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Causal framework in macroeconomics

• Impulse-propagation paradigm: macroeconomists often find it useful to think about how
their models propagate “shocks”. Frisch (1933); Slutsky (1937)

shocks −→︸︷︷︸
propagation

outcomes

• Shock = surprise changes to an external factor driving the economy, e.g., fundamentals
(TFP, household discount factor, . . . ) or deviations from policy rules.

• Conceptually distinct shocks should be statistically independent. If two kinds of “shocks”
were systematically related, there must be a third shock that’s causing both.
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Impulse responses = dynamic causal effects

• In the impulse-propagation paradigm, central objects of interest are the impulse response
functions (dynamic causal effects)

∂E [yt+h | εt = ε]
∂ε

, h = 0, 1, 2, . . . ,

where yt = outcome of interest, and εt = shock.

• Not a forecast! εt may only comprise a small fraction of the overall variance of yt .

• Focusing attention on the propagation of shocks yields conceptual clarity and ease of
matching theory with data.

• Moreover, under some assumptions, impulse responses can be used to compute policy rule
counterfactuals or evaluate policy optimality. Barnichon & Mesters (2023); McKay & Wolf (2023)
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Impulse response estimators

• One estimation strategy: take a fully-specified structural model to the data.

• If we get it right, this produces all the causal effects and counterfactuals we could dream of.

• But typically requires numerous assumptions that are jointly implausible.

• Two popular methods allow for estimation of impulse responses without imposing a full
equilibrium structure a priori:

1 VAR: iterate on flexible dynamic multivariate model. Sims (1980, 22k cites)

2 LP: direct regression of future outcome yt+h on current covariates. Jordà (2005, 5k cites)

• Which one of these works best? And are these linearity-based procedures ever useful if
the real world is nonlinear?
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Main references for this talk

• Montiel Olea, Qian, P-M & Wolf (2025a), “Local Projections or VARs? A Primer for
Macroeconomists”, NBER Macro Annual.

• Kolesár & P-M (2025), “Dynamic Causal Effects in a Nonlinear World: the Good, the
Bad, and the Ugly”, JBES.
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Local projection

• LP: linear regression, separately for each horizon h = 0, 1, 2, . . . :

yt+h = µh + θLP
h xt + γ′

hrt + δ′
h,1wt−1 + · · · + δ′

h,pwt−p + ξh,t+h.

• This is a projection, not a generative model.

• Shock: LP estimates impulse response of yt+h with respect to

x̃t = xt − proj(xt | rt ,wt−1, . . . ,wt−p).

Whether this is an interesting object depends on assumptions.

• E.g., x̃t = narrative shock (Romer x 2) or Taylor rule residual (Christiano, Eichenbaum & Evans).

• Projection: LP uses autocorrelations in the data out to the horizon h of interest to
compute θLP

h .
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Vector autoregression

• VAR estimates reduced-form multivariate dynamic model in wt = (r ′
t , xt , yt , w̄ ′

t)′:

wt = c + A1wt−1 + A2wt−2 + · · · + Apwt−p + ut .

• Orthogonalize ut = Hεt . For now, assume H lower triangular (recursive/Cholesky id’n).

• Structural impulse responses Ψh = ∂wt+h/∂ε
′
t from iterative propagation:

Ψ0 = H, Ψ1 = A1Ψ0, Ψ2 = A1Ψ1 + A2Ψ0, . . . Ψh =
∑min{p,h}

ℓ=1 AℓΨh−ℓ,

θVAR
h = ∂yt+h/∂εx ,t = e′

y Ψhex .

• Shock: residual in projection of ux ,t on ur ,t (elements of ut). Same as LP shock x̃t !

• Projection: VAR matches first p autocovariances of the data, but extrapolates to longer
horizons h > p.
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Equivalence between LP and VAR

• LP & VAR project on the exact same shock.

• But the way they propagate that shock differs: LP directly uses autocorrelations in the
data out to horizon h, while VAR extrapolates from the first p autocovariances.

• This suggests that if p is large, the two methods should be equivalent.

• Even if p is not large, the two methods should give similar results at horizons h ≤ p.

8



LP = VAR with very long lag length

p = ∞: same shock, same projection, so same impulse responses
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LP ≈ VAR up to horizon p

p < ∞: same shock so same responses at h = 0,
approx’ly same for 0 < h ≤ p, but then VAR extrapolates
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LPs and VARs share the same estimand when p is large

• The previous discussion considered recursive identification (short-run timing restrictions).

• The equivalence between LP & VAR extends to more complicated identification schemes.

• Proxy/IV, long-run restrictions, sign restrictions, . . .

