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1 Inference and model selection in linear time series models

1.1 Berk (1973): “Consistent Autoregressive Spectral Density Estimation”

Summary States assumptions for consistency and asymptotic normality of the autoregressive
estimator of the spectral density at a finite number of frequencies.

Theory The univariate process in question is a causal AR(∞)

xt = B(L)et ⇒ A(L)xt = et,

with i.i.d. innovations et that have bounded fourth moments. Let â1k, . . . , âkk be LS estimates
from a fitted AR(k), RSS σ̂2

k. The autoregressive spectral density estimator is then

f̂k(λ) =
σ̂2
k

2π
|Âk(eiλ)|−2, Âk(z) = 1 + â1kz + · · ·+ âkkz

k.

To get consistency, need k3/n → 0 and k1/2(|ak+1| + |ak+2| + . . . ) → 0. Asymptotic normality
obtains if in addition k → ∞. The asymptotic variance is the same as that for truncated peri-
odogram estimators, i.e., (n/k)1/2(f̂k(λ) − f(λ)) has asymptotic variance 2f2(λ) (0 < λ < π) and
is asymptotically independent of estimators at other frequencies.

2 Structural breaks

2.1 Andrews and Ploberger (1994): “Optimal Tests When a Nuisance Param-
eter Is Present Only Under the Alternative”

Summary Some tests have the feature that the likelihood depends on certain nuisance parameters
π under the alternative but not the null. For example, for structural break tests, π is the timing
of the break. Such tests are non-standard, so the classical asymptotic optimality results for Wald,
LM and LR tests do not hold. The authors introduce a new class of test statistics that maximize
weighted average (over values of π) power against local alternatives (to the parameter of interest).
The special case of testing for structural breaks is treated in detail.

Theory The likelihood fT (θ, π) ≡ fT (YT ; θ, π) (wrt. the measure µT ) is assumed well-specified.
A parameter θ = (β′, δ′)′ is present under both the null and the alternative. β ∈ Rp is the parameter
of interest, so the null hypothesis is H0 : β = 0. The parameter vector π is only present under the
alternative (i.e., the likelihood does not depend on π when β = 0). The new test is

Exp-LM T = (1 + c)−p/2
∫

exp

(
1

2

c

1 + c
LMT (π)

)
dJ(π),

where LMT (π) is the standard LM test statistic (using the restricted ML estimator) given π and
J(·) is a weight function (c.d.f.). Analogous tests are defined for the Wald and LR statistics. The
local alternatives to H0 are of the form fT (θ0 +B−1

T h, π). The goal is to maximize weighted average
power

limT→∞

∫ [∫
ϕT fT (θ0 +B−1

T h, π)dµT

]
dQπ(h)dJ(π)
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for tests ϕT of size α. By Fubini, this can also be seen as maximizing power against a single
alternative density given by an integral. A particular form for Qπ is chosen, namely a singular
multivariate normal distribution concentrated on the orthogonal complement to the linear space of
parameters θ satisfying β = 0: Qπ = N(0, cΣπ). The variance is scaled by c. High c correspond to
distant (local) alternatives.

Theorem 1 gives the asymptotic distribution of Exp-LM T . Theorem 2 states that it achieves
the maximal weighted average power for the particular choice of Qπ.

Application The authors specialize to structural break tests by considering m-th order Markov
data with an unknown break date. π is the timing of the break as a fraction of the sample size.
In this case, the asymptotic distribution of the test statistics do not depend on δ0, so it’s straight-
forward to simulate critical values.

Proof intuition By Neymann-Pearson, the optimal test against the alternative density
∫
fT (θ0+

B−1
T h, π)dQπ(h)dJ(π) is given by the likelihood ratio test

LRT =

∫
fT (θ0 +B−1

T h, π)dQπ(h)dJ(π)

fT (θ0)

with appropriate critical value. The proof proceeds by showing that

Exp-LM T − LRT
p→ 0,

both under the null and under local alternatives. The exponential function appears due to normality
of Qπ and a Taylor expansion of log[fT (θ0 +B−1

T h, π)/fT (θ0)] in terms of the score.

2.2 Jushan Bai (REStat 1997): “Estimation of a Change Point in Multiple
Regression Models”

Summary Considers the multivariate regression model with one break. The break point is es-
timated by LS. The estimator is shown to be consistent and asymptotic distribution theory is
provided. To get an asymptotically pivotal distribution, the break size needs to tend to zero with
the sample size.

Theory The model is
Y = Xβ + Z0δ + ε,

where Z0 = (0, . . . , 0, xk0+1, . . . , xT )′R for a fixed, known matrix R (i.e., allows for the researcher
to know which subset of coefficient exhibits a break). The break date k0 = [τT ] is estimated by,
for each possible k, regressing Y on X and Z2(k) = (0, . . . , 0, xk+1, . . . , xT )′R and then choosing
k̂ = arg mink ST (k), where ST (k) is the SSR. It is shown that

k̂ = arg max
k

WT (k), WT (k) =
δ̂′k(Z2MZ2)δ̂k

σ̂2
k

, M = I − PX ,

i.e., the estimator can be thought of as first performing a sup-type test for structural breaks and
then picking the break to be where the sup is attained.
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Proposition 1 shows that under general conditions on the regressors (that may feature a time
trend) and disturbances (which can be martingales or mixingales), the estimator is consistent. This
is also the case if the parameter break δ tends to zero at a sub-

√
T rate. Corollary 1 shows that β

and δ can be estimated consistently by the corresponding LS estimators for k = k̂.
If the break δ is fixed, Proposition 2 gives the asymptotic distribution, which is non-pivotal.

To get a pivot, it is necessary to let δT → 0. Proposition 3 then gives conditions under which a
proper scaling of (k̂−k0) converges in distribution to a pivotal functional of Wiener processes. The
limiting distribution is not symmetric in general. It is derived in closed form in Appendix B.

In the applications section, Bai discusses a procedure for detecting multiple breaks. First test
for the presence of a break, then split the sample at the located break date and test parameter
constancy on each subsample, etc. Any estimated change point should be reestimated if it is from
a subsample with more than one break. Note that the sup-Wald test loses power with more than
one break; intuitively, the estimated variance in the denominator is not consistent under breaks
and it will tend to be too large when breaks actually occur.

2.3 Bai (EcmT 1997): “Estimating multiple breaks one at a time”

Summary Considers structural break tests in a linear regression model with multiple mean shifts.
Gives consistency and asymptotic normality for a sequential testing procedure, for which a break
point is first estimated by OLS, then the data is split in subsamples and additional breaks are
estimated on the subsamples, etc. For each generated subsample, parameter constancy is tested.
Simulation show that break points are estimated well when the number of breaks is known, and
the sequential testing procedure is at least competitive when the number of breaks is unknown.

Theory Most of the paper focuses on the (almost WLOG) two-break model

Yt = µt +Xt,

where µt = µ1 for t ≤ k0
1, µt = µ2 for k0

1 + 1 ≤ t ≤ k0
2 and µt = µ3 for t ≥ k0

2 + 1. Here k0
i = [τ0

i T ].
The break point is estimated by LS (Bai, REStat 1997)

k̂ = arg min
k
ST (k), ST (k) =

k∑
t=1

(Yt − Ȳk)2 +
T∑
k+1

(Yt − Ȳ ∗k )2.

Let τ̂ = k̂/T . Under some conditions, τ̂ is consistent at rate T : τ̂ − τ0
1 = Op(T

−1). This of
course requires that the first break is more pronounced than the second in population. This rate of
convergence is equal to the one obtained for simultaneous estimators (Bai and Perron, 1994) that
search over all possible break dates. The T -rate is crucial for the subsequent results, since it implies
that k̂ − k0

1 = Op(1), so we get the order of the break point right. This allows us to consistently

estimate k0
2 (at rate T ) by the LS estimator k̂2 restricted to the dates [k̂, T ].

The asymptotic distribution of the initial estimator k̂ is non-standard, depends on the dis-
tribution of Xt and is skewed. The skew results from the estimator being based on inconsistent
estimates of the µi, as it imposes one break point when in fact there are two. The second break
point estimator k̂2 does not suffer from this problem, so its limiting distribution is symmetric. Bai
advocates “repartitioning,” i.e., reestimating on the subsamples [1, k̂] (call the estimator k̂1) and
[k̂1, T ]. This yields symmetric asymptotic distributions for both. As in Bai (REStat 1997), letting
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the regime means tend to zero at a rate strictly between 0 and T−1/2 yields pivotal asymptotic
distributions for the above estimators. The convergence rate for τ̂i is slower than T , though, due
to the vanishing magnitude of the breaks.

With more than two breaks, an analogous sequential estimation procedure can be used. How-
ever, it is necessary to estimate the number of breaks. This may be done in a sequential fashion,
where for each subsample the sup F -test is used to evaluate the reduction in the SSR from intro-
ducing the possibility of a break. The (pivotal) limiting distribution of the sup F -test is given. Bai
shows that the sequential testing procedure consistently estimates the true number of breaks if the
significance level is taken to vanish with the sample size at rate at most T−1. Intuitively, so as to
not underestimate the number of breaks, the critical values must not grow too large. So as to not
overestimate, it is necessary that the critical values tend to infinity.

2.4 Elliott and Müller (2006): “Efficient Tests for General Persistent Time
Variation in Regression Coefficients”

Summary It is argued that a time-varying parameter model with persistent variations in the
parameter is a natural and useful way to model structural breaks. The authors show that for a
large class of persistent probability laws for the time-varying parameter βt under the alternative, the
point-optimal test of the no-break hypothesis against said alternative is asymptotically equivalent
to a test statistic L̃Rt which only depends on the long-run variance of T∆βt. Consequently, all
optimal tests tailored to some specific time-varying alternative are equivalent. An easy-to-compute,
feasible test statistic is proposed based on L̃Rt. Simulations show that it does well in finite samples.

Motivation The authors argue that deterministic constant break models are very similar to time-
varying parameter models. Optimal weighted average power tests for the former can be seen as
providing a probability model for the break dates, which is tantamount to a time-varying break
process. In most examples, whether there is persistent variation in βt is really the hypothesis of
interest, so tests should attempt to direct power against persistent local alternatives.

