Offerman
et al., 1996; Costa-Gomes and Weizsäcker, 2008). Since subjects exhibit sig-

2



nificant risk aversion even when faced with small gambles (Holt and Laury,
2002, 2005), we argue that our results call for caution when evaluating ex-
perimental data that rely on scoring rules as a tool for belief elicitation.
In this vein, we offer an alternative interpretation of the results in Nyarko
and Schotter (2002) and Palfrey and Wang (2009). Additionally, we briefly
survey existing methods of addressing the reporting problem under risk aver-
sion, including payment via a binary lottery procedure and adjustment of
the scoring rule, as well as their limitations. Instead of eliciting individual
beliefs, a center may prefer to extract aggregate predictions from a group
of risk-averse experts. We propose a mechanism which acts as a consistent
estimator of the mean population belief when the population distribution of
risk attitudes is known. Numerical simulations suggest that the estimator
has good finite sample and robustness properties.

The paper proceeds as follows. Section 2 analyzes optimal reporting
in the binary and multi-outcome cases. Section 3 applies the theoretical
predictions to the literature on expectation elicitation. Finally, Section 4
concludes and suggests possible areas of future research. Proofs are relegated
to the appendix.

2 Optimal reporting under risk aversion

The question raised in this section is how a risk averse forecaster should opti-
mally respond to a scoring rule that is designed to induce truthtelling under
the assumption of risk neutrality. After laying out a few basic definitions
and assumptions, we treat the special but illustrative case of binary forecast
variables. Subsequently, the more general setting with finite outcome spaces
is discussed.

2.1 Basic model

Consider a stochastic state variable X that takes values in a finite out-
come space Ω = {1, 2, . . . , n} with n ≥ 2 possible outcomes. A probabil-
ity distribution over the outcomes is a vector contained in the n-simplex
∆n = {p ∈ R+ |

∑n
i=1 pi = 1}. Sometimes we will restrict attention to the

open n-simplex ∆◦n = {p ∈ R+ |
∑n

i=1 pi = 1, pi > 0 for all i}.
A center is interested in collecting accurate probabilistic predictions of

X. Consider a representative expected utility maximizing forecaster (also
referred to as the expert) with subjective probability estimate p ∈ ∆n. Her
report is denoted q ∈ ∆n, with truthful reporting corresponding to q = p.

3



Definition 1. A scoring rule is a vector-valued function s : D → Rn, where
D is either ∆n or ∆◦n. The scoring rule is strictly proper if for all p ∈ D
it holds that

p = argmax
q∈D

n∑
i=1

pisi(q). (1)

Hence, a scoring rule is a function linking monetary rewards si(q) in each
of the states i = 1, . . . , n to the issued probability report q. The scoring rule
is said to be strictly proper if it incentivizes an expected payoff maximiz-
ing (i.e., risk neutral expected utility maximizing) forecaster to reveal her
true subjective probability p (see Gneiting and Raftery, 2007, for a general
treatment). Well-known examples of strictly proper scoring rules include
the logarithmic si(q) = log qi, the quadratic si(q) = 2qi − ||q||2 and the
spherical si(q) = qi/||q|| scoring rules (|| · || denotes the Euclidean norm).

Apart from strict propriety, we shall impose a number of weak assump-
tions on the scoring rule. They are necessary when applying standard opti-
mization theorems to the forecaster’s utility maximization problem.

Assumption 1 (Neutrality). For all q ∈ D and all n-permutations σ(·) it
holds that s(σ(q)) = σ(s(q)).

Neutrality amounts to requiring that the scoring rule is invariant under
relabeling of the outcomes.2

Assumption 2 (Boundedness above). Component function si(·) is bounded
above for all i = 1, . . . , n.

Boundedness below is not needed for the analysis, so the logarithmic
scoring rule does not present any challenges to the generality.

Assumption 3 (Extended continuity). The scoring rule s(·) is continu-
ous on D, and for all q ∈ ∆n (not just D) and any sequence {qk} with
limk→∞ qk = q it holds that limk→∞ s(qk) exists and is independent of the
particular choice of {qk}.

Extended continuity is equivalent to continuity if D = ∆n and only
represents a slight strengthening in the case D = ∆◦n. The assumption is

2In particular, the range R = {si(p̃) | p̃ ∈ D} must be independent of the index i.
Also, if i, j, k = 1, . . . , n are distinct indices, si(σjk(q)) = si(q), where σjk(·) denotes the
permutation that switches the j-th and k-th coordinates. Hence, the payout in state i
is determined by qi as well as the magnitudes, but not the ordering, of the remaining
components of q.
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needed to rule out pathological boundary cases when proving existence of an
optimal report. Clearly, each of the three above-mentioned specific scoring
rules is neutral, bounded above and extended continuous. In addition, any
affine transformation s̃i(q) = a+ bsi(q) (where a and b > 0 do not depend
on i) preserves these properties. The oft-used Brier score (Brier, 1950) is an
affine transformation of the quadratic scoring rule.

We consider a forecaster whose utility function u : cl(R) → R of wealth
is strictly increasing, twice differentiable and strictly concave, meaning that
the forecaster is risk averse. Here cl(R) denotes the closure of the range of
s(·). The form of the utility function is unknown to the center. Let

Sp(q) =
n∑
i=1

piu(si(q))

denote the expected utility of reporting q when the subjective belief is
p. The rest of Section 2 will be concerned with characterizing utility-
maximizing reports as a function of the subjective probabilities.