• Intuition: “shock” is still just some (potentially complicated) f’n of autocovariances of the
data. With many lags, both LP and VAR approximate these well in large samples.

• Take-away: LP vs. VAR debate unrelated to questions of identification.

• Any identification scheme that can be implemented by an SVAR can also be implemented by
an LP, and vice versa.

• Only difference is how a finite data set is exploited to estimate the common estimand.
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VAR vs. LP in finite samples

Replication of 4 empirical applications in Ramey (2016), total of 385 impulse responses
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Illustrative simulation

yt = ρyt−1 + εt + αεt−1, εt
i .i .d .∼ N(0, 1)

h = 2, ρ = 0.85, α = 0.1, T = 240
13



Analytics of the bias-variance trade-off

• Montiel Olea et al. (2025b) consider a structural VAR model contaminated by small MA
terms:

wt = A1wt−1 + · · · + Ap0wt−p0 + H (εt + α1εt−1 + α2εt−2 + . . .) .
• Why? Low-order VARs are known to forecast well, but not literal truth. Schorfheide (2005)

• MA terms can arise if we slightly under-specify the lag length, forget to control for a relevant
variable, aggregate the data inappropriately, or use data with measurement error.

• Technically, assume αℓ ∝ std. dev. of VAR estimator.

• In this environment, estimators should control for infinitely many lags. Infeasible.
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Analytics of the bias-variance trade-off

• Suppose both LP & VAR use p ≥ p0 estimation lags.

• Then in large samples,

θ̂VAR
h

·∼ N
(
θh + bh(p), τ2

h,VAR(p)
)
, θ̂LP

h
·∼ N

(
θh, τ

2
h,LP

)
.

• Benefit and cost of extrapolation: VAR more efficient (τ 2
h,VAR(p) ≤ τ 2

h,LP) but biased.

• h ≤ p − p0: VAR bias bh(p) = 0 and variance both coincide with LP.

• Both LP & VAR require controlling for the most important predictors/lags! But the result
implies that LP is robust to omitting moderately important ones, while VAR is not.

• LP is relatively robust to model selection errors committed by BIC/AIC. Can use these to
select the number of lagged controls.
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How bad can the VAR bias be in theory?

• Theoretical bound on bias: letting M denote the fraction of the variance of the MA
residual that’s due to lagged shocks,

|bh(p)| ≤
√

T × M ×
{
τ2

h,LP − τ2
h,VAR(p)

}
,

and there exist MA coefficients that attain the bound.

• Example: if T = 100, M = 1%, τh,VAR(p)/τh,LP = 0.5, then bias can be 1.73 × SE.

• No free lunch for VARs: if precision gain is large, then so is the potential bias.

• VAR only robust if we use so many lags that VAR = LP.
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The bias-variance trade-off in practice

• Montiel Olea et al. (2025a) conduct large-scale simul’n study, extending Li et al. (2024).

• DGP: extension of Stock-Watson dynamic factor model fitted to 207 U.S. macro series.

• Both stationary and non-stationary versions.

• Construct 100s of specifications:

• Randomly draw subsets of 5 salient macro series from the DFM. Outcome y chosen at random
from this list.

• Additionally, econometrician observes a monetary/fiscal shock.

• Simulate data with T = 240, then estimate LPs, VARs, and several variants.
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Simulation evidence: bias and standard deviation

Bias Standard deviation

average across 200 stationary and 200 non-stationary DGPs
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MSE loss: (B)VAR preferred over LP on average

Conventional way to trade off bias and variance: MSE = bias2 + variance

MSE for stationary DGPs MSE for non-stationary DGPs
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Bias-variance trade-off: recap

• Bias-variance trade-off is stark in practice.

• Robustness of LP to dynamic misspecification comes at significant variance cost.

• Under MSE loss, VAR is preferred over LP in the average simulation DGP.

• Shrinkage (penalized LP or BVAR) often preferred over OLS.

• But MSE only evaluates the accuracy of the point estimate. This is not worth much
without an accompanying uncertainty assessment.
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Uncertainty assessments: bias is costly

• Conventional to summarize uncertainty using
confidence interval.

• Want coverage probability close to (say) 90%
regardless of true DGP (not just for avg DGP!).

• Challenge for VARs: bias is really costly for
coverage. CI has correct width, but off-center.

• Remember: easy to get worst-case bias
≈ 1.73 × SE.
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Long horizons and persistent data

• If the true DGP is a finite-order VAR, then the SVAR estimator is certainly efficient.

• But even in such settings, LP has some advantages: it’s robust to persistence in the data
and the length of the impulse response horizon h.