Theory The model is
yt = X ′tβt + Z ′tδ + εt,

and under the null, βt ≡ β̄. Condition 1 outlines the assumptions on the class of alternatives.
In particular, ∆βt is on the scale T−1, and T∆βt has a non-singular long-run covariance matrix
Ω. Note that the (random) number of breaks must necessarily grow with the sample size, but
otherwise the alternatives are very general. They allow for smooth adjustment to the new level
after the break.

By Neymann-Pearson, a point-optimal test against any of the alternatives is given by the
likelihood ratio statistic LRt. Under the assumption that the errors are conditionally normal,
Theorem 1 shows that this statistic is asymptotically equivalent (under the null and the alternative)

to another (infeasible) statistic L̃Rt, which only depends on the probability law of βt through Ω.
This latter statistic can in turn be explicitly computed thanks to normality. It is equivalent to a
test that has a quadratic form, for which a feasible version q̂LL can be defined (see p. 914–915).
The feasible test only uses k+1 OLS regressions and is therefore computationally attractive relative
to tests that require the researcher to search over all possible break locations. Critical values are
obtained from functionals of Wiener processes.
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Theorem 1 is proved by first showing the asymptotic equivalence result under the null. Then
a contiguity argument is used (as in Andrews and Ploberger, 1994) to also obtain the result under
the alternative.

One remaining issue is the dependence of the optimal test on Ω. If one had a particular choice
of alternative in mind, a value of Ω would be implied, and so basing the test on a generic choice
for Ω would result in a loss of power. However, the authors argue that if rotational invariance is

desired, then σ−2Σ
1/2
X ΩΣ

1/2
X =: Ω∗ = a2I, so the choice of Ω reduces to the choice of a (akin to the

choice of c in Andrews and Ploberger, 1994). Plots show that the local power envelopes for various
choices of a are extremely close.

Theorem 4 shows that the q̂LL test is valid under general conditions on regressors and errors
(in particular, normality is not needed).

3 HAC

3.1 Sun, Phillips and Jin (2008): “Optimal Bandwidth Selection in Heteroske-
dasticity-Autocorrelation Robust Testing”

Summary Andrews (1991) determined the optimal bandwidth M for HAC estimation based on
an asymptotic MSE criterion. SPJ argue that in most cases, the long-run variance is not the main
object of interest; instead, it is only an ingredient entering into hypothesis testing in regression
models. The authors focus on a Gaussian location model and derive higher-order expansions of
the non-standard KVB distribution of the t-statistic, as well as of the finite-sample distribution
of the t-statistic (this latter derivation requires Gaussianity of the errors). Both expansions are
developed for b → 0, and the distributions are approximated both under the null and under local
(1/
√
T ) alternatives. The leading order terms of the approximated KVB limiting distribution and

the finite-sample distribution coincide, which provides analytic support for the superiority of the
KVB approach. As a bonus, the finite-sample expansion implies (using a Cornish-Fischer inversion
of the Edgeworth expansion) an expression for higher-order correct critical values if one were to
base inference on the normal distribution.

The expansions yield expressions for the type I and type II errors (the latter under local al-
ternatives), under the assumption that the higher-order corrected critical value (or, equivalently
to high order, the KVB limit theory) is used. The authors consider a loss function that is a con-
vex combination of these two errors, with weight wT /(1 + wT ) on the former. Loosely, for time
series with positive serial correlation, the type I error increases as the bandwidth decreases (when
oversmoothing, fewer autocovariances receive weight in the estimator, so the LRV estimate is too
small); the type II error generally decreases with the bandwidth. For most time series models, the
optimal choice of M is O(T 1/(q+1)), where q is the Parzen characteristic exponent. This is larger
than (i.e., undersmooths relative to) the MSE-minimizing choice M = O(T 1/(2q+1)). Hence, the
optimal bandwidth allows for greater variance in order to reduce bias. If the weight wT on the
type I error diverges with T , the optimal choice of b = M/T satisfies b = O((wT /T

q)1/(q+1)), so the
fixed-b rule of KVB can be interpreted as attaching a large weight wT = O(T q) on the type I error.
The optimal bandwidth choice achieves a strictly better combined type I and II loss, expressed as
a rate in T .
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Model Location model yt = β + ut. ut has LRV

ω2 = γ0 + 2
∞∑
j=1

γj , γj = E[utut−j ].

HAC estimators of the form

ω̂2
b =

T−1∑
j=−T+1

k(j/bT )γ̂j

are considered. We want to test H0 : β = β0 against the two-sided alternative. Focus is on the
t-statistic

√
T (β̂ − β)/ω̂b. An FCLT is assumed for the partial sum of ut, so that the KVB limit

theory kicks in when b is fixed.
As in Andrews (1991), the Parzen characteristic exponent is

q = max

{
q0 ∈ Z+ : lim

x→0

1− k(x)

|x|q
<∞

}
.

This is 1 for the Bartlett kernel and 2 for the QS and Parzen kernels.

3.2 Sun and Phillips (2009): “Optimal Bandwidth Choice for Interval Estima-
tion in GMM Regression”

Summary The paper considers a linear GMM regression model yt = x′tβ0 +ut, with instruments
that satisfy E[utzt] = 0. The two-step efficient GMM estimator of β0 is employed, so the LRV of
vt = ztut is needed for inference. The authors derive Edgeworth expansions for the finite-sample
distribution of the t-statistic that uses a non-parametric HAC estimate. These expansions lead to
expressions for the coverage probability error (CPE) of one- and two-sided confidence intervals. The
optimal bandwidth M and higher-order corrected critical values for minimizing the CPE are then
derived (using asymptotic normality rather than KVB limit theory). It turns out that minimizing
the CPE requires choosing M to balance the asymptotic bias and variance of the HACE. For two-
sided CIs, the bias is O(M−q) and the variance O(M/T ), so the optimal bandwidth is generally
O(T 1/(q+1)). This contrasts with the asymptotic MSE criterion in Andrews (1991), in which the
square of the bias is balanced with the variance, leading to M = O(T 1/(2q+1)). As a side result, the
Sun and Phillips show that the QS kernel is not optimal for their purposes, as it doesn’t minimize
the CPE conditional on use of the optimal bandwidth (they don’t determine which kernel is in fact
optimal).

A data-driven algorithm for computing the optimal bandwidth is provided. The model is
estimated in a first step, which gives estimates v̂t that are then fitted to some low-order parametric
model like a VAR(1). This model is used to compute approximation to the necessary inputs into
the optimal M formula. The resulting automatic bandwidth is then used for estimation in the last
step. Simulations show that the optimal bandwidth formula with corrected critical values clearly
outperforms the Andrews (1991) approach. There is no clear ranking of the kernels.

Finally, the authors also consider a different optimality criterion, namely maximizing the power
against local alternatives (minimizing the probability of false coverage), subject to the true CPE
being below a threshold. This involves specifying a prior distribution over the set of local alter-
natives considered. The Edgeworth expansions imply formulas for the probabilities of true and
false coverage, so the optimization in M is straight-forward (conceptually) for any given prior
distribution.
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Intuition Stock and Watson (2008 NBER mini course) give the following intuition for why the
non-squared bias matters for the CPE. Let z ∼ N(0, σ2) and let σ̂2 be an estimator that is inde-
pendent of z. Then

P (z2/σ̂2 < c) = E[1{z2<cσ̂2}] = E[g(σ̂2)]

≈ E[g(σ2)] + E[σ̂2 − σ2]E[g′(σ2)] +
1

2
E[(σ̂2 − σ2)2]E[g′′(σ2)]

= Fχ2
1
(c) + Bias(σ̂2)E[g′(σ2)] +

1

2
MSE(σ̂2)E[g′′(σ2)].

(To make the above somewhat meaningful, we probably need to let g be a smooth approximation
to the indicator function.) We see that the expression above involves the un-squared bias, as well
as the squared bias and the variance (from the MSE). So more weight is placed on bias than in an
MSE criterion.

4 Weak identification

4.1 Stock and Wright (2000): “GMM with Weak Identification”

Summary Develop non-standard asymptotic approximation for IV with non-linear moment con-
ditions when some of the parameters are weakly identified. The parameter vector is written as
θ = (α′, β′)′, where α is weakly and β strongly identified. To formally define weak identification,
the mean of the sample moment condition is split up into three parts, one evaluated at the true
parameters (α0, β0), one that only depends on β and one that depends on both (α, β). The last
component is modeled as a function (independent of the sample size) divided by

√
T , such that

this component stays bounded as T → ∞, leading to the weak identification of α. The limiting
distributions for the GMM objective function and the traditional GMM estimator are given. Both
α̂ and β̂ have non-standard limiting distributions, as β̂ is influenced by the inability to consistently
estimate α even if β0 were known, so the moments are not evaluated within a local neighborhood
of α0 in large samples. However, β̂ remains

√
T -consistent. Due to the non-standard limit distribu-

tions, traditional LR and Wald statistics will not be valid. Instead, the authors show that the CUE
objective function evaluated at the true θ0 has a limiting χ2 distribution, which suggests inverting
this test statistic to obtain valid confidence regions. Furthermore, to reduce the d.f. by nβ, one
can concentrate out the strongly identified parameters β. The resulting robust confidence regions
are called S-sets. The authors caution that S-sets could be small either because (1) the model
is misspecified and the data relatively uninformative or (2) the model is correct and the precisely
estimated.

The authors specialize the results to the one-step, two-step and CUE GMM estimators. The
asymptotics suggest a measure of identification that is analogous to the concentration parameter.
If this measure is small, the two-step estimator will tend to be biased toward the NLS estimator,
just as 2SLS is biased towards OLS in linear IV. It is shown that the non-linear set-up reduces to
the Staiger and Stock (1997) asymptotics for linear IV under appropriate modeling choices. Finally,
a simulation study and an empirical exercise based on the CCAPM model are performed.

Model The G conditional moment conditions are E[h(Yt, θ0)|Ft] = 0, and the K-dimensional
vector of instruments is Zt, leading to the GK-dimensional moment vector φt(θ) = h(Yt, θ) ⊗ Zt.
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Let m̃T (α, β) = E[T−1
∑T

t=1 φt(α, β)]. This is split up into

m̃T (α, β) = m̃T (α0, β0) + m̃1T (α, β) + m̃2T (β),

where m̃1T (α, β) = m̃T (α, β)−m̃T (α0, β) and m̃2T (β) = m̃T (α0, β)−m̃T (α0, β0). Since β is consid-
ered to be strongly identified, the authors set m̃2T (β) = m2(β) for a bounded function that satisfies
the usual identification conditions. However, since α is supposed to be weakly identified, they model
m̃1T (α, β) = m1(α, β)/

√
T , so that even asymptotically, the population objective function is finite

globally in α.