Definition 2. Let the domain of the scoring rule s(·) be D. The optimal
report correspondence q : D ⇒ D is defined by

q(p) =

{
q̃ ∈ D

∣∣∣∣ Sp(q̃) = sup
q̂∈D

Sp(q̂)

}

for all p ∈ D. If q(p) is a singleton for each p ∈ D, we say that the optimal
report function exists and we treat it as a function q : D → D.

2.2 Binary outcome space

To provide some intuition and highlight a few special results, we focus on a
binary state space Ω = {0, 1}. In this case, neutrality of the scoring rule is
equivalent to the condition that s0(q, 1−q) = s1(1−q, q) for all q ∈ D, where
the domain D is either [0, 1] or (0, 1). Hence, when working with neutral
scoring rules on a binary space, it is convenient to drop the subscripts and
write s(q) (resp., s(1 − q)) for the state-0 (resp., state-1) payoff. Similarly,
we write q(p) for the optimal report of the state-0 probability.

Lemma 1. Assume s(·) is a strictly proper and continuously differentiable
scoring rule defined on D, where the latter is either [0, 1] or (0, 1). If s(·)
satisfies assumptions 1–3, the optimal report function q(·) exists. It is con-
tinuous, increasing and symmetric, i.e., q(p) = 1− q(1− p) for all p ∈ D.
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Figure 1: Plots of q(p) for CARA utility functions uα(x) = − exp(−αx) with
absolute risk-aversion parameters α = 0.5, 1.0, 1.5, . . . , 5.0 and a quadratic scoring
rule s(q) = 2q − q2 − (1 − q)2. The dotted line is the 45 degree line. Numerical
optimization was carried out in Matlab using fminbnd.

We shall now state the main results in the binary case. The reader may
refer to Figure 1 for an illustration.

Proposition 1. Assume that the scoring rule satisfies the assumptions in
Lemma 1. The optimal report function has the following properties.

(i) 1/2 ≤ q(p) ≤ p for all p ∈ [1/2, 1]∩D. The first equality only holds at
p = 1/2, and the second only at p = 1/2 and p = 1 (if applicable).

(ii) If u(·) and ũ(·) are two utility functions satisfying the assumptions in
the preamble, and the coefficient of absolute risk aversion of ũ(·) is
uniformly strictly greater than that of u(·), then qũ(p) < qu(p) for all
p ∈ (1/2, 1).

Note that due to symmetry, any properties of q(·) on (1/2, 1) translate
readily into properties on (0, 1/2).3

As a closed-form example, a little calculus will show that for CARA
utility u(x) = − exp(−αx) and the logarithmic scoring rule s(q) = a+b log q,

3Although Figure 1 suggests that the optimal report function is concave on (0, 1/2),
this regularity does not follow from our conditions on the utility function and scoring rule.
One may construct a counterexample involving a utility function that has large curvature
for small scoring rule values and small curvature for large values, thus inducing substantial
shading for small p and close-to-truthtelling for larger p.
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the optimal report function is given by q(0) = 0 and

q(p) =
1

1 +
(

1−p
p

)1/(1+αb)
for p ∈ (0, 1].

We see that in this special case the adverse effects of risk aversion can be
mitigated by lowering b. More generally, property (ii) of Proposition 1
implies the following corollary.

Corollary 1. Suppose the scoring rule s(·) satisfies the assumptions in
Lemma 1.4 Let the forecaster’s belief p ∈ (0, 1) satisfy p 6= 1/2.

(i) Consider scaling the scoring rule to s̃(q) = bs(q), where b > 0. If u(·)
exhibits strictly increasing (resp., decreasing) relative risk aversion,
the amount |q(p)−p| of shading is strictly increasing (resp., decreasing)
in b. If u(·) belongs to the constant relative risk aversion family, the
optimal report is invariant under scalings of the scoring rule.

(ii) Consider shifting the scoring rule to s̃(q) = s(q) + a, where a ∈ R. If
u(·) exhibits strictly increasing (resp., decreasing) absolute risk aver-
sion, the amount |q(p) − p| of shading is strictly increasing (resp.,
decreasing) in a. If u(·) belongs to the constant absolute risk aversion
family, the optimal report is invariant under shifts of the scoring rule.

If the forecaster is risk neutral, any affine transformation of a strictly
proper scoring rule is still strictly proper. As the corollary demonstrates,
under risk aversion the optimal report function is in general sensitive to a
shift or scaling of the scoring rule. In addition to implying testable pre-
dictions of our model, Corollary 1 highlights the inherent tradeoffs when
transforming the scoring rule.5

2.3 Finite outcome space

With a general finite outcome space Ω = {1, 2, . . . , n} we need to introduce a
little extra terminology before stating the main result. While the additional
restrictions are not quite as intuitive as the preceding assumptions, they are
easy to check and weak enough that we avoid losing much generality.

4The domain of the utility function must be extended to accommodate the transfor-
mations of the scoring rule mentioned below.

5For example, Pennock (2006) interprets the multiplicative constant b as a liquidity
parameter for an automated marker maker who subsidizes trades according to the loga-
rithmic scoring rule. Our results indicate that increased market liquidity may bring about
more severe shading, depending on the specific risk attitudes of the investors.
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Assumption 4 (Semi-strict quasiconcavity). For all i = 1, . . . , n, t ∈ R,
α ∈ (0, 1) and q′,q′′ ∈ ∆◦n it holds that si(q

′) ≥ t and si(q
′′) ≥ t imply

si(αq′ + (1− α)q′′) ≥ t, with strict inequality whenever q′i 6= q′′i .

