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Causal framework in macroeconomics

® Impulse-propagation paradigm: macroeconomists often find it useful to think about how
their models propagate “shocks”. Frisch (1933); Slutsky (1937)

shocks —— outcomes
~—

propagation

® Shock = surprise changes to an external factor driving the economy, e.g., fundamentals
(TFP, household discount factor, ...) or deviations from policy rules.

e Conceptually distinct shocks should be statistically independent. If two kinds of “shocks
were systematically related, there must be a third shock that's causing both.



Impulse responses = dynamic causal effects

® |n the impulse-propagation paradigm, central objects of interest are the impulse response
functions (dynamic causal effects)

OE[yiin | et = €]
Oe ’

h=0,1,2,...,

where y; = outcome of interest, and £; = shock.
® Not a forecast! £, may only comprise a small fraction of the overall variance of y;.

® Focusing attention on the propagation of shocks yields conceptual clarity and ease of
matching theory with data.

® Moreover, under some assumptions, impulse responses can be used to compute policy rule
counterfactuals or evaluate policy optimality. Barnichon & Mesters (2023); McKay & Wolf (2023)



Impulse response estimators

® One estimation strategy: take a fully-specified structural model to the data.
® |f we get it right, this produces all the causal effects and counterfactuals we could dream of.
® But typically requires numerous assumptions that are jointly implausible.

® Two popular methods allow for estimation of impulse responses without imposing a full
equilibrium structure a priori:

@ VAR: iterate on flexible dynamic multivariate model. Sims (1980, 22k cites)

@® LP: direct regression of future outcome y;, on current covariates. Jorda (2005, 5k cites)

® Which one of these works best? And are these linearity-based procedures ever useful if
the real world is nonlinear?



Main references for this talk

® Montiel Olea, Qian, P-M & Wolf (2025a), “Local Projections or VARs? A Primer for
Macroeconomists”, NBER Macro Annual.

e Kolesar & P-M (2025), “Dynamic Causal Effects in a Nonlinear World: the Good, the
Bad, and the Ugly”, JBES.
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Local projection

® |P: linear regression, separately for each horizon h=10,1,2,...:
Yerh = fih + 05 Xt + Vhre + Op1We 1 + -+ Op ,We—p + Enerh
® This is a projection, not a generative model.
® Shock: LP estimates impulse response of y;.p, with respect to
Xe = x¢ — proj(xe | re, We—1, ..., We_p).
Whether this is an interesting object depends on assumptions.

® E.g., X = narrative shock (Romer x 2) or Taylor rule residual (Christiano, Eichenbaum & Evans).

® Projection: LP uses autocorrelations in the data out to the horizon h of interest to
compute 9,';P.



Vector autoregression

VAR estimates reduced-form multivariate dynamic model in wy = (r{, x¢, v, wy)':
we = Cc+Awe_1+Aowr o+ -+ ApWi_p + U
Orthogonalize uy = He;. For now, assume H lower triangular (recursive/Cholesky id'n).
Structural impulse responses Wy, = dw;/0e, from iterative propagation:
Vo=H, V=AWV, Vo=AV;+ AV, ... V= qu:inl{p’h} AWy,
HXAR = OV 4h/0cxt = e)’,\l!hex.
Shock: residual in projection of uy+ on u,; (elements of u;). Same as LP shock %!

Projection: VAR matches first p autocovariances of the data, but extrapolates to longer
horizons h > p.
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Equivalence between LP and VAR

LP & VAR project on the exact same shock.

But the way they propagate that shock differs: LP directly uses autocorrelations in the
data out to horizon h, while VAR extrapolates from the first p autocovariances.

This suggests that if p is large, the two methods should be equivalent.

Even if p is not large, the two methods should give similar results at horizons h < p.



LP = VAR with very long lag length

p = oo: same shock, same projection, so same impulse responses
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates

=1
1.5 b
LP(p)
IIIVAR.(p)
1L
LA
L} .
050 a s
5t .
. "
" -
H 0'0 R
0: .......Illllllllllllllll
0.5 . , )
5 10 15 20
horizon

10



LP =~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates
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LPs and VARs share the same estimand when p is large

® The previous discussion considered recursive identification (short-run timing restrictions).

® The equivalence between LP & VAR extends to more complicated identification schemes.

® Proxy/IV, long-run restrictions, sign restrictions, . ..

® Intuition: “shock” is still just some (potentially complicated) f'n of autocovariances of the
data. With many lags, both LP and VAR approximate these well in large samples.