• Persistence:

• The behavior of VAR estimators can depend sensitively on whether the data has unit roots
(stochastic trends). Sometimes we get non-normally distributed estimators.

• But the LP estimator projects on an (implicit) shock x̃t , which is nicely stationary if we control
for lags.

• The LP estimator is therefore robustly (approximately) normally distributed, so the usual
confidence interval works regardless of unit roots or not.
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Long horizons and persistent data

• Long horizons:

• The VAR impulse response formula is nonlinear in the VAR coefficients.

• E.g., AR(1): θ̂VAR
h = ρ̂h.

• At horizons h that are a substantial fraction of the sample size T , the nonlinearity is so severe
that standard VAR confidence intervals break down.

• But the LP estimator is just based on linear regression. No nonlinearity issues, even for large h.
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Simulation evidence: confidence interval coverage

Fraction of DGPs with coverage ≥ 80% (target coverage 90%)
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VAR vs. LP: summary

• Choice of VAR vs. LP has nothing to do with identification.

• Anything you can do with SVAR, you can do with LP, and vice versa.

• Bias-variance trade-off between LP (low bias) and VAR (low variance).

• No free lunch for VARs.

• MSE loss: VAR (or BVAR) with few lags preferred for “typical” DGPs.

• Uncertainty assessments that are reliable across a wide range of DGPs and horizons
require either:

1 LP (controlling for lags).

2 VAR with many more lags than typically used (and minimal Bayesian shrinkage). Use LP as
robustness check.

25



LP: importance of lagged controls

• Five good reasons to include a generous number of lagged control variables in LP:

1 Identification of an economically meaningful shock x̃t .

2 Lowering SE (even if xt is already unpredictable).

3 Robustness against moderate dynamic misspecification (e.g., slightly predictable shock).

4 Reliable CI coverage at long horizons h.

5 Use heteroskedasticity-robust SE instead of HAC (e.g., Newey-West). The former typically
works better in realistic sample sizes. Montiel Olea & P-M (2021)

• Should control for all var’s and lags that are strong predictors of either outcome or
impulse. OK to omit weak predictors.

• Can select lag length and/or controls var’s using AIC applied to auxiliary VAR.
26
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VAR and LP in a nonlinear world

• The large-sample equivalence between VAR & LP with many lags is nonparametric: they
share the same estimand regardless of how nonlinear the underlying DGP is.

• But is the common estimand of these linearity-based procedures economically meaningful
if the DGP is nonlinear?

• Assume very generally that

yt+h = ψh(εt , νh,t+h), where εt and νh,t+h are independent.

εt = shock of interest, νh,t+h = vector of nuisance shocks, ψh = structural function
(arbitrarily nonlinear).

• We might be interested in the average structural function (ASF)

Ψh(ε) = E [ψh(ε, νh,t+h)], counterfactually fixing εt .
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Nonparametric identification with observed shocks

• Assume first we directly observe the shock xt = εt .

• Then ASF can be estimated from a nonparam. regr’n of yt+h on xt . Gonçalves et al. (2024)

• But this is challenging in typical macro data sets.

• What does a linear LP (= VAR with many lags) estimate in this case?

yt+h = θ̂LP
h xt + orthogonal controls + ξ̂h,t+h.
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Robustness of linear procedures

• In large samples, LP/VAR estimate a weighted average of nonlinear causal (marginal)
effects: Yitzhaki (1996); Rambachan & Shephard (2021); Kolesár & P-M (2025)

θ̂LP
h

p→
∫
ω(x)Ψ′

h(x) dx , where ω(x) ≡ Cov(1{xt ≥ x}, xt)
Var(xt)

.

• The weight function is convex: ω(·) ≥ 0,
∫
ω(x) dx = 1. We get the sign right if Ψh is

monotonic.

• Linear LP/VAR remain useful in a nonlinear world—at least as the first column of the
regression table.

• If we specifically want to characterize the nonlinearities, we should of course try to model them.

• But if average marginal effects suffice, nonlinear modeling can be counterproductive. Even if
variables have limited support, e.g., ZLB! Angrist (2001)
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Estimating the weight function

θ̂LP
h

p→
∫
ω(x)Ψ′

h(x) dx , ω(x) ≡ Cov(1{xt ≥ x}, xt)/Var(xt)︸ ︷︷ ︸
regression coefficient

• ω̂(x): slope in regression of 1(xt ≥ x) on xt .

• Easy to report, as it depends only on shock xt , not on outcome variable or horizon.

• Weights transform empirical CDF of shocks into interpretable units.
• Visualize asymmetry, outliers, etc.