Semi-strict quasiconcavity requires that each of the n component func-
tions si(q) of a scoring rule is quasiconcave. Furthermore, when taking
the convex combination of two different probability reports, some of the
component functions must exhibit strict quasiconcavity (for that parame-
ter choice). The semi-strict quasiconcavity assumption ensures that a risk
averse forecaster has a unique optimal report.

The last assumption we shall need is purely technical.

Assumption 5 (Lagrange sufficiency). The scoring rule s(·) is continuously
differentiable and the Lagrangian Lp : ∆◦n × R→ R given by

Lp(q, µ) =
n∑
i=1

pisi(q)− µ

(
n∑
i=1

qi − 1

)
,

for p,q ∈ ∆◦n and µ ∈ R, has a unique stationary point of the form (p, µ∗p)
for every p, where µ∗p is a constant that may depend on p.

The condition simply requires that the Lagrange first-order conditions
associated with the risk neutral optimization problem (1) are sufficient for
optimality. Since the objective function is strictly quasiconcave on ∆◦n if
the scoring rule is semi-strictly quasiconcave, the latter property implies
Lagrange sufficiency whenever the multiplier µ∗p at the optimum is nonzero
(Mas-Colell et al., 1995, pp. 961–962). If the multiplier vanishes at the
optimum, a stronger restriction on the curvature of the component func-
tions si(·), such as concavity, is needed to make the first-order conditions
sufficient.

It is easy to see that the logarithmic, quadratic and spherical scoring
rules are each semi-strictly quasiconcave6 and Lagrange sufficient.7

6For the quadratic scoring rule, each si(·) is strictly concave. The component functions
in the logarithmic rule are each concave, and si(·) exhibits strict concavity whenever q′i 6=
q′′i . The component functions in the spherical scoring rule are each strictly quasiconcave:
If si(q

′) ≥ t and si(q
′′) ≥ t, we have ||q′|| ≤ q′i/t and ||q′′|| ≤ q′′i /t, so

si(αq
′ + (1− α)q′′) >

αq′i + (1− α)q′′i
α||q′||+ (1− α)||q′′|| ≥

αq′i + (1− α)q′′i
αq′i/t+ (1− α)q′′i /t

= t.

7For any p ∈ ∆◦n the Lagrange multiplier at the optimum in (1) is nonzero when the
scoring rule is logarithmic or spherical. It is zero for the quadratic rule (which may be
interpreted as a consequence of Selten’s (1998) extension axiom), but since the component
functions are concave in this case, Lagrange sufficiency still holds.
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Lemma 2. Let s(·) be a strictly proper scoring rule defined on the domain D,
which is either ∆n or ∆◦n. If s(·) satisfies assumptions 1–5, the optimal re-
port function exists. It is continuous and symmetric, i.e., q(σ(p)) = σ(q(p))
for all n-permutations σ(·). In the case D = ∆n, qi(p) = 0 if and only if
pi = 0, and qi(p) = 1 if and only if pi = 1.

Symmetry of q(·) readily implies that truthtelling is optimal at the uni-
form belief: q(e/n) = e/n, where e = (1, 1, . . . , 1). However, the follow-
ing result, which is a partial generalization of Proposition 1, shows that
truthtelling is suboptimal at all other non-degenerate beliefs.

Proposition 2. Assume that the scoring rule satisfies the assumptions in
Lemma 2. For all i, j = 1, . . . , n such that pi > pj it holds that

pi
pj
>
qi(p)

qj(p)
> 1.

It is interesting to note that, contrary to what one might first surmise,
risk aversion does not necessitate that the forecaster shade each coordinate of
her report toward the uniform distribution qi = 1/n.8 Instead, risk aversion
brings about a compression of the reported probability vector relative to the
subjective belief vector. The economic intuition is that decreasing marginal
utility causes forecasters to hedge their bets by moving payoff from high
payoff, high probability states to low payoff, low probability states. The
proof of the proposition establishes that, for all i = 1, . . . , n,

qi(p) =
piu
′(si(q(p)))∑n

j=1 pju
′(sj(q(p)))

.

The conclusion that risk averse probabilities are given by a weighted average
of “true” probabilities, with weights determined by the marginal utility of
wealth in the different states, is a familiar one in economics (Jackwerth,
2000).

3 Applications

Manski (2004) surveys the growing literature on elicitation of subjective
probabilities in economics. In arguing the importance of learning agents’
private beliefs, he mentions scoring rules as a potent way of incentivizing
accurate reporting. In this section we apply our theoretical results to the
problems of eliciting individual beliefs and surveying groups of agents.

8For example, if p = (0.3, 0.05, 0.65), si(q) = log qi and u(x) = − exp(−x), the optimal
report has q1(p) ≈ 0.3472 > 1/3.
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3.1 Elicitation of individual beliefs

There are at least two reasons why it is of interest to elicit subjective prob-
abilities from individuals. First, they can serve as inputs in decision-making
mechanisms when a limited number of experts are available. Second, trans-
forming private beliefs into observables in a lab setting allows for more pow-
erful tests of economic theories.

An important normative criterion for decision-making under uncertainty
is first-order stochastic dominance.9 In light of this criterion the type of
misreporting discussed in Section 2 creates hazards to a naive center who
simply uses reported probabilities as inputs to decision-making. Fix a set
of states of the world Ω with more than 2 possible states. Let F denote
the set of simple acts (Savage, 1972) over Ω, so that each f ∈ F is a map
f : Ω→ R. In other words, the choice of an act determines the payoff to the
decision-maker in each state of the world. The combination of an act f ∈ F
and a probability distribution p ∈ ∆n induces a lottery (p, f) ∈ M(R),
where M(R) is the set of probability distributions over R.