® Take-away: LP vs. VAR debate unrelated to questions of identification.

® Any identification scheme that can be implemented by an SVAR can also be implemented by
an LP, and vice versa.

® Only difference is how a finite data set is exploited to estimate the common estimand.

11
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Probability

[llustrative simulation
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Analytics of the bias-variance trade-off

¢ Montiel Olea et al. (2025b) consider a structural VAR model contaminated by small MA
terms:

Wy = A]_Wtfl + -+ /4,30Wt-7p0 + H(gt + Q1€t—1 + Q€2 + .. ) .

® Why? Low-order VARs are known to forecast well, but not literal truth. Schorfheide (2005)

® MA terms can arise if we slightly under-specify the lag length, forget to control for a relevant
variable, aggregate the data inappropriately, or use data with measurement error.

® Technically, assume ay o std. dev. of VAR estimator.

® |n this environment, estimators should control for infinitely many lags. Infeasible.

14



Analytics of the bias-variance trade-off

® Suppose both LP & VAR use p > pg estimation lags.

® Then in large samples,

AVAR - Ap -
0" ~ N (9h + bh(P)aTﬁ,VAR(P)) , O ~N 9h>7'/?,LP> .
® Benefit and cost of extrapolation: VAR more efficient (77 ar(P) < 74 p) but biased.
® h < p—po: VAR bias bs(p) = 0 and variance both coincide with LP.

® Both LP & VAR require controlling for the most important predictors/lags! But the result
implies that LP is robust to omitting moderately important ones, while VAR is not.

® LP is relatively robust to model selection errors committed by BIC/AIC. Can use these to
select the number of lagged controls.

15



How bad can the VAR bias be in theory?

® Theoretical bound on bias: letting M denote the fraction of the variance of the MA
residual that's due to lagged shocks,

bu(p)l < /T x M x {11 — uns(p)
and there exist MA coefficients that attain the bound.
® Example: if T =100, M = 1%, 7hvar(p)/7hLp = 0.5, then bias can be 1.73 x SE.
® No free lunch for VARs: if precision gain is large, then so is the potential bias.

® VAR only robust if we use so many lags that VAR = LP.

16



The bias-variance trade-off in practice

Montiel Olea et al. (2025a) conduct large-scale simul'n study, extending Li et al. (2024).
DGP: extension of Stock-Watson dynamic factor model fitted to 207 U.S. macro series.
® Both stationary and non-stationary versions.

Construct 100s of specifications:

® Randomly draw subsets of 5 salient macro series from the DFM. Outcome y chosen at random
from this list.

® Additionally, econometrician observes a monetary/fiscal shock.

Simulate data with T = 240, then estimate LPs, VARs, and several variants.

17



Simulation evidence: bias and standard deviation
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Simulation evidence: bias and

standard deviation
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Simulation evidence: bias and standard deviation
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MSE loss: (B)VAR preferred over LP on average

Conventional way to trade off bias and variance: MSE = bias? + variance
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Bias-variance trade-off: recap

Bias-variance trade-off is stark in practice.
Robustness of LP to dynamic misspecification comes at significant variance cost.
Under MSE loss, VAR is preferred over LP in the average simulation DGP.

® Shrinkage (penalized LP or BVAR) often preferred over OLS.

But MSE only evaluates the accuracy of the point estimate. This is not worth much
without an accompanying uncertainty assessment.

20
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Uncertainty assessments: bias is costly

Conventional to summarize uncertainty using
confidence interval.

Want coverage probability close to (say) 90%
regardless of true DGP (not just for avg DGP!).

Challenge for VARSs: bias is really costly for
coverage. Cl has correct width, but off-center.

Remember: easy to get worst-case bias
~ 1.73 x SE.

CI Coverage

|
1

1.5

[bn(P)|/Thv 4R (P)
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Uncertainty assessments: bias is costly

Conventional to summarize uncertainty using

confidence interval.
0.8}

Want coverage probability close to (say) 90%
regardless of true DGP (not just for avg DGP!).
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Long horizons and persistent data

® If the true DGP is a finite-order VAR, then the SVAR estimator is certainly efficient.

® But even in such settings, LP has some advantages: it's robust to persistence in the data
and the length of the impulse response horizon h.

® Persistence:

® The behavior of VAR estimators can depend sensitively on whether the data has unit roots
(stochastic trends). Sometimes we get non-normally distributed estimators.

® But the LP estimator projects on an (implicit) shock X;, which is nicely stationary if we control
for lags.