Let µ(α) = Ω
−1/2
α,β0

m1(α, β0), where Ωα,β0 is the asymptotic variance of the moment condi-
tion vector evaluated at (α, β0). The above-mentioned analog to the concentration parameter is
µ(α)′µ(α). In general, the dependence of µ(α) on α may be complicated, so unlike in the linear case,
a full characterization of the extent of weak identification requires global knowledge of µ(α)′µ(α).

4.2 Kleibergen and Mavroeidis (2011): “Inference on subsets of parameters in
linear IV without assuming identification”

Summary The authors aim to show that subset versions of the standard weak IV robust tests
are valid. The model is the usual linear homoskedastic IV regression model. The parameter vector
is partitioned as θ = (β′, γ′)′. To test the hypothesis H0 : β = β0, the authors propose to plug the
LIML estimator of γ under β = β0 into the AR, KLM, JKLM or MQLR tests. They claim to show
that these subset test statistics are stochastically dominated by their strong-instrument asymptotic
distributions regardless of the size of the first-stage coefficient matrix.

Model Linear IV regression model

y = Xβ +Wγ + ε,

X = ZΠX + VX , W = ZΠW + VW .

The null hypothesis is H0 : β = β0 with two-sided alternative. Let

γ̂(β0) = arg min
γ

(y −Xβ0 −Wγ)′PZ(y −Xβ0 −Wγ)

(y −Xβ0 −Wγ)′MZ(y −Xβ0 −Wγ)

be the LIML estimator under β = β0. Then the subset AR statistic is

AR(β0) =
(y −Xβ0 −Wγ̃(β0))′PZ(y −Xβ0 −Wγ̃(β0))

(y −Xβ0 −Wγ̃(β0))′MZ(y −Xβ0 −Wγ̃(β0))
.

The subset Kleibergen LM statistic (KLM) is the same expression, except Z is replaced with
Z(Π̃W (β0), Π̃X(β0)) in the projection matrices, where Π̃W (β0), say, is the ML estimator of ΠW in
the linear system under H0. The subset JKLM statistic is the difference between the AR and KLM
statistics. Finally, the MQLR statistic is a non-linear function of the AR and KLM statistics as
well as a statistic that tests for reduced rank of ΠX and ΠW .
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Results If ΠW is fixed and has full rank, such that the nuisance parameter γ is well identified,
previous results in the literature showed that the various statistics have limiting χ2 distributions.

For the full-parameter AR statistic, we have AR(β0, γ0) = KLMγ(β0, γ0) + JKLMγ(β0, γ0),
where KLMγ is the KLM statistic that tests γ = γ0 given β = β0. The KLMγ statistic is a
quadratic form in the derivative of the full-parameter AR statistic wrt. γ, so it vanishes at γ̃(β0).
The authors show that AR(β0, γ) and JKLMγ(β0, γ) are both minimized at γ̃(β0), so

AR(β0) = AR(β0, γ̃(β0)) = JKLMγ(β0, γ̃(β0)) ≤ JKLMγ(β0, γ0).

It follows from Kleibergen (2002) that the RHS has a χ2 limiting distribution, so the desired
stochastic dominance result follows.

For the other statistics, the above proof strategy doesn’t work. Instead the authors write
those statistic in ways that resemble the AR statistic and then use some asymptotic independence
arguments to purportedly prove the results.

4.3 Chen and Guggenberger (2011): “On the Asymptotic Size of Subvector
Tests in the Linear Instrumental Variables Model”

Summary Consider the linear homoskedastic IV model with two endogenous variables and k2

instruments. The null hypothesis concerns the coefficient of one of the two endogenous variables.
The authors seek to establish the asymptotic size of the subvector AR and LM tests. This is done
by using a result from Andrews, Chen and Guggenberger (2011, ACG) that relates the asymp-
totic size to the supremum of the null rejection probabilities for the limiting distributions under
a set of drifting parameter sequences. In this case, the latter limiting distributions depend on a
finite-dimensional parameter, whose dimension may be reduced to a point where it’s feasible to
numerically calculate the supremum using simulations. Extensive numerical calculations indicate
that the subset AR statistic does indeed have correct size. However, contrary to the claim in
Kleibergen and Mavroeidis (2011), the subset LM statistic is oversized for k2 > 3, and by orders of
magnitude for k2 ≥ 10.

Model and results The model is

y = Y β +Xζ + u, Y = Zπ +Xφ+ V,

where Z has column dimension k2. The subvector AR and LM statistics are as in Kleibergen and
Mavroeidis (2011). Let λ ∈ Λ denote a parameterization of the model under the null H0 : β = β0

(i.e., the parameters excluding β0). Let RPn(λ) denote the rejection probability of a certain test
under the parameters λ and with sample size n. The asymptotic size is defined as

AsySz = lim sup
n→∞

sup
λ∈Λ

RPn(λ).

The authors specify a certain convenient parameterization of the model. Λ is defined so that weak
identification is allowed (π and φ are left unrestricted) but homoskedasticity is imposed. Let h
denote the limit of an (appropriately scaled) arbitrary drifting sequence of parameters λn, and let
H be the set of all h that are limits of such drifting sequences. The authors show that the limiting
distributions of the AR and LM statistics under the drifting parameter sequence λn depend only

11



on h = limn→∞ scaling(n) × λn. ACG (2011) showed that the asymptotic size of the AR test can
then be determined as

AsySz = sup
h∈H

P (ARh > χ2
k2−1,1−α),

and similarly for the LM test (with 1 d.f.). It is further possible to reduce the dimensionality of
h by establishing that the limiting distributions of the two statistics only depend on a dimension-
reducing transformation of h.

The asymptotic size can now be calculated using numerical methods by simulating, over a grid
of h values, the rejection probability of the ARh and LMh tests (because not all h values can be
checked, the result is a lower bound on the asymptotic size). As a bonus, size-corrected critical
values for the LM statistic can be obtained by figuring out numerically which critical value would
render the above supremum equal to the nominal size.

5 Modeling of and inference for persistent time series

5.1 Mikusheva (2007): “Uniform Inference in Autoregressive Models”

Summary Because the behavior of autoregressive processes changes dramatically in the neigh-
borhood of a unit root, it is argued that uniform inference is desirable, i.e., tests that control size
uniformly in ρ ∈ [0, 1] as T → ∞. Focusing first on AR(1) processes, the author considers tests
of H0 : ρ = ρ0 that depend on two particular scalar statistics. Confidence sets are obtained by
inverting a test statistic. Tests in this class include (1) Andrews’ (1993) finite sample parametric
simulation-based approach, (2) Stock’s (1991) test that bases the critical value on local-to-unity
asymptotics, (3) Hansen’s (1999) grid bootstrap that resamples residuals, and (4) Romano and
Wolf’s (2001) subsampling method. It is shown that the three first methods are uniformly valid.
This is done by splitting the parameter space up into two overlapping sample-size dependent re-
gions: the stationary region and the near-unit root region. It’s typically standard to show that
convergence in distribution of the test statistic is uniform in the stationary region, but Skorokhod
embeddings and stochastic process theory are necessary to treat the near-unit root region. The equi-
tailed Romano-Wolf subsampling procedure is not uniformly valid (but pointwise valid) because
it’s possible to construct a drifting parameter sequence ρT for which the test is asymptotically over-
sized. Monte Carlo results confirm the validity of the three first tests and the subpar performance
of the subsampling test. Finally, the results are extended to the AR(p) case.

Theory The model is

yj = c+ xj , xj = ρxj−1 + εj , j = 1, . . . , T, x0 = 0.

{εj} is a MDS with finite moments of order r ∈ (2, 4]. Let Θ = (−1, 1). A confidence set C(Y ) is
said to be asymptotically valid if

lim inf
T→∞

inf
ρ∈Θ

Pρ{ρ ∈ C(Y )} ≥ 1− α.

This is contrasted with pointwise validity, which only requires

inf
ρ∈Θ

lim
T→∞

Pρ{ρ ∈ C(Y )} ≥ 1− α.
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Because convergence at some values of ρ can be much slower than at other values, uniformity is
desirable.

The tests considered in this paper are of the following form. Let ϕ(Y, T, ρ0) be a test statistic
for H0 : ρ = ρ0 with lower and upper critical values c1(T, ρ0), c2(T, ρ0). Then define the set

C(Y ) = {ρ ∈ Θ: c1(T, ρ) ≤ ϕ(Y, T, ρ0) ≤ c2(T, ρ)}.

Typically (and in particular for the Andrews, Hansen and Stock tests), the critical values are
quantiles of a distribution that asymptotically approximates the distribution of ϕ(Y, T, ρ). If this
asymptotic approximation is uniform over Θ, then C(Y ) is a uniformly valid confidence set (Lemma
1). Mikusheva further focuses on test statistics ϕ that can be expressed as functions of

(S(T, ρ), R(T, ρ)) =

 1√
g(T, ρ)

T∑
j=1

yµj−1(yj − ρyj−1),
1

g(T, ρ)

T∑
j=1

(yµj−1)2

 ,

where yµj = yj−T−1
∑T

i=1 yi−1, and g(T, ρ) = Eρ[
∑

j(y
µ
j−1)2] is a normalizing function. This choice

for g(T, ρ) ensures that the rate is correct to cover both stationary and (near-)unit root cases.
There are some further technical restrictions on the class of test statistics ϕ considered.

The main proof idea is to split the slightly extended parameter set ΘT = [−1 − θ/T, 1 + θ/T ]
(for a constant θ > 0) into two overlapping regions AT and BT , AT ∪ BT = ΘT . The stationary
region BT is separated from the unit root by a neighborhood that is contracting at a rate slower
than 1/T . In this region, the usual asymptotic normality of S(T, ρ) obtains, and R(T, ρ) converges
to a variance estimate. The near-unit region AT is contracting towards 1 at an even slower speed.
Approximating the asymptotic distribution of the test statistic in this region is harder and requires
stochastic process theory.