Proposition 3. Let the scoring rule and utility function of the forecaster
satisfy the assumptions of Proposition 2. Suppose that a naive center, who
maximizes the expectation of a strictly increasing utility function of wealth,
uses reported probabilities q(p) to evaluate choices between lotteries. Then
there exists probability distributions p, p̃ ∈ ∆n and an act f ∈ F such that
the lottery (p, f) first-order stochastically dominates (p̃, f) but the center
ranks (q(p̃), f) over (q(p), f).

Intuition may lead one to think that the use of a proper scoring rule on
risk averse agents would simply cause the center to make decisions in a more
risk averse manner. However, the proposition shows that in fact naivety can
result in seriously suboptimal decision-making. Consider a firm employing
a proper scoring rule to elicit the beliefs of a forecaster regarding a project
which may succeed to varying degrees. The result above states that the firm
may choose to undertake the project when the forecaster has beliefs p̃ and
not when she has beliefs p, even though the latter beliefs represent a more
optimistic assessment of the prospects of the project.10

Scoring rules are interesting for purposes other than decision-making.
Expectations form an important component of economic theories of behav-

9For finite probability spaces, a lottery L with probabilities p and associated payoffs
x is said to first-order stochastically dominate another lottery L̃ with probabilities p̃ and
payoffs x̃ if for all z it holds that

∑
i : xi<z

pi ≤
∑
i : x̃i<z

p̃i.
10Note that given the monotonicity result of Proposition 1, the first-order stochastic

dominance result fails when we restrict to binary state spaces.
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ior. In recent years both theorists and experimental economists have turned
to building and testing theories of expectation formation. Here researchers
have begun to apply proper scoring rules to turn beliefs into observables.11

We argue that our theoretical results may cast new light on existing exper-
imental work.

In order to test a theory of learning in games, Nyarko and Schotter (2002,
henceforth NS) elicit the beliefs of subjects as they repeatedly play 2 × 2
matrix games. Using the quadratic scoring rule, they find that subjects’
beliefs are generally very extreme, volatile and can be used to predict play
via best responses approximately 75% of the time. Palfrey and Wang (2009,
henceforth PW) take the data from the NS experiment and incentivize new
subjects to predict the next play in a NS sequence using two proper scoring
rules, the logarithmic12 and quadratic, and one improper rule, the linear
s(q) = a + bq. They find that the quadratic and logarithmic scoring rules
induce different distributions of reports from subjects, and reports are most
dispersed under the linear scoring rule. Additionally, they argue that proper
scoring rules induce forecasts which seem to be more calibrated to empirical
frequencies than the linear scoring rule. Our Proposition 1 suggests that
another explanation for the results in NS and PW is that players are ac-
tually very poorly calibrated and overreact highly to new information due
to recency effects, but the natural shading brought about by risk aversion
conceals some of the overreaction. As an example of this logic, observe that
if subjects behave according to the logarithmic utility function, the linear
scoring rule actually induces truthful reporting. While our concerns are mo-
tivated purely by theory, they do indicate that researchers need to be careful
when drawing inference based on scoring rules.

How might practitioners mitigate the problems caused by risk aversion?
One method is to adjust the scoring rule itself to regain its incentive com-
patibility properties (Savage, 1971, refers to this as “paying in utiles”). If
the preferences of the forecaster are known and described by a well-behaved
utility function u(·), it is easy to see that a risk neutral proper scoring rule
s(·) will be proper in the risk averse case when transformed as u−1(s(·)).
However, this adjustment depends on a precise knowledge of the forecaster’s
utility function, whereas most experimental protocols are designed to cali-
brate within a specific family (e.g. CARA utility). Additionally, individual
risk aversion is always measured with noise and can even be affected by

11There is some debate in the literature about whether this elicitation actually influences
actions. For example, Costa-Gomes and Weizsäcker (2008) argue that elicitation changes
behavior toward play that is better described by belief learning.

12To counteract unbounded losses, PW restrict reports to the range [0.1, 0.9].
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current emotional state (Lerner and Keltner, 2001). Another way to alter
the mechanism to encourage truthful elicitation is the use of a binary lottery
procedure where a prize is fixed and the payoffs of the scoring rule are lottery
tickets for that prize (Roth and Malouf, 1979). Since expected utility is lin-
ear in probabilities, this should, in theory, produce risk neutral decisions.13

Evidence on the effectiveness of binary lotteries is mixed (Kagel and Roth,
1997; Selten et al., 1999). Furthermore, it is impossible to implement the
procedure with scoring rules, such as the logarithmic, that are unbounded
below without restricting the domain of probabilities that forecasters are
allowed to report.

Another practical question is the proper choice of event space for the
forecasters.14 The demand for a product is a nearly continuous variable
but a firm may be interested only in the probability that the demand will
exceed a certain threshold. When risk-neutral forecasters are presented with
coarsenings of an underlying event space, their forecasts for a compound
event will necessarily be additive (by strict propriety). However, this is not
generally the case for risk-averse forecasters. Consider, the simple example of
an event space Ω = {1, 2, 3}. A risk-averse forecaster with uniform subjective
probability will report truthfully if asked about the finest possible partition,
but if it is coarsened to {1,not 1}, he will distort his report. Conversely, a
forecaster with subjective probability p = (1/2, 1/4, 1/4) will distort if asked
about the full event space but will report truthfully in the above-mentioned
coarsening. Thus without further assumptions there is no systematic answer
as to whether coarser or finer partitions of the full event space are better.15

3.2 Elicitation of group beliefs

In many cases centers may be interested in eliciting aggregate information
from a group of agents rather than a single forecaster. The literature has
considered three ways in which scoring rules may be used to harness “the
wisdom of the crowd” when forecasters are risk neutral. First, the center
can elicit everyone’s beliefs and compute the average. Second, the payoff

13The original intuition for this procedure comes from Smith (1961) who describes how
probability can be seen as a currency using the metaphor of hiding a diamond in a big
pile of beeswax. In the early days of experimental economics this proved to be a quite
difficult design to implement in the lab and so lottery tickets were used instead (Al Roth,
private communication).