• Special case: if xt ∼ Gaussian, then ω(x) = density of xt . Yitzhaki (1996)

Government spending shocks from Ramey (2016) handbook chapter:
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Extensions: proxies, identification with controls

1 If we do not directly observe the shock εt but only a noisy proxy

zt = f (εt , independent noise),

then the previous result goes through, as long as E [zt | εt = ε] is approx’ly monotonic.

• f need not be linear. For example, zt can be discrete (narrative proxy).

2 If we need to residualize xt on control variables wt−1 to isolate a shock, then the earlier
result applies only if we correctly model E [xt | wt−1] (i.e., it’s linear).

• Might need to include nonlinear transformations of variables in wt−1.

• Verify that linearly residualized “shock” xt − β̂′wt−1 cannot be predicted by nonlinear
transformations of wt−1.
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Fragility of identification via heteroskedasticity
• We saw that linear LP/VAR with observed shocks/proxies estimate something meaningful

in the nonparametric model
yt+h = ψh(εt , νh,t+h).

• If we don’t have access to an observed shock/proxy, a popular identification scheme is
identification via heteroskedasticity:

• Assume we observe a discrete regime indicator Dt satisfying

E [εt | Dt ] = 0, but Var(εt | Dt) ̸= constant.

• If ψh is linear, impulse responses are identified. Sentana & Fiorentini (2001); Rigobon (2003)

• Unfortunately, if the true DGP is nonlinear, the linearity-based estimators in this literature
do not estimate weighted averages of marginal effects.

• Intuitively, marginal effects concern the effect of shifting the location of εt , but the observed
Dt only affects its spread.
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Fragility of identification via non-Gaussianity

• Another recently popular identification procedure is identification via non-Gaussianity:

• Focusing on horizon h = 0, assume

yt = ψ0(εt , νt),

where yt is now a vector of observed outcomes, and all elements of εt and νt are mutually
independent and non-Gaussian.

• If ψ0 is linear, then impulse responses are identified. Gouriéroux, Monfort & Renne (2017); Lanne,
Meitz & Saikkonen (2017)

• These procedures can break down as soon as ψ0 is even moderately nonlinear.

• Intuitively, independence and Gaussianity are vacuous in a nonparametric context. If we start
with εt ∼ uniform, we can nonlinearly transform to any arbitrary multivariate distribution.
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Recommendations

• To analyze what—and how much—the data says about causal effects, use either
(a) LPs or (b) VARs with very many lags and minimal shrinkage (≈ LP).

• VARs with conventional lag lengths (+ Bayesian shrinkage) remain useful for forecasting.

• Control for all var’s and lags that are strong predictors of either outcome or impulse,
guided by economic theory and AIC.

• Report heteroskedasticity-robust SE (no need for Newey-West).

• For highly persistent data:

• Report bootstrap CI. Montiel Olea et al. (2025a)

• Apply bias correction. Herbst & Johannsen (2024); Piger & Stockwell (2025)
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Recommendations (continued)

• Though it’s hard work constructing them, identification with observed shocks (or proxies
thereof) buys robustness against nonlinearity in the DGP.

• Report implicit weight function.

• If controls needed for identif’n, verify that residualized shock is nonlinearly unpredictable.

• Proxies should be credibly monotonic in the underlying shock, but need not be linear (e.g.,
discrete proxies are fine).

• Other identification schemes may not be nearly so robust.
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Thank you!

Email: mikkelpm@uchicago.edu



Appendix
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Proxy/IV identification

• If we observe a variable zt that is a noisy proxy for the shock εt , a direct LP on zt suffers
from attenuation bias.

• Instead, it’s common to use a 2SLS version of LP: Stock & Watson (2018)

yt+h = µh + θLPIV
h mt + lags + ξh,t+h, using zt as an IV for mt .

This effectively scales the magnitude of the shock so that it causes a one-unit rise in the
policy instrument mt on impact.

• The above LP-IV estimand is equivalent with an “internal instrument” SVAR estimator:

• Include the proxy zt directly in the list of variables in the SVAR, and order it first.

• Compute Cholesky-orthogonalized impulse responses with respect to the first shock.

• Scale the magnitude of the shock using the same normalization as for LP-IV.
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Proxy/IV identification

• The above estimation strategy differs from “external instrument” SVAR: Stock & Watson
(2012); Mertens & Ravn (2013)

• Estimate a VAR that excludes the proxy zt .

• Only use the proxy subsequently to identify the underlying structural shock.

• This latter procedure is less robust, as it requires the additional assumption that the
shock is “invertible”. Stock & Watson (2018); Plagborg-Møller & Wolf (2021)
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