Mikusheva first establishes the asymptotic validity of Andrews’ (1993) method. He suggests
obtaining the quantiles c1(T, ρ) and c2(T, ρ) from Monte Carlo simulations of the finite-sample
distribution of the usual t-statistic for ρ, under the assumption that the disturbances were in
fact i.i.d. Gaussian. The proof of uniform validity proceeds by establishing uniform convergence
of the distribution of ϕ(Y, T, ρ) on BT ; this follows from available results in the literature, since
here ρ is bounded away from a O(1/T ) region around unity. On AT the idea is that the MDS
disturbances εj that determine the actual statistic ϕ are not that different from the simulated

Gaussian disturbances. Indeed, define the partial sum Sj =
∑j

i=1 εi and the normalized one
ηT (t) = (1/

√
T )S[tT ]. By Skorokhod’s embedding scheme, the probability space can be enlarged to

obtain a sequence of BM’s wT s.t. for all ε > 0,

sup
0≤t≤1

|ηT (t)− wT (t)| = o(T−1/2+1/r+ε) a.s.

Define now the error terms eT,j/
√
T = wT (j/T )−wT ((j−1)/T ). These are i.i.d. standard normally

distributed. Defining zT,j(ρ) = ρzT,j−1(ρ) + eT,j , we obtain a sequence {zT,j(ρ)} with the same
distribution as Andrews’ proposed simulated AR(1). Hence, the proof now just has to establish
that the actual {yj , εj} are “close” to {zT,j(ρ), eT,j} using the Skorokhod embedding.

Mikusheva considers a modification of Stock’s (1991) proposal. Under local-to-unity asymptotics
ρT = exp(c/T ), the statistics (S(T, ρ), R(T, ρ)) have weak limits given by integrals of an Ornstein-
Uhlenbeck process, indexed by c. Let c(T, ρ) = T log ρ. Stock’s method is to obtain the critical
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values c1 and c2 as the quantiles of the statistic ϕ(Sc(T,ρ), Rc(T,ρ), T, ρ). By construction, the
set has correct coverage on the local-to-unity sequence ρT . Furthermore, Phillips (1987) showed
that as c → ∞, the above-mentioned Ornstein-Uhlenbeck integrals converge to the usual normal
distribution and constant (for the variance estimate). This suggests that there shouldn’t be a
problem in the stationary region AT on which c(T, ρ) is very negative. Formally, the proof of
asymptotic validity proceeds by approximating the distribution of ϕ(Sc(T,ρ), Rc(T,ρ), T, ρ) to the
distribution of Andrews’ simulated statistic (then the previous result implies that the distribution
is also close to the actual statistic computed from the data). Again, this is accomplished through
a Skorokhod embedding.

Hansen (1999) proposed to bootstrap the distribution FT of the residuals by drawing with
replacement from the sample residuals ε̂j = yj − ρ̂yj−1, where ρ̂ is the OLS estimator. Mikusheva
also considers a bootstrap that samples residuals by imposing the null ρ = ρ0. The grid bootstrap
then computes the critical values c1 and c2 as the quantiles of the bootstrap analogs of S and R.
Note that Andrews’ method is just a parametric grid bootstrap.

The subsampling procedure proposed by Romano and Wolf works as follows. Let ρ̂(T ) be
the OLS estimate. Let b = bT be a block size depending on the sample size, with bT → ∞ but
bT /T → 0. For each (sequentially overlapping) block of b observations {yj , . . . , yj+b−1}, compute
the OLS t-statistic for ρ on this subsample, t̂j(b) = (ρ̂j(b) − ρ̂(T ))/σ(ρ̂j(b)), imposing ρ̂(T ) as
the null. On each of these subsamples, the observations are drawn from the actual distribution
of {yj}, so normally the empirical distribution function LT,b(x) = (T − b+ 1)−1

∑T−b+1
j=1 1{t̂j(b)≤x}

should be a good approximation to the actual distribution function for the full-sample t-statistic.
A pointwise valid confidence interval for ρ can be constructed based on the equi-tailed quantiles
of LT,b(x). However, this confidence interval is not uniformly valid (it would be, however, if the
confidence interval were symmetric). The proof sets ρT = 1 + c/bT . Because 1/bT goes to zero
slower than 1/T , the usual standard normal asymptotic distribution theory for the full sample of
size T would be appropriate. But the subsamples of size bT are sufficiently small that they should
be handled by local-to-unity asymptotics. Hence, the asymptotic coverage of the confidence interval
is less than the nominal level.

5.2 Phillips (2011): “Folklore Theorems, Implicit Maps, and Indirect Infer-
ence”

Summary For many problems in econometrics involving sample size dependent simulations, the
standard delta method and CMT don’t apply. Phillips provides some general results that extend
the delta method to sample-size dependent transformations, and he also discusses a useful CMT
for implicitly defined variables. His main focus is the Indirect Inference Estimator (IIE) for the
autoregressive coefficient ρ in an AR(1). The finite-sample bias of the MLE is discussed and the
IIE is motivated as a means for bias reduction. Detailed asymptotic bias expansions for the MLE
are provided. These expansions highlight a peculiar characteristic of the AR(1) example, namely
that the mean of the MLE is continuous in the true ρ for finite n, but the asymptotic distribution
changes dramatically around unity. It is then shown how the bias expansions may be used to
obtain the asymptotic distribution of the IIE, which is given by an implicit inverse map of the
MLE. This transformation turns out to concentrate and generally alter the shape of the asymptotic
distribution around the true value relative to the MLE.
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Theory: Mapping theorems The standard delta method says that if dn(Tn−θ)⇒ T as n→∞
and the map ϕ : Rm → Rp is continuously differentiable at θ will derivative matrix ϕ′θ, then

dn(ϕ(Tn)− ϕ(T ))⇒ ϕ′θT.

The central idea is that dn(ϕ(Tn)−ϕ(T )) should behave asymptotically like a linear functional ϕ′θT .
If the function ϕ = ϕn also depends on the sample size, a new result is needed. Such situations
arise for example in simulation-based estimation. Theorem 1 gives conditions (for the scalar case)
under which a result

dn
ϕ′n(θ)

(ϕn(Tn)− ϕn(θ))⇒ T

may be established. The assumption needed on ϕn is that it be relatively equicontinuous in balls
of shrinking radius 1/sn, where sn → ∞ but sn/dn → 0. This ensures that the expression on the
LHS in the above display is asymptotically linear in Tn in a wide enough neighborhood of θ.

Suppose Xn ⇒ X on a probability space. The Topsoe-Rubin CMT says that if the set E =
{x : gn(xn) → g(x) ∀xn → x} has probability 1 under the limit measure P , then gn(Xn) ⇒ g(X).
Phillips applies this result to implicit maps. Often times, we encounter variables Yn that are given
implicitly by Xn = fn(Yn) or hn(Xn, Yn) = 0. Lemma 2 and the ensuing discussion gives conditions
on the derivatives of hn for there to exist a sequence of inverse maps gn such that Yn = gn(Xn). If
these inverse maps satisfy the Topsoe-Rubin condition, one obtains an implicit function CLT.

Theory: Implicit Inference Estimation The idea of indirect inference (II) is to use simulated
data to map the dependence of moments, say, on underlying parameters of interest. Consider a
parametric model with parameter θ. We can generate H simulated data trajectories {ỹh}Hh=1 of
the same sample size as the actual data y. Let Qn(β; y) be a criterion function depending on data
y and a pseudoparameter β. Suppose we estimate the pseudoparameter by

β̂n = arg min
β
Qn(β; y).

For each simulated path h, we can get

β̃hn(θ) = arg min
β
Qn(β; ỹh(θ)).

Indirect inference now seeks to calibrate the parameter of interest θ to match the simulated values
of β̃hn to β̂n, for example by the criterion

θ̆n,H = arg min
θ

∥∥∥∥∥β̂n − 1

H

H∑
h=1

β̃hn(θ)

∥∥∥∥∥ .
When H is made arbitrarily large, we get H−1

∑H
h=1 β̃

h
n(θ)

p→ Eβ̃hn(θ) ≡ bn(θ); this is called the
binding function. Then the IIE can be written

θ̆n = arg min
θ
‖β̂n − bn(θ)‖.

The estimator is thus implicitly determined by the binding function and β̂n. The simple delta
method won’t suffice for asymptotic theory. Note that in many applications, β and θ refer to the
same parameter in the model (e.g., the autoregressive coefficient) and β̂n could be the MLE, which
is then being bias-corrected by calibrating θ such that the simulated MLEs, given θ, match the
computed MLE from the data.
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Theory: First-order Autoregression The model is yt = ρyt−1 + εt, t = 1, . . . , n, where ut is
i.i.d. N (0, σ2). The MLE is ρ̂n =

∑
t ytyt−1/

∑
t y

2
t−1. For |ρ| ≤ 1, we can use invariance principles

such that asymptotic theory holds more generally than for Gaussian errors. If |ρ| > 1, the limiting
behavior of ρ̂n will be distribution dependent.

The binding function in this case is bn(ρ) = Eρρ̂n. Sections 4.2–4.3 develop exact integral rep-
resentations and asymptotic expansions for bn for general ρ, using the theory of ratios of quadratic
forms in Gaussian variables. These formulas generalize the classic bias formulas for AR(1) esti-
mation. Figure 1 plots the bias as a function of ρ and for various n. For |ρ| < 1 the MLE is
biased toward 0, with the bias increasing as |ρ| gets closer to unity. However, just around unity,
the bias rapidly decreases. Hence, a linear approximation to bn around unity is not sufficient, and
the more detailed asymptotic expansions are needed. The binding function formulas show that bn
is continuous through ρ = 1 for fixed n. However, terms like ρ2n appear in the formulas, so as
n→∞ the relative magnitudes of different terms in the expansions depend drastically on whether
|ρ| is exceeded by or exceeds unity.