® The LP estimator is therefore robustly (approximately) normally distributed, so the usual
confidence interval works regardless of unit roots or not.

22



Long horizons and persistent data

® | ong horizons:

® The VAR impulse response formula is nonlinear in the VAR coefficients.

E.g., AR(1): QVAR oh.

At horizons h that are a substantial fraction of the sample size T, the nonlinearity is so severe
that standard VAR confidence intervals break down.

But the LP estimator is just based on linear regression. No nonlinearity issues, even for large h.

23



Simulation evidence: confidence interval coverage
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Simulation evidence: confidence interval coverage
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Simulation evidence: confidence interval coverage
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VAR vs. LP: summary

® Choice of VAR vs. LP has nothing to do with identification.
® Anything you can do with SVAR, you can do with LP, and vice versa.

® Bias-variance trade-off between LP (low bias) and VAR (low variance).
® No free lunch for VARs.
® MSE loss: VAR (or BVAR) with few lags preferred for “typical” DGPs.

® Uncertainty assessments that are reliable across a wide range of DGPs and horizons
require either:

@ LP (controlling for lags).

® VAR with many more lags than typically used (and minimal Bayesian shrinkage). Use LP as
robustness check.

25



LP: importance of lagged controls

® Five good reasons to include a generous number of lagged control variables in LP:
@ Identification of an economically meaningful shock X;.
@ Lowering SE (even if x; is already unpredictable).
© Robustness against moderate dynamic misspecification (e.g., slightly predictable shock).
@ Reliable Cl coverage at long horizons h.

@ Use heteroskedasticity-robust SE instead of HAC (e.g., Newey-West). The former typically
works better in realistic sample sizes. Montiel Olea & P-M (2021)

® Should control for all var's and lags that are strong predictors of either outcome or
impulse. OK to omit weak predictors.

e Can select lag length and/or controls var's using AIC applied to auxiliary VAR.

26
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VAR and LP in a nonlinear world

The large-sample equivalence between VAR & LP with many lags is nonparametric: they
share the same estimand regardless of how nonlinear the underlying DGP is.

But is the common estimand of these linearity-based procedures economically meaningful
if the DGP is nonlinear?

Assume very generally that
Ye+h = ¥n(et, Vht+n), Where e¢ and v 1y p are independent.

e¢+ = shock of interest, vp 1, = vector of nuisance shocks, v, = structural function
(arbitrarily nonlinear).

We might be interested in the average structural function (ASF)

Vy(e) = E[Yn(e, v e4+n)], counterfactually fixing €.

27



Nonparametric identification with observed shocks

® Assume first we directly observe the shock x; = &;.
® Then ASF can be estimated from a nonparam. regr'n of y;. 4 on X;. Goncalves et al. (2024)

® But this is challenging in typical macro data sets.
® What does a linear LP (= VAR with many lags) estimate in this case?

Yetrh = kaxt + orthogonal controls + & t4p-

28



Robustness of linear procedures
® In large samples, LP/VAR estimate a weighted average of nonlinear causal (marginal)
effects: Yitzhaki (1996); Rambachan & Shephard (2021); Kolesir & P-M (2025)

Cov(I{x: > x},xt)
Var(x)

0P & /w(x)lll'h(x) dx, where w(x)=
® The weight function is convex: w(-) >0, [w(x) dx = 1. We get the sign right if W is
monotonic.

® Linear LP/VAR remain useful in a nonlinear world—at least as the first column of the
regression table.

® |f we specifically want to characterize the nonlinearities, we should of course try to model them.

® But if average marginal effects suffice, nonlinear modeling can be counterproductive. Even if
variables have limited support, e.g., ZLB! Angrist (2001)

29



Estimating the weight function

0P 5 /w(x)\lf/h(x) dx, w(x) = Cov(L{x: > x},x:)/ Var(x)
regression coefficient

&(x): slope in regression of 1(x; > x) on x¢.
Easy to report, as it depends only on shock x;, not on outcome variable or horizon.

Weights transform empirical CDF of shocks into interpretable units.

® Visualize asymmetry, outliers, etc.

Special case: if x; ~ Gaussian, then w(x) = density of x;. Yitzhaki (1996)

30



Estimating the weight function

0P 5 /w(x)\lf/h(x) dx, w(x) = Cov(L{x: > x},x:)/ Var(x)

regression coefficient

Government spending shocks from Ramey (2016) handbook chapter:

<

-5 0 5 10 15

= Blanchard & Perotti (0>0: 0.520)  ====: Fisher & Peters (w>0: 0.497)
==+ Ben Zeev & Pappa (w>0: 0.671) === Ramey (»>0: 0.870)




Extensions: proxies, identification with controls

@ If we do not directly observe the shock €; but only a noisy proxy
z; = f(&¢, independent noise),
then the previous result goes through, as long as E[z; | €; = €] is approx’ly monotonic.
® f need not be linear. For example, z; can be discrete (narrative proxy).