14Savage (1971) briefly mentions this issue in the context of multiple choice exams.
15While we do not pursue the idea here, it is possible that additional restrictions on

the utility functions of the experts could yield experimentally testable predictions about
subadditivity or superadditivity of reported probabilities.

12



structure of scoring rules may be incorporated into a prediction market set-
ting (Hanson, 2007). Third, scoring rules can be combined with techniques
from games of incomplete information to exploit the power of peer prediction
(Miller et al., 2005; Prelec, 2004). Because these methods rely on the incen-
tive compatibility of proper scoring rules, Propositions 2 and 3 indicate that
caution must be applied in adjusting and interpreting group forecasts. As it
may be difficult to elicit the risk attitude of each individual in a large group
of agents, we propose a mechanism for this situation which only requires
knowledge of the distribution of risk aversion in the population.

In the following we shall focus on the case with a binary state variable,
but the results may readily be generalized. Suppose that forecasters have
utility functions from a family that can each be described by a single pa-
rameter γ. Fixing some γ for forecaster i, the results from Section 2.2 yield
that if the forecaster perfectly optimizes given the scoring rule and her true
subjective probability, there exists a well-behaved function qγ : [0, 1]→ [0, 1]
mapping subjective probabilities to shaded reports. Define q−1

γ (·) to be the
inverse map, i.e., q−1

γ (qγ(p)) = p for all p ∈ [0, 1].

Proposition 4. Let the number of forecasters be N . Suppose they each have
a risk aversion parameter γi ∼ G(γi) and subjective belief pi ∼ F (pi), where
F (·) and G(·) are arbitrary distributions on [0, 1] and Γ ⊂ R, respectively.
All pairs of risk aversion parameters and subjective beliefs are i.i.d., and
these variables are not known to the center. Suppose the center knows G(·).
Each forecaster releases a report q̃i that is optimal given γi and pi, i.e.,
q̃i = qγi(pi). Then the estimator

p̂ =
1

N

N∑
i=1

∫
Γ
q−1
γ (q̃i)dG(γ)

is consistent for the mean population belief: p̂
a.s.→ E[p1] as N →∞.

As is mentioned in the proof, Proposition 4 may be adapted to estimation
of other moments of the belief distribution F (·), although implementation
of the estimator requires a considerable amount of numerical work.16

The proposition assumes that forecasters report optimally according to
the qγ(·) function. Observe that if the population of forecasters as a whole
were in fact more honest than implied by utility maximization, they would

16First of all, it will typically not be possible to solve for a closed-form expression for
q−1
γ (·). Second, the integral must be evaluated numerically, and for each of the iterations

a new call to q−1
γ (·) must be made.
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announce less shaded reports, which would thus resemble those from utility
maximizers with a lower degree of risk aversion. Hence, one may accommo-
date “excess honesty” by appropriately shifting the G(·) distribution. As
detailed in Section A.8 of the appendix, the estimator appears to have good
finite sample and robustness properties.

4 Conclusion

We demonstrated that when faced with a risk neutral proper scoring rule,
truthtelling is generically not incentive compatible for risk averse forecast-
ers. In the binary case forecasters shade their reports toward the equally-
likely prediction. In the multiple outcome case forecasters compress their
reports relative to truthtelling. These results are of interest to those who
wish to apply proper scoring rules in the context of decision-making, as
naive application of a proper scoring rule can lead to violation of first-order
stochastic dominance. We argued that our results are relevant to experi-
mental economists by offering an alternative interpretation of the data from
Nyarko and Schotter (2002) and Palfrey and Wang (2009). Finally, we pre-
sented an estimator that may be used to identify the mean population belief
from a group of risk averse forecasters when the population distribution of
risk attitudes is known.

Possible lines of future research include adapting Proposition 4 to a set-
ting with noisy reports and uncertainty about the risk aversion distribution.
Additionally, we have not formally considered the relative merits of different
scoring rules when risk aversion is present.

Scoring rules are important devices for applied research. The results in
this paper should only help spur further investigations of their properties.
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A Appendix

A.1 Proof of Lemma 1

We will make use of several facts from the proof of the more general Lemma
2. Note that Lagrange sufficiency (Assumption 5) is only needed to prove
property (iii) in Proposition 2.

If we show that the univariate scoring rule s(·) is semi-strictly quasi-
concave (Assumption 4) in its vector-valued form s(·), the existence of the
optimal report function as well as continuity and symmetry are immediate
consequences of Proposition 2. Fix p ∈ (0, 1) (boundary cases are han-
dled by Lemma 2). We see from relation (2) below that s′(p) 6= 0 for all
p ∈ (0, 1). Since the scoring rule is continuously differentiable it must then
either be the case that s(·) is everywhere strictly decreasing or everywhere
strictly increasing. The former is clearly incompatible with strict propri-
ety. Strict monotonicity implies strict quasiconcavity, and thus also that
s(q, 1− q) = (s(q), s(1− q)) is semi-strictly quasiconcave.