Theorem 4 gives the asymptotic expansions for the bias of the MLE. We have

bn(ρ) =


ρ− 2ρ/n+O(n−2), |ρ| ≤ 1
±1∓ 1.7814/n+O(n−2), ρ = ±1
ρ+O(|ρ|−n), |ρ| > 1

The number 1.7814 is the mean of the limit distribution of n(ρ̂n − 1) when ρ = 1. The theorem
also gives a formula for the local-to-unity case ρ = 1 + c/n. These formulas are now used to obtain
asymptotic distribution theory for the IIE ρ̆, which is implicitly given by ρ̂n = bn(ρ̆). First, Phillips
shows that the binding function bn(·) is monotonic, so that its inverse fn = b−1

n exists.
For the stationary case, the binding function formula implies b′n(θ) = 1 + O(n−1). Since f ′n =

1/b′n, this gives that the asymptotic local equicontinuity condition for Theorem 1 holds, so that the
extended delta method may be applied. Thus,

√
n(ρ̆− ρ) ∼ 1

b′n(ρ)

√
n(ρ̂n − ρ) ∼

√
n(ρ̂n − ρ)⇒ N (0, 1− ρ2).

For the unit root and local-to-unity cases, the situation is more difficult, because higher order
derivatives don’t vanish asymptotically (this corresponds to the rapidly changing derivative of the
bias around unity). Instead the asymptotic bias expressions may be used. Let ξml

n = n(ρ̂n− 1) and
ξii
n = n(ρ̆− 1). If we insert ρ̆ into the bias formula for the local-to-unity case, these formulas can be

rewritten in terms of ξml
n , ξii

n and a remainder that goes to zero, so ξml
n ∼ h(ξii

n). From the literature
we know what the limiting distribution of ξml

n is. We then obtain the limiting distribution of ξii
n by

applying the implicit CMT and inverting h−1. Figure 4 shows the densities of ξml
n and ξii

n for a large
n and ρ = 1. The latter distribution is much more concentrated around 0, with more mass above
0 than for the centered and rescaled MLE. Hence, the IIE achieves bias reduction. The implicit
transformation is seen to alter the shape of the asymptotic distribution in a very nontrivial way.

5.3 Jansson and Moreira (2006): “Optimal Inference in Regression Models with
Nearly Integrated Regressors”

Summary Constructs optimal invariant one- and two-sided tests on β in the predictive regression
yt = α+ βxt + ut, where xt = γxt−1 + vt and γ is local-to-unity. First, the Gaussian finite-sample
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problem is considered. Only tests that are invariant to location shifts of yt are considered. The
maximal invariant has a four-dimensional sufficient statistic. Two of these elements are specific
ancillary statistics, i.e., their joint distribution does not depend on the parameter of interest β, only
on γ. By conditioning on these elements, the likelihood turns out to be a linear exponential family,
so standard optimal testing theory can be used. The authors restrict attention to conditionally
similar (wrt. γ) tests and derive the test that is UMP in this class. After having motivated the
approach for finite samples, the authors show that similar results can be derived in the asymptotic
Gaussian case under local-to-unity asymptotics for γ and local alternatives to β0. This is done by
showing that the limiting experiment has a very similar structure to the finite sample. Finally, the
Gaussianity and no-serial-correlation assumptions are dropped, and it is shown that the Gaussian
asymptotic power envelope can be obtained asymptotically by a feasible test. The conditional
critical values are non-standard and require numerical integration. The last chapter provides some
simulation evidence that the new test performs well in terms of size control and is competitive with
the Campbell-Yogo (2005) tests in terms of power.

Finite-sample theory The most basic predictive regression model is

yt = α+ βxt−1 + εyt , xt = γxt−1 + εxt , εt = (εxt , ε
y
t )
′ i.i.d.∼ N (0,Σ).

The covariance matrix Σ is assumed to be known for now. If β and α are variation free, testing
problems that involve β are invariant under location transformations of yt of the form yt → yt +
a, so the authors restrict attention to tests that are invariant under such transformations. The
maximal invariant is then MT = (y2 − y1, . . . , yT − y1, x1, . . . , xT )′. Its log likelihood may be
written in a form that depends quadratically on (β, γ) and linearly on a four-dimensional statistic
S = (Sβ, Sγ , Sββ , Sγγ)′ (p. 684). The latter statistic is therefore sufficient for MT . The object is
therefore to construct an optimal test φ : R4 → [0, 1] of H0 : β = β0, where the rejection probability
φ is a function of S.

The distribution of S is a so-called curved exponential family as the dimension of (β, γ)′ is less
than that of the minimal sufficient statistic S. However, the two univariate statistics Sββ and Sγγ
only depend on {xt}, and so their joint distribution does not depend on β. They are therefore
called specific ancillary statistics, as their distribution only depends on the nuisance parameter
γ. A conditionality argument suggests that we should condition on them, as this only discards
information about γ. It just so turns out that the distribution of (Sβ, Sγ)′ given (Sββ , Sγγ)′ is a
linear exponential family. This means that standard optimal testing procedures can be employed.

Consider the one-sided testing problem H0 : β = β0 vs. H1 : β > β0. It is said that the test φ(·)
is conditionally η-unbiased if

Eβ0,γ [φ(S)|Sββ , Sγγ ] ≤ η ∀γ,

Eβ,γ [φ(S)|Sββ , Sγγ ] ≥ η ∀β > β0, γ.

Any such test is conditionally η-similar, i.e.,

Eβ0,γ [φ(S)|Sββ , Sγγ ] = η ∀γ. (1)

The theory of testing in exponential families gives that a test is UMP among conditionally η-similar
tests only if it is conditionally η-unbiased. It follows that a test is conditionally UMP η-unbiased
iff. it is UMP among conditionally η-similar tests. Hence, the authors search for a UMP test among
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those that satisfy condition (1) (note that such tests will also be unconditionally similar, so the
class of unconditionally similar tests is larger).

It remains to be shown what the UMP test is. Consider

φ∗η(s) = 1{sβ>Cη(sγ ,sββ ,sγ)},

where the critical value function Cη is implicitly defined by the requirement that φ∗η(s) satisfy

Eβ0 [φ∗η(S)|Sγ , Sββ , Sγγ ] = η.

Here it is being used that the distribution of Sβ conditional on Sγ , Sββ , Sγγ is independent of γ.
By construction, the test satisfies (1), and the authors can show using standard techniques that
the test is UMP in this class (Theorem 2).

Similar arguments are used to construct a UMP conditionally η-unbiased test for a two-sided
hypothesis on β.

The authors compare their approach to Stock and Watson (1996). They wanted to maximize
weighted average power ∫

Eβ,γ [φ(S)]dG(β, γ)

subject to
Eβ0,γ [φ(S)] ≤ η, ∀γ.

They showed that the optimal test depends on the weight function G, implying that there does
not exist a UMP test of size η. Jansson and Moreira view their approach as complimentary to
Stock and Watson’s: The former authors derive a stronger conclusion (existence of a UMP test) by
confining attention to a strict subset of the test considered by the latter authors.

Asymptotic theory The Gaussianity assumption is maintained at first, but now the authors let
T →∞. The testing problem is standard if γ is bounded away from 1, so they assume local-to-unity
asymptotics γ = γT (c) = 1 + T−1c for an unknown constant c. It is known in the literature, that
standard t-statistics are no longer asymptotically pivotal in this set-up. Existing tests that are
asymptotically valid in the local-to-unity case are all asymptotically biased (since many of them
are not asymptotically similar). Hence, they have power less than size for β close to the null.

Local alternatives β = βT (b) are considered, where βT (b)−β0 ∝ T−1b and b is a fixed constant.
This scaling preserves contiguity. The null hypothesis is then b = 0. It is shown that the likelihood
can be written in a very similar way to the finite sample, with a four-dimensional sufficient statistic
R. This statistic has a limiting distribution in terms of functionals of Brownian motion and (b, c).
The joint limiting distribution has a similar form to the finite sample situation, and again it is
possible to condition on specific ancillaries to get rid of the statistical curvature. Analogously to the
finite-sample case, attention is restricted to tests πT (r) that are locally asymptotically conditionally
η-similar,

lim
T→∞

EβT (0),γT (c)[(πT (R)− η)g(Rββ , Rγγ)] ∀c, g ∈ Cb(R2),

where Cb(R2) is the space of bounded, continuous, real-valued functions on R2 (the reason for using
arbitrary functions g instead of conditional expectations is that it is technically simpler than having
to work with conditional weak convergence). Then the desired test can be constructed precisely
as in the finite sample, except that the test is now based on the realized values of R, while the
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critical value function is computed based on the limiting distribution of R. Theorem 5 shows that
this test is UMP locally asymptotically conditionally similar, with the power envelope depending
on b, c and the correlation ρ between the errors.

Finally, the authors relax the assumptions of Gaussianity and no serial correlation for the error
terms (the error in the yt equation must still be an MDS). It is shown that if a feasible version
of R (i.e., one in which the covariance matrix and all other nuisance parameters are estimated)
is inserted into the asymptotically optimal test described in the previous paragraph, it attains
the Gaussian asymptotic power envelope. They also give integral formulas that aid the numerical
computation of the critical value function used for the test.

6 SVARs

6.1 Sims (1980): “Macroeconomics and Reality”

Summary Criticizes large-scale macroeconomic models for their piecewise, intuitive approach
to identification, their ad hoc treatment of expectations and their indiscriminate classification of
variables as endogenous and exogenous. Suggests using VARs to model the relationship between
variables without imposing a priori restrictions. Sims shows that the estimated VARs may be
used to test interesting economic theories phrased in terms of the exogeneity of certain groups of
variables, and it is shown how impulse responses may be generated from a Cholesky decomposition
of the error covariance.

Motivation Large-scale behavioral macroeconomic models often rely on incredible restrictions,
often based on equation-by-equation intuition. Variables are often treated as exogenous simply
because their endogenous determination would be hard to model, or because they are thought of
as policy variables. Models that incorporate expectations typically replace the expectation with
a distributed lag of past realizations in an ad hoc manner. However, rigorous identification of
the expectation terms in an RE model often requires very strong assumptions, since variation in
expected future values of a variable is always less rich than variation in the past. Despite their
lack of identification, large-scale models serve useful purposes for forecasting and policy analysis.
For the former, the incredible restrictions placed on the model may well help improve its out-of-
sample performance due to shrinkage effects. For the latter, while the Lucas critique must be taken
seriously, policy analysis in reduced-form econometric models is most often concerned with the
effects of carefully steering certain policy levers, rather than introducing large policy shifts that
may alter the underlying structural model.