® If we need to residualize x; on control variables w;_1 to isolate a shock, then the earlier
result applies only if we correctly model E[x; | wi—1] (i.e., it's linear).

® Might need to include nonlinear transformations of variables in w;_1.

® Verify that linearly residualized “shock” x; — 'w;_1 cannot be predicted by nonlinear
transformations of w;_j.
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Fragility of identification via heteroskedasticity

® We saw that linear LP/VAR with observed shocks/proxies estimate something meaningful
in the nonparametric model

Ye+h = Vn(Et, Vhtrh)-

¢ |If we don't have access to an observed shock/proxy, a popular identification scheme is
identification via heteroskedasticity:

® Assume we observe a discrete regime indicator D; satisfying
Ele: | D] =0, but Var(e:| D;) # constant.
® |f 4y is linear, impulse responses are identified. Sentana & Fiorentini (2001); Rigobon (2003)

® Unfortunately, if the true DGP is nonlinear, the linearity-based estimators in this literature
do not estimate weighted averages of marginal effects.

® Intuitively, marginal effects concern the effect of shifting the location of ¢, but the observed
D; only affects its spread.
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Fragility of identification via non-Gaussianity

® Another recently popular identification procedure is identification via non-Gaussianity:
® Focusing on horizon h = 0, assume

Yt = wo(ﬁtﬂ/t)a

where y; is now a vector of observed outcomes, and all elements of €, and v; are mutually
independent and non-Gaussian.

® |[f 4/ is linear, then impulse responses are identified. Gouriéroux, Monfort & Renne (2017); Lanne,
Meitz & Saikkonen (2017)

® These procedures can break down as soon as g is even moderately nonlinear.

® [ntuitively, independence and Gaussianity are vacuous in a nonparametric context. If we start
with €; ~ uniform, we can nonlinearly transform to any arbitrary multivariate distribution.
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Recommendations

To analyze what—and how much—the data says about causal effects, use either
(a) LPs or (b) VARs with very many lags and minimal shrinkage (= LP).

® VARs with conventional lag lengths (+ Bayesian shrinkage) remain useful for forecasting.

Control for all var's and lags that are strong predictors of either outcome or impulse,
guided by economic theory and AlC.

Report heteroskedasticity-robust SE (no need for Newey-West).
For highly persistent data:
® Report bootstrap Cl. Montiel Olea et al. (2025a)

® Apply bias correction. Herbst & Johannsen (2024); Piger & Stockwell (2025)
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Recommendations (continued)

® Though it's hard work constructing them, identification with observed shocks (or proxies
thereof) buys robustness against nonlinearity in the DGP.

® Report implicit weight function.
® |f controls needed for identif'n, verify that residualized shock is nonlinearly unpredictable.

® Proxies should be credibly monotonic in the underlying shock, but need not be linear (e.g.,
discrete proxies are fine).

e QOther identification schemes may not be nearly so robust.

35



Thank youl!
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Appendix



Proxy/IV identification

® |f we observe a variable z; that is a noisy proxy for the shock &;, a direct LP on z; suffers
from attenuation bias.

® |nstead, it's common to use a 2SLS version of LP: Stock & Watson (2018)

Yeeh = Wh + 9,';P'th + lags + &pt+h,  UsINg z: as an IV for m;.

This effectively scales the magnitude of the shock so that it causes a one-unit rise in the
policy instrument m; on impact.

® The above LP-IV estimand is equivalent with an “internal instrument” SVAR estimator:
® Include the proxy z; directly in the list of variables in the SVAR, and order it first.
® Compute Cholesky-orthogonalized impulse responses with respect to the first shock.

® Scale the magnitude of the shock using the same normalization as for LP-1V.
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Proxy/IV identification

® The above estimation strategy differs from “external instrument” SVAR: Stock & Watson
(2012); Mertens & Ravn (2013)

® Estimate a VAR that excludes the proxy z;.

® Only use the proxy subsequently to identify the underlying structural shock.

® This latter procedure is less robust, as it requires the additional assumption that the
shock is “invertible”. Stock & Watson (2018); Plagborg-Mgller & Wolf (2021)
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