A.2 Proof of Proposition 1

Note first that the necessary first-order condition for ps(q) + (1− p)s(1− q)
to have an interior maximum at q = p ∈ (0, 1) is

p

1− p
=
s′(1− p)
s′(p)

. (2)

Property (i). Lemma 2 gives that q(p) ∈ (0, 1) if and only if p ∈ (0, 1).
The necessary first-order condition for maximization of the expected utility
pu(s(q)) + (1− p)u(s(1− q)) is

p

1− p
=
u′(s(1− q))
u′(s(q))

s′(1− q)
s′(q)

=
u′(s(1− q))
u′(s(q))

q

1− q
. (3)

The last equality uses (2). As u′(·) is decreasing and s(·) increasing, we see
that q(·) must be increasing. Moreover, it is quickly verified that q(1/2) =
1/2 and 1/2 < q(p) < p whenever p ∈ (1/2, 1).

Property (ii). If the utility function ũ(·) has a uniformly greater coeffi-
cient of absolute risk aversion than u(·) does, there exists an increasing and
strictly concave function ψ(·) such that ũ(·) = ψ(u(·)) (Mas-Colell et al.,
1995, Prop. 6.C.2). The condition (3) with u = ũ is therefore

p

1− p
=
ψ′(u(s(1− q)))
ψ′(u(s(q)))

u′(s(1− q))
u′(s(q))

q

1− q
.
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Since qũ(p) > 1/2 for p > 1/2, and ψ(·) is strictly concave, the first factor
on the right-hand side is greater than 1. The two last factors are increasing
in q, so it must be the case that qũ(p) < qu(p) when p > 1/2.

A.3 Proof of Corollary 1

We shall use property (iii) of Proposition 1, namely that a uniformly higher
coefficient of absolute risk aversion implies more shading.

Case (i). Assume that u(·) exhibits increasing relative risk aversion,
i.e., that −xu′′(x)/u′(x) is increasing in x (the case of decreasing relative
risk aversion is similar). Scaling the scoring rule by a constant b > 0 is
mathematically equivalent to changing the utility function to ũb(x) = u(bx)
while keeping the scoring rule unchanged. Pick any b, b̂ > 0. Then ũb̂(·) has
a higher coefficient of absolute risk aversion than ũb(·) if

−b̂u
′′(b̂x)

u′(b̂x)
> −bu

′′(bx)

u′(bx)

at all x. By the assumption of increasing relative risk aversion of u(·), the
above will hold whenever b̂ > b. If u(·) is of the constant relative risk aversion
family, we can assume without loss of generality that u(x) = x1−γ/(1 − γ)
for some γ > 0 (with γ = 1 meaning logarithmic utility). We see that if
the scoring rule is scaled by a constant b > 0, this constant will appear as
a multiplicative factor b1−γ in the forecaster’s objective function. It follows
that the optimal choice of q will be independent of b.

Case (ii). Assume that u(·) exhibits increasing absolute risk aversion,
i.e., −u′′(x)/u′(x) is increasing in x (the case of decreasing absolute risk
aversion is similar). Shifting the scoring rule by a constant a ∈ R is equiva-
lent to changing the utility function to ũa(x) = u(x + a) while keeping the
scoring rule unchanged. Hence, for any a, â ∈ R, ũâ(·) will have a higher
coefficient of absolute risk aversion than ũa(·) if and only if â > a. If u(·)
belongs to the constant absolute risk aversion family, we may assume that
u(x) = − exp(−γx) for some γ > 0. If the scoring rule is shifted by a con-
stant a, this constant will appear as a multiplicative factor exp(−γa) in the
forecaster’s objective function, and so the optimal choice of q is invariant
under shifts of s(·).

A.4 Proof of Lemma 2

We make the following observations. The differentiability assumptions en-
sure that Sp(·) is continuously differentiable, and semi-strict quasiconcavity
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of s(·) and increasingness of u(·) imply that Sp(·) is strictly quasiconcave
(given interiority of p). If a solution to the problem (4) exists, strict qua-
siconcavity of Sp(·) and convexity of the constraint set guarantees that the
maximizer is unique (Mas-Colell et al., 1995, Theorem M.K.4).

Before proceeding, we prove an auxiliary lemma.

Lemma A.1. Let the scoring rule satisfy the assumptions of Lemma 2. If
p ∈ ∆◦n, then q = argmaxq̃∈D Sp(q̃) exists and lies in ∆◦n.

Proof. Observe first that since the scoring rule is extended continuous, we
can extend the domain of a scoring rule defined on D = ∆◦n to all of ∆n,
with the result being a scoring rule that is defined on a compact set. The
exception is if si(q

k)→ −∞ for some i = 1, . . . , n and some sequence {qk}
tending to a boundary point.17 However, in this case we can restrict the
scoring rule to a closed subset of ∆n on which we know for certain that
Sp(q) < Sp(p), since the unboundedly negative scoring rule payoff near the
problematic boundary points implies that there is some open neighborhood
around each point in which the expected utility is very low.

Consequently, all reports that yield higher expected utility than truthful
reporting lie in some compact set on which Sp(·) may be defined, retaining
continuity of the latter. Hence, an optimal report q ∈ ∆n exists.