Empirics Sims suggests that researchers instead use VARs to estimate dynamic relationships
between variables without imposing a priori restrictions. Of course, some kind of “smoothness”
assumption must be imposed, such as the choice of lag length. After this has been imposed and the
model estimated, hypotheses with economic content can be tested, and if these hypotheses appear
reasonable, their restrictions may be imposed.

As an example, Sims used quarterly West German and U.S. data on money, real GNP, unem-
ployment, wages, the price level and import prices. Four lags are deemed sufficient by conducting
an LR test relative to an eight-lag specification. Sims discusses finite-sample problems arising from
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VARs with many free parameters. The sample is split at certain dates to test for stability of the
VARs. It is found that the import price equation experienced instability.

Sims does not think the VAR coefficients provide much information about the underlying re-
lationships. He suggests using the moving average representation (MAR) instead (i.e., impulse
responses). Because the residuals are correlated, they must be orthogonalized, which here is ac-
complished by a Cholesky decomposition with the six variables ordered in the way mentioned
above. He describes how this triangular representation is to be interpreted as variables sequentially
affecting each other.

Money is found to be non-neutral in the short run. The Fed’s reaction function is evident in the
response of money to unemployment innovations, although this isn’t the case in Germany. Price
innovations are much larger in Germany than in the U.S. They tend to negatively affect real GNP
and unemployment, suggesting that they can be interpreted as adverse supply shocks. A variance
decomposition is conducted. Since none of the variables have more than 60% of their variance
accounted for by their own innovations, there is much evidence that they all are endogenous.

Sims gives an example of an RE neomonetarist model that implies restrictions on the VAR
system. Suppose the system is split into (y,m), where y is quantities and relative prices, whereas
m is money. With rational, utility maximizing consumers who don’t have money balances in their
utility function, and if prices are flexible, changes in the money supply can only affect the real
economy by changing agents’ expectations of the future path of real shocks. If one is willing to
assume that persistent taste, production and endowment dynamics impart a lot of serial correlation
in the real shocks, then money has a role in influencing the real sector. However, if one is not
willing to rely on ad hoc assumptions about these mechanisms, it follows from the model (as in
Hall’s consumption model) that stationary real variables should be serially uncorrelated. Hence, if
the RE theory is to explain the economy without resorting to ad hoc assumptions about tastes and
technology, the real sector should be exogenous, i.e., causally prior to money in Granger’s sense.

This motivates a test for block exogeneity of the real sector. However, Sims notes that old-school
monetarists, who reject short-run price flexibility and RE, would instead expect to find causality
running from money to the real sector. And an old-school Keynesian who rejects the importance of
money all-together would expect y to be causally prior to m. Thus, a test of exogeneity (Granger
causality) in the VAR may help inform the debate between warring schools of thought. The test
of block exogeneity of real GNP and unemployment is forcefully rejected both in the U.S. and
Germany.

6.2 Cochrane and Piazzesi (2002): “The Fed and Interest Rates–A High-Fre-
quency Identification”

Summary Monetary policy shocks identified from monthly SVARs may have a large anticipated
component because the VAR is too slow to catch up with changes in the economic environment.
High-frequency (daily) interest rate data circumvents the identification problem by looking at the
response of the yield curve immediately following a change in the Fed funds target. A regression
of changes in the Fed funds target on interest rates immediately before the change suggests that
the Fed responds to expected inflation and output embodied in the interest rates. Using two
high-frequency measures of unexpected shocks, impulse responses of employment and the CPI are
constructed. The response of employment goes the wrong way, although the standard errors are
large, as they are for convential SVAR estimates. They can’t reject that Fed funds shocks don’t
influence prices; in fact, the point estimates again go the wrong way. This may explain why long-
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term bond yields respond positively to an unexpected Fed funds hike (if contractionary policy
lowered future inflation, one would expect longer-term yields to fall). The authors conclude that
identifying true shocks is hard. Since most of the Fed’s actions are responses to publicly known
events, there may not even be any true shocks.

Empirics The authors plot the behavior of short- and long-term interest rates and the Fed funds
target over 2001 in Figure 1. It is clear form the picture that some target changes are fully
anticipated, while others aren’t. The conclusions gleaned from short- and long-term rates in this
respect are similar. If measured conventionally with a VAR, all these changes would be ascribed
an unexpected component.

Two high-frequency measures of shocks are generated. The first is simply the change in the
one-month eurodollar rate (from two days before to the day after) concurrent with a change in
the Fed funds rate. The second regresses changes in the target rate on the previous target and
interest rates immediately prior to the change. The prior target gets a small negative coefficient,
indicating slow mean reversion. Long-term rates predict changes in the target much better than
short-term rates, which is evidence against the expectations hypothesis but evidence for a Taylor
rule. The Fed thus responds to interest rates (particularly the 5-to-2 year spread) because they
embody information about expected inflation and output.

For each shock measure, the monthly horizon-j impulse response of employment and CPI are
constructed by regressing the change yt+j − yt on the monetary policy shock εt+1. There are
no measured shocks in months without target changes. Conventional orthogonalized VAR impulse
responses are provided for comparison. Standard errors are large for either of the impulse responses.
As for point estimates, the high-frequency shock measures indicate positive effects of a target hike
on employment (the conventional VAR IRF is downward-sloping). The regression shock measure
also indicates a positive effect of a target hike on the price level. This would explain the puzzling
observation that long-term yields tend to rise following rate hikes. The high-frequency shock
measures seem to affect yields a lot even at long horizons, whereas the conventional VAR shocks
only have a transitory effect.

6.3 Rigobon (2003): “Identification Through Heteroskedasticity”

Summary In a model where observed variables are influenced by common and idiosyncratic
shocks, identification of the coefficients may be achieved if the system undergoes regime changes in
volatility but the coefficients stay constant across regimes. This is a simple matter of theoretically
computing the covariance matrix across regimes and counting equations and unknowns. If the
number of regimes is large enough, there are overidentifying restrictions, so the hypothesis of
coefficient constancy may be tested. The method is illustrated with a data set on emerging market
sovereign bond yields, for which standard SVAR identification procedures are not appropriate. The
onset of international crises serves to identify the breaks in heteroskedasticity.

Intuition Consider the estimation of demand and supply curves. Due to simultaneity, OLS is
biased, as illustrated in the top panel of Figure 1. The cloud of data points is an ellipsis which
does not trace out any of the curves very well. However, suppose there are two time periods, and
the supply shocks are of larger magnitude in the second period. The cloud of data points, now
primarily traced out by the volatile supply curve, will look more like a tilted ellipsis around the
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demand curve, cf. the bottom panel of Figure 1. The rotation of the ellipsis thus helps identify the
slope of the demand curve. In other words, it serves as a probabilistic instrument.

If, however, the second time period saw an equal increase in the magnitudes of both demand
and supply shocks, it would just result in a larger but still flat ellipsis, like in the top panel.
Hence, identification through heteroskedasticity requires the relative structural variances to change
magnitude.

Theory Consider first the simple model

pt = βqt + εt, qt = αpt + ηt,

where εt and ηt are the structural uncorrelated errors. The covariance matrix of the reduced form
is

Ω =
1

(1− αβ)2

(
β2σ2

η + σ2
ε βσ2

η + ασ2
ε

σ2
η + α2σ2

ε

)
.

This gives three equations with four unknowns. Suppose, however, that there are S different
regimes (σ2

η,s, σ
2
ε,s), s = 1, . . . , S, but the coefficients (α, β) stay constant across regimes. We can

consistently estimate S reduced-form covariance matrices Ωs from the data, giving us 3S equations
with 2 + 2S unknowns. Hence, if S ≥ 2, it should be possible to solve for the parameters of
interest. However, a rank condition needs to be satisfied, i.e., that the equations are independent.
Proposition 1 shows that the rank condition holds if the reduced-form covariance matrices are not
proportional, i.e., identification requires relative variances to change across regimes. Note also that
(α, β) are only identified up to the transformation (α, β) → (1/β, 1/α), as is evident from the
structural equations.

The model is generalized to allow for K common shocks and N endogenous variables:

Axt = Γzt + εt,

where xt and εt are N -dimensional vectors, zt is a K-dimensional vector of common shocks, A is
N ×N and Γ is N ×K. The common and idiosyncratic shocks are all mutually uncorrelated, also
serially. Normalizations must be imposed on A and Γ. Proposition 2 gives the order conditions for
identification. The estimation of the model is done by minimum distance, using the SN2 restrictions

AΩsA
′ = ΓΩz,sΓ

′ + Ωε,s, s = 1, . . . , S.

The first stage requires estimation of Ωs.
Section IV shows that the estimates of (α, β) (but not the structural shock variances) in the

simple two-equation model with no common shocks remain consistent under two types of misspec-
ification. First, suppose that the correct number of regimes has been identified as two, but the
precise time windows of the two regimes have been misspecified. Then the estimated covariance
matrices Ωr1 and Ωr2 are convex combinations of the true ones:

Ωr1 = λr1Ω1 + (1− λr1)Ω2, Ωr2 = (1− λr2)Ω1 + λr2Ω2.

Here λr1 = λr2 = 1 corresponds to correct classification. The equations that are used to estimate
(α, β) are then

λr1Ω1 + (1− λr1)Ω2 =
1

(1− αβ)2

(
β2σ2

η,1 + σ2
ε,1 βσ2

η,1 + ασ2
ε,1

σ2
η,1 + α2σ2

ε,1

)
,
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(1− λr2)Ω1 + λr2Ω2 =
1

(1− αβ)2

(
β2σ2

η,2 + σ2
ε,2 βσ2

η,2 + ασ2
ε,2

σ2
η,2 + α2σ2

ε,2

)
.

Let (σ̃2
η,s, σ̃

2
ε,s) be such that

σ2
η,1 = λr1σ̃

2
η,1 + (1− λr1)σ̃2

η,2, σ2
η,2 = (1− λr2)σ̃2

η,1 + λr2σ̃
2
η,2,

and similarly for ε. The two matrix equations above are therefore convex combinations (with
weights λrs) of the correct matrix equations, except that the structural variances are replaced with
their “tilde” counterparts. It follows that the estimates of (α, β) based on the erroneous windows
will be consistent. The only thing that can go wrong is that the rank condition may no longer hold.
For example, if λr1 = 1−λr2, there is no heteroskedasticity in the misspecified covariance matrices
Ωr1 and Ωr2.

The other type of misspecification considered is where the number of regimes has been under-
specified (if it has been overspecified, the rank condition can’t hold). For example, suppose there
are actually S∗ regimes, but Ŝ of them have mistakenly been lumped together as one regime, and
the remaining S∗ − Ŝ as another regime. In this case, a similar argument to the above shows that
the equations determining (α, β) are just linear combinations of the correct equations (again with
modified values for the structural shock variances), although the number of equations has been
reduced. If the order reduction is not so large that the system becomes unidentified, the estimates
of (α, β) based on the misspecified equation system will remain consistent.

Empirics The method is illustrated using data on daily sovereign debt yields from Argentina,
Brazil and Mexico. Rigobon is interested in the contemporaneous effects of these yields on each
other. However, exclusion, sign or long-run restrictions are dubious in this case. Instead, he exploits
the presence of many emerging markets crises during the 1990s and early 2000s, which should be a
source of heteroskedasticity. The time period is split into several periods, some tranquil and some
corresponding to different crises. The model is

Axt = c+ φ(L)xt + φUS t + Φ(L)US t + εt + Γzt,

where xt contains the three sovereign yields, and US t is the U.S. yield. The reduced form is obtained
by premultiplying by A−1. The reduced form residuals νt then satisfy

Aνt = εt + Γzt,

which is of the form studied in the theory sections. The reduced-form residuals are estimated by
first running a VAR on the entire sample that removes the influence of lags and U.S. yields. Having
isolated the residuals, the MD procedure is used to estimate A and Γ, using various subsets of the
crisis periods. Standard errors are computed using a residual bootstrap.

The Mexican yield is significant in the Argentinian equation, but otherwise most coefficients are
insignificant. However, the common shocks are very significant. The coefficients seem to change
significantly from the first half to the second half of the sample.

6.4 King, Plosser, Stock and Watson (1991): “Stochastic Trends and Economic
Fluctuations”

Summary The paper tests whether the U.S. business cycle may be thought of as primarily driven
by technology shocks, as suggested by RBC models. In such models, permanent TFP innovations
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impart permanent effects on output, consumption and investment, while the ratios between these
three variables remain constant (i.e., they are cointegrated in logs). There is therefore one stochastic
trend in the system. Only this permanent shock can have long-run effects on the variables; the
remaining shocks in the system must be transitory. Starting with the Wold representation of the
first difference of the three variable, it is shown that these restrictions identify the three structural
shocks, provided it is also assumed that the balanced-growth innovation is orthogonal to the other
two innovations. Impulse responses suggest that the balanced-growth innovation does generate the
behavior predicted from a TFP shock, and it accounts for most of the business cycle variation.
These conclusions, however, are overturned when three nominal variables are added to the system:
the balanced-growth shock accounts for less than half the forecast error variance for output and
consumption and even less for investment. Furthermore, most of the explanatory power arises
from the 1960s. Instead, an important driver of the business cycle seems to be real interest rate
innovations. Inflation shocks are surprisingly impotent. The estimated balanced-growth innovations
are fairly robustly correlated with outside-the-model estimates of the Solow residual.

Theory Let Xt be an n-dimensional vector of I(1) time series. The reduced-form Wold represen-
tation of the first difference is

∆Xt = µ+ C(L)εt, C0 = I,

where the one-step-ahead forecast errors εt are serially uncorrelated with covariance matrix Σε.
Consider also a structural model of the form

∆Xt = µ+ Γ(L)ηt,

where ηt has covariance matrix Ση. It follows that εt = Γ0ηt and C(L) = Γ(L)Γ−1
0 . Possible

identification strategies are to (1) impose that certain blocks of Γ(L) are zero, so that some variables
are exogenous, (2) impose cross-equation restrictions implied by a fully-specified model, or (3)
impose restrictions on Ση and the matrix of structural impact multipliers Γ0.

King et al. impose two restrictions. First, the two cointegration restrictions in the above-
mentioned three-variable system implies that there is only one permanent innovation, labeled the
balanced-growth innovation. This implies that

Γ(1) =

 1 0 0
1 0 0
1 0 0

 ,

where an arbitrary normalization has been imposed (note that the two balanced-growth cointe-
gration restrictions imply that all elements in the first column must be the same). The second
restriction is that the balanced-growth innovation is uncorrelated with the two transitory innova-
tions. These restrictions are enough to identify Γ0 and thus Γ(L) = C(L)Γ0.

More generally, if there are k shocks with permanent effects, η1, the long-run structural multi-
plier can be written Γ(1) = (A, 0), where A is n×k. It is natural to suppose that η1 is uncorrelated
with η2, the n − k shocks with transitory effect. The long-run effects of the innovations on the
variables in Xt are Aη1. King et al. impose that A is lower triangular, which implies that it can be
written A = ÃΠ for a known n × k matrix Ã and a k × k lower triangular matrix Π. The idea is
that Ã can be chosen so that each shock is connected to a familiar economic mechanism, motivated
by the cointegrating relations.
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For example, for the six-variable system in output, consumption, investment, real balances,
nominal interest rate and inflation, the cointegrating relations suggested by the data are c − y =
φ1(R−∆p) (stable C/Y ratio), i−y = φ2(R−∆p) (stable I/Y ratio) and m−p = βy−βRR (stable
money demand). The structure adopted for A is

A =



1 0 0
1 0 φ1

1 0 φ2

βy −βR −βR
0 1 1
0 1 0


 1 0 0

π21 1 0
π31 π32 1

 .

The interpretation is the following for the first shock. It is a balanced-growth shock, since it leads to
a unit long-run increase in Y, C and I, as well as a βy increase in money balances through the money
demand equation. Similarly, the second shock can be interpreted as an inflation shock, as it has no
permanent effect on C, Y and I but unit long-run effect on the nominal interest rate and inflation,
etc. The coefficients in Π ensure that the permanent innovations are mutually uncorrelated and a
causal ordering of the shocks has been assumed.

The reduced form of the system is obtained by estimating a VECM and then inverting the
AR polynomial to obtain the MA representation. The Appendix shows how to derive an estimate
of Γ0 from the estimated reduced form, given the choice of Ã. Standard errors are computed by
bootstrapping.

Finally, the authors suggest that their modeling method may be used to split economic time
series into permanent and cyclical components, since their model implies that the long-run forecast
of the variables is just an easily computable linear combination of the permanent structural shocks.

6.5 Uhlig (2005): “What are the effects of monetary policy on output? Results
from an agnostic identification procedure”

Summary Uhlig proposes identifying monetary policy shocks in an SVAR by restricting the sign
of the impulse responses (out to some horizon) of prices, nonborrowed reserves and the Fed funds
rate. The response of output, which is the object of interest, is left unrestricted. A framework
for conducting Bayesian inference is presented to get around the inconvenience of a non-singleton
identified set. The prior puts zero mass on parameters that imply a violation of the IRF sign
restrictions. In the plots, Uhlig reports the median IR along with 68% credible bands (all pointwise).
The empirical conclusions arising from the agnostic identification procedure are that the response
of output is ambiguous, with monetary policy shocks accounting for very little of the GDP forecast
variance, and not much more for other variables.

Theory The reduced-form model is B(L)Yt = ut, where E[utu
′
t] = Σ, where Yt is m-dimensional.

The structural errors vt satisfy ut = Avt, so Σ = AA′. The interest is purely in a monetary policy
shock, i.e., in only one of the columns of A, call it a. Let ÃÃ′ = Σ be the lower triangular Cholesky
decomposition. Then there exists a vector α of unit length such that a = Ãα. If ri(k) ∈ Rm
denotes the impulse responses at horizon k to the i-th Cholesky shock, then the corresponding
impulse responses associated with a are ra(k) =

∑
i αiri(k). The fraction of the variance of the
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forecast revision Et[Yj,t+k]− Et−1[Yj,t+k] that is attributable to the monetary policy shock is

φa,j,k =
[ra,j(k)]2∑
i[ri,j(k)]2

.

Given VAR coefficients B, the reduced-form error covariance Σ and a horizon K, the set A(B,Σ,K)
contains all a that lead to IRFs satisfying the sign restrictions. This identified set may be numer-
ically traced out by simulating a bunch of alpha-vectors, multiplying them by Ã(Σ) to obtain a
candidate a and checking whether a ∈ A.

Uhlig proposes two methods for inference.

• Pure-sign-restriction approach. This is a fully Bayesian approach and is Uhlig’s preferred
method. As in standard Bayesian VAR analysis, the prior on (B,Σ) is Normal-Wishart.
The conditional prior on α is uniform on the portion of the unit sphere in Rm on which
Ã(Σ)α ∈ A(B,Σ,K). This prior is convenient because it leaves the procedure invariant
to the choice of decomposition Ã. Furthermore, the posterior is just an indicator function
times the standard Normal-Wishart posterior for (B,Σ). Draws from the joint posterior may
be obtained by an acceptance algorithm, where first (B,Σ) are drawn from their marginal
posterior, then α is drawn uniformly on the entire unit sphere, but the full draw (B,Σ, α) is
only retained if Ã(Σ)α ∈ A(B,Σ,K). Medians and credible bands for IRFs are calculated
directly from the posterior draws.

• Penalty-function approach. This approach leaves the reduced-form estimation as is and then
finds the unique point in the identified set that minimizes a penalty function. The reduced-
form parameters are estimated in a Bayesian way, again with a Normal-Wishart prior (and
thus posterior) on (B,Σ). Given a draw from the posterior, the associated a vector is taken to
be the point in A(B,Σ,K) that minimizes a penalty function that rewards correct signs and
heavily penalizes wrong signs. Medians and credible bands are computed from the resulting
draws of (B,Σ, a).

Empirics Uhlig uses (sometimes interpolated) monthly data for six time series in log levels. The
sign restriction identifies a contractionary monetary policy shock as one that, in the first 5 periods,
does not raise prices or nonborrowed reserves but does raise the Fed funds rate. Figure 6 shows
the benchmark results, plotted as the posterior median and 68% credible bands (one standard
deviation). Figure 5 are results obtained from a conventional point-identified Cholesky approach.
The latter IRFs exhibit the “price puzzle” (Sims, 1992): the GDP deflator increases somewhat after
a contractionary MP shock before declining. The sign restriction results avoids the price puzzle
by construction; however, instead the response of real GDP is ambiguous and most likely close to
zero at all horizons. The GDP deflator falls very sluggishly. A variance decomposition (calculated
on each of the posterior draws) indicates that MP shocks account for 5–10% of the forecast error
variance in real GDP, and only a bit more for the other variables (most explanatory power for
prices).