Finally, we argue that q ∈ ∆◦n. In the proof of Proposition 2 we show that
an interior optimum must satisfy qi ≥ minj=1,...,n pj for all i = 1, . . . , n—
cf. equation (6). Suppose that the optimal report has ql = 0 for some
l = 1, . . . , n. Now consider a modified utility maximization problem in
which the utility function is substituted with ũ(x) = θx+(1−θ)u(x), where
θ ∈ [0, 1]. For θ = 1, strict propriety of the scoring rule implies that the
optimal report is q = p. For θ = 0 we have supposed that the optimal report
is on the boundary. However, since the objective function is continuous in
θ, the Theorem of the Maximum states that the optimal report must be
continuous in θ, which would then imply ql < minj=1,...,n pj for sufficiently
small θ, a contradiction. It follows that qi > 0 for all i = 1, . . . , n in the
original utility maximization problem.

Given the above lemma, we first restrict attention to the case p,q ∈
D = ∆◦n (except where noted), subsequently considering boundary reports.

Existence of optimal report function. This follows directly from Lemma
A.1 when p ∈ ∆◦n.

Continuity. The objective function in the problem (4) is continuous.
According to the argument in the proof of Lemma A.1, for any p ∈ ∆◦n

17The limit cannot be +∞ since the scoring rule is bounded above.
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we can construct a closed subset of ∆n on which the optimal report lies,
and on which we can continuously extend Sp(·). This subset can be made
continuous in p. The Theorem of the Maximum (Mas-Colell et al., 1995,
Theorem M.K.6) then states that q(·) is continuous. Single-valuedness—and
thus continuity—follows from uniqueness of the optimal report.

Symmetry. Using neutrality of the scoring rule, symmetry readily follows
by inspection of the optimization problem (4).

Boundary reports. Now consider the case D = ∆n. Let I = {i =
1, . . . , n | pi = 0}. Suppose first that I is non-empty. We shall employ the
notation

∆n(ε) = {q̃ ∈ ∆n | q̃i ≥ ε for all i}.

Note that ∆n(ε) = ∆n for ε ≤ 0. Define the correspondence r : ∆n ⇒ ∆n

by
r(p̃) = argmax

q̃∈∆n(mink pk)
Sp̃(q̃)

for p̃ ∈ ∆n. Since the objective function and the constraint correspondence
are continuous in p̃, the Theorem of the Maximum states that r(·) is upper
hemicontinuous. Consider an interior sequence {pn} converging to p as
n→∞. Upper hemicontinuity implies that

lim
n→∞

r(pn) ⊂ r
(

lim
n→∞

pn
)

= argmax
q̃∈∆n

Sp(q̃). (†)

It is readily verified from relation (6) that, for each n, the unique unrestricted
maximizer qn of Spn(q̃) over ∆◦n satisfies qni ≥ mink pk. Hence, r(pn) = qn

(i.e., the correspondence is single-valued) and by expression (6) the i-th
coordinate of that single value is proportional to pni . Since pni → 0 for
all i ∈ I, limn→∞ r(pn) consists of an element q∗ with coordinates in I
equal to zero. Suppose that there also existed a q̂ ∈ argmaxq̃∈∆n

Sp(q̃)
with q̂i > 0 for some i ∈ I. Then it must be the case that q∗j 6= q̂j for
some j /∈ I. Semi-strict quasiconcavity of the scoring rule then implies that
Sp(1

2q∗+ 1
2 q̂) > Sp(q∗), a contradiction. Hence, the optimal report is unique

and we have qi(p) = 0 for all i ∈ I.
Going the other way, suppose there existed a belief p ∈ ∆n such that

some optimal report q had qi = 0 even though pi > 0. In light of the
discussion above, we can without loss of generality consider the case p ∈ ∆◦n.
Thus, the objective function in (2) will be strictly quasiconcave on all of ∆n,
guaranteeing uniqueness of the optimal report. Define the correspondence
r̃ : ∆n ⇒ ∆n by

r̃(p̃) = argmax
q̃∈∆n(p̃i−pi)

Sp̃(q̃)
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for p̃ ∈ ∆n. Consider a sequence {pn} converging to p, with pni ∈ (pi, 2pi)
at all n. Again, the Theorem of the Maximum gives that r̃(·) is upper
hemicontinuous, so (†) holds with r(·) replaced with r̃(·). But for each n,
r̃(pn) is single-valued and the i-th coordinate of that value is proportional
to pni . It follows that there exists some q∗ ∈ argmaxq̃∈∆n

Sp(q̃) with q∗i > 0.
This contradicts uniqueness of q.

In conclusion, we have shown that qi(p) = 0 if and only if pi = 0. An
immediate corollary is that qi(p) = 1 if and only if pi = 1.

A.5 Proof of Proposition 2

Due to Lemma 2, we may restrict attention to interior subjective beliefs and
reports. An expected utility maximizing forecaster solves

max
q̃∈Rn

Sp(q̃) s.t.

n∑
i=1

q̃i = 1, q̃i > 0 for all i. (4)

We start out by showing an auxiliary result.

Lemma 3. Suppose the scoring rule satisfies the assumptions in Lemma 2.
Let q ∈ ∆◦n and i, j = 1, . . . , n. Then si(q) > sj(q) if and only if qi > qj.

Proof. If qi = qj , neutrality yields si(q) = sj(q). When qi 6= qj , strict
propriety of the scoring rule implies

n∑
k=1

qksk(q) >
n∑
k=1

qksk(σij(q)).

Due to neutrality of the scoring rule, the n−2 terms corresponding to k 6= i, j
cancel out on both sides. Moreover, si(σij(q)) = sj(q), and vice versa with
i and j reversed. This leaves us with

(qi − qj)[si(q)− sj(q)] > 0,

from which the lemma follows.

Let q̂ ∈ ∆◦n. Since the scoring rule is Lagrange sufficient (and thus con-
tinuously differentiable), the necessary and sufficient first-order conditions
for the problem (1) imply that if there exists a q̃ ∈ ∆◦n and a multiplier
µ ∈ R such that, for all l = 1, . . . , n,

n∑
k=1

q̂k
∂sk(q̃)

∂ql
= µ, (5)
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then it must be the case that q̃ = q̂.
Fix p ∈ ∆◦n. As Sp(·) is continuously differentiable, there must exist a

λ ∈ R such that the unique solution q ∈ ∆◦n of the problem (4) satisfies the
first-order conditions

n∑
k=1

pku
′(sk(q))

∂sk(q)

∂ql
= λ

for all l = 1, . . . , n. Define q̂ ∈ ∆◦n by q̂l = plu
′(sl(q))/

∑n
k=1 pku

′(sk(q)),
l = 1, . . . , n, and divide the above conditions by

∑n
k=1 pku

′(sk(q)) to find

n∑
k=1

q̂k
∂sk(q)

∂ql
=

λ∑n
k=1 pku

′(sk(q))
.

Since the right-hand side is independent of l, it follows from the previous
discussion—cf. (5)—that q̂ = q, i.e.,

ql =
plu
′(sl(q))∑n

k=1 pku
′(sk(q))

(6)

for all l = 1, . . . , n. Hence,

pi
pj

=
qi
qj

u′(sj(q))

u′(si(q))
. (7)

Since u(·) is strictly concave, u′(·) is strictly decreasing. Using Lemma 3,
the equation readily implies that if pi > pj , then pi/pj > qi/qj > 1.

A.6 Proof of Proposition 3

We can without loss of generality focus on the case n = 3. For expositional
simplicity, we also specify that the domain of the scoring rule is D = ∆n. Fix
Ω = {1, 2, 3} and normalize the center’s utility function v(·) so that v(0) = 0.
The lottery L̃ is induced by probability distribution p̃ = (1/3, 1/3, 1/3) and
the act that pays out x = (x, x, 0), where x > 0. Lottery L is induced by
p = (2/3 + ε, 0, 1/3− ε) for some small ε > 0 and the same act. The latter
lottery strictly first-order stochastically dominates the former.

From Propositions 1 and 2 it follows that q3(p̃) = 1/3 < q3(2/3, 0, 1/3),
and so by continuity of q(·) we have q3(p̃) < q3(p) for a sufficiently small ε.
This implies

q1(p)v(x) + q2(p)v(x) + q3(p) · 0 < q1(p̃)v(x) + q2(p̃)v(x) + q3(p̃) · 0.

In other words, when deciding on the basis of q(p) and q(p̃), the center
ranks lottery L̃ over L.
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A.7 Proof of Proposition 4

The integral in the expression for the estimator is well-defined due to q−1
γ (·)

being continuous. Note first that18

q−1
γ (q̃1) = E[p1 | q̃1, γ1 = γ].

Since the data points are i.i.d. and |q−1
γ (·)| is bounded by 1 for all γ, the

strong law of large numbers gives, as N →∞,

p̂
a.s.→Eq̃1

{∫
Γ
q−1
γ (q̃1)dG(γ)

}
= Eq̃1

{
Eγ
(
E[p1 | q̃1, γ1 = γ]

)}
= Eq̃1

{
E[p1 | q̃1]

}
= E[p1].

A.8 Monte Carlo simulations of the Proposition 4 estimator

Monte Carlo simulations suggest that the estimator for the mean has good
finite-sample properties, cf. Figure 2. In applications we expect an addi-
tional source of error stemming from uncertainty about the true distribution
of risk attitudes. Proposition 1 provides guidance as to the direction of a
possible bias. Figure 3 shows Monte Carlo results for a misspecified model
where the degree of forecaster risk aversion has been overestimated by the
center. Although consistency of the p̂ estimator fails, the figure suggests
that the error is quite manageable even in small samples.

18Given the assumption that q̃i = qγi(pi) exactly, the distribution of p1 conditional on
q̃1 and γ1 is degenerate. Hence, we have [q−1

γ (q̃1)]k = E[(p1)k | q̃1, γ1 = γ] for all k, a fact
that may be used for deriving estimators of other moments of the belief distribution.
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Figure 2: Histogram of the estimated population means in 50 runs of the
Proposition 4 estimator on data with specifications N = 20, uγ(x) = −x−γ ,
s(q) = 2 + 2q − q2 − (1 − q)2, pi ∼ B(5, 2), γi ∼ logN(0.8, 0.4). The true popu-
lation mean is E[p1] = 5/7 ≈ 0.7143. The average and standard deviation of the
50 estimates are 0.7108 and 0.0311, respectively. Calculations were carried out in
Matlab using quad for numerical integration. For each γ and q̃ the inverse func-
tion g−1

γ (q̃) was approximated by finding optimal reports at p = 0.01, 0.02, . . . , 1.00
using fminbnd and then choosing the p that led to the smallest error |qγ(p)− q̃|.
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Figure 3: Histogram of the estimated population means in a misspecified model.
The estimates derive from 50 runs of the Proposition 4 estimator on data with spec-
ifications N = 20, uγ(x) = − exp(−γx), s(q) = q/

√
q2 + (1− q)2, pi ∼ B(1.5, 4),

γi ∼ Γ(2, 1.5). However, the integration in the estimator is carried out with respect
to the erroneous distribution γ ∼ Γ(2, 2) = χ2(4). The true population mean is
E[p1] = 1.5/5.5 ≈ 0.2727. The average and standard deviation of the 50 estimates
are 0.2527 and 0.0380, respectively.
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