The conventional approach typically restricts the instantaneous response of output to be zero.
If this restriction is added to the sign restrictions, the GDP response does seem closer to the
conventional wisdom. Uhlig criticizes the literature for having relied on this one critical assumption
to generate the desired results.
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6.6 Moon, Schorfheide, Granziera and Lee (2011): “Inference for VARs Iden-
tified with Sign Restrictions”

Summary IRFs identified by sign restrictions are only partially identified. Hence, inference from
Bayesian and frequentist methods differ in large samples. Intuitively, the Bayesian posterior is
concentrated on the estimated identified set, so a 90% credible region, say, will lie strictly within it.
A frequentist confidence set, however, extends outside of the boundaries of the estimated identified
set, since it must achieve a minimal asymptotic coverage rate. Thus, frequentist confidence sets
for sign restricted IRFs tend to be substantially larger than Bayesian credible sets. The authors
show how to conduct asymptotically valid frequentist inference under the present kind of partial
identification. Confidence regions are based on a minimum-distance objective function. Three
different types of valid confidence regions are proposed, differing in their degree of conservativeness
and computational burden.

Example Consider the VAR with lag order 0: yt = ut, where yt is two-dimensional (inflation,
output growth) and ut ∼ N (0,Σu). The structural shock is εt, where the first component is a
demand shock and the other a supply shock. Let Σtr be the lower triangular Cholesky decomposition
of Σ, then yt = ΣtrΩεεt, where Ωε is orthogonal and εt ∼ N (0, I). Interest is in the effects of the
structural demand shock, i.e., the first column of Ωε, call it q. The object of interest θ is the
inflation response. Write

φ = (φ1, φ2, φ3)′ = (Σtr
11,Σ

tr
21,Σ

tr
22)′, q = (q1, q2)′ = (cosϕ, sinϕ)′.

The sign restrictions are that the demand shock produces non-negative responses in inflation and
output growth, i.e.,

θ ≡ q1φ1 ≥ 0, q1φ2 + q2φ3 ≥ 0.

Take the reduced form parameter φ as given. The inequalities and unit length requirement on q
impose restrictions on q1 that can be translated into restrictions on θ = q1φ1. The identified set
Θ(φ) is the collection of θ values consistent with the restrictions, given φ.

Bayesian inference begins by specifying a prior on (φ, q), which may be factored as p(φ, q) =
p(φ)p(q|φ). Typically, researchers specify a uniform prior for ϕ, so that q(ϕ) is uniformly distributed
on the unit sphere. The prior is truncated so that the sign restrictions are satisfied, i.e., p(ϕ|φ) ∝
1{(cosϕ)φ1∈Θ(φ)}. A change of variables to θ = φ1 cosϕ shows that the prior distribution of θ on the
identified set is not uniform. Conditional on φ, the parameter θ does not enter the likelihood. The
posterior on θ may be written

p(θ|φ) =

∫
p(θ|φ)p(φ|Y )dφ,

where p(φ|Y ) is just a standard VAR posterior on the reduced-form parameters. As the sample
size increases, this latter posterior concentrates around the ML estimate φ̂, so p(θ|φ) ≈ p(θ|φ̂) in
large samples (shown rigorously in Moon and Schorfheide, 2009). But this posterior is of course
concentrated on the estimated identified set θ(φ̂). Any Bayesian credible set for θ must therefore
lie strictly within θ(φ̂).

Consider now frequentist inference. As in Chernozhukov, Hong and Tamer (2007), confidence
regions can be constructed by considering an objective function

Q(θ;φ,W ) = min
µ≥0,ϕ

∥∥∥∥( (cosϕ)φ1 − θ
(cosϕ)φ2 + (sinϕ)φ3 − µ

)∥∥∥∥2

W

,
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where W is a p.d. weight matrix and ‖A‖2W = tr(WA′A). It holds that θ ∈ Θ(ϕ) if and only if
both Q(θ;φ,W ) = 0 and θ ≥ 0. A sample analog of the objective function is obtained by inserting
the ML estimator φ̂ and a data-dependent weight matrix. A confidence set is then defined as

CSθ = {θ : θ ≥ 0, Q(θ; φ̂, Ŵ ) ≤ c}.

The critical value c must ensure that infθ∈Θ(φ) Prob(θ ∈ CSθ) ≥ 1 − τ for large T , where τ is the
significance level. Because the frequentist confidence region must cover the entire identified set
with high probability, we have the inclusions

CRθ ⊂ θ(φ̂) ⊂ CSθ,

where CRθ is any Bayesian credible region.

General theory Moon et al. set up a general VAR(p) subject to sign restrictions on certain
(functions of) impulse responses. The notation is heavy since they must operate with a lot of
selection vectors and keep track of the ranks of these. As in the simple example, frequentist
inference is based on a MD objective function Q(θ;φ,W ), where φ are reduced-form parameters
and θ are the IRFs of interest. A high-level assumption of asymptotic normality is imposed on φ̂.
Two main approaches to constructing confidence regions are developed.

• Profile objective function approach. The first approach is completely analogous to the ap-
proach in the simple example. The objective function minimizes over both q and µ, where
the latter is the slackness in the sign restrictions. The confidence region is defined similarly
to in the simple example. The critical value is a quantile from a χ2 plus truncated χ2 distri-
bution, and so is easy to calculate. The critical value does not depend on θ. Theorem 1 shows
that the confidence region is asymptotically valid. The proof rewrites the objective function
in terms of

√
T (φ̂ − φ), and conservative choices for q and θ are chosen in the minimization

inside the objective function to bound it by some nuisance-parameter-free quantity. A series
of inequalities then leads to a quantity that is asymptotically distributed χ2 plus another
pivotal term.

• Projection approach with moment selction. The second approach instead defines the objective
function G as only minimizing over the slack µ but not q. A joint confidence region for θ and
q is then

CSθ,q(2) = {θ, q : ‖q‖ = 1, θ ≥ 0, G(θ, q; φ̂, Ŵ ) ≤ c(2)(q, θ)}.

Projecting onto Θ gives the confidence region

CSθ(2) =

{
θ : θ ≥ 0, min

‖q‖=1
(G− c(2)(q, θ)) ≤ 0

}
.

for θ. Conditional on q and for θ ∈ Θ(φ), the distribution of G does not depend on θ.
Hence the critical value can be written as a function of q alone. Because Q(θ;φ,W ) =
min‖q‖=1G(θ, q;φ,W ), we see that if the critical value c(2)(q, θ) is smaller than the critical
value c in the profile objective function approach (for all q), then the new confidence region
will be less conservative.

To get smaller critical values, the moment selection approach of Andrews and Soares (2010)
is employed. Essentially, it works by determining how much (normalized) slack there is in
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each of the inequality constraints, given q (and φ̂). If this slack is larger than some threshold
(that grows slowly with T ), then the moment inequality is classified as not binding and simply
dropped from the objective function; otherwise, it is retained. The resulting reduced objective
function can then be bounded by the minimum over q of a pivotal quantity that only depends
on q.

Critical values can then be obtained in two ways: Either the quantity can be bounded con-
servatively again, thus getting rid of the minimization and ending up with a standard pivotal
quantity, or the critical value can simply be simulated, at the computational cost of having to
do the minimization many times. The former approach is evidently more conservative, but it
is less conservative than the profile objective function approach. Theorem 2 shows that both
moment selection approaches are asymptotically valid.

Section 4.4 discusses implementation. First an initial guess for Θ(φ) is computed by trying out
various values on a grid. Then the boundary of this set are refined in a stepwise fashion. A
preliminary guess for any of the confidence regions may be set to Θ(φ), and the boundary can then
be refined stepwise. The authors have found that the moment selection approach with simulated
critical values is very computationally burdensome. The other moment selection approach is easier,
but the profile objective function approach is even quicker as it doesn’t rely on figuring out which
inequalities are binding.

An even more conservative approach is to construct a confidence region CSφ for φ based on
its asymptotic distribution. Then a trivially valid confidence region for θ can be constructed as
CSφU =

⋃
φ∈CSφ Θ(φ).

Zero restrictions on (linear combinations of) the IRFs can be easily incorporated by a slight
modification of the objective functions, without changing any of the other ingredients.

Monte Carlo simulations and an empirical application shows that the frequentist confidence re-
gions are often much larger than Bayesian credible sets. The order of conservativeness is sometimes
very meaningful, other times insignificant, depending on whether the sign restrictions are close to
binding in the true GDP.

As for Bayesian inference, Moon et al. recommend that, since the prior of the IRFs conditional
on the reduced form parameters doesn’t get updated by the data, it would be useful to report
Θ(φ̄) (e.g., at the posterior mean of φ) so that the reader may see whether the conditional prior
distribution is concentrated in a particular area of the identified set.

6.7 Blanchard and Quah (1989): “The Dynamic Effects of Aggregate Demand
and Supply Disturbances”

Summary Identifies demand and supply shock in an SVAR of output growth and unemployment
by imposing the restriction that the demand shock does not have a long-run effect on output. The
responses of output and unemployment to a demand shock are hump-shaped and mirror images of
each other. The response of output to a supply shock builds up slowly and then levels off. The
response of unemployment to a supply shock is initially positive, then turns mildly negative before
converging to zero. Variance decompositions indicate that demand disturbances explain most of the
variation in unemployment, whereas the decomposition of output forecast errors are less conclusive.
However, the estimated paths of structural shocks informally suggest that most NBER recessions
can be explained by demand shocks.
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Theory Let Xt = (∆Yt, Ut). The structural representation of the bivariate system is

Xt = A0et +A1et−1 + . . . ,

where et is serially uncorrelated and E[ete
′
t] = I. The estimable reduced-form (Wold) representation

is
Xt = νt + C1νt−1 + . . . ,

where νt is serially uncorrelated and E[νtν
′
t] = Ω.

The authors impose the restriction
∑∞

j=0 a11,j = 0, i.e., that the first disturbance in et has a zero
long-run influence on (the level of) output, Yt. This disturbance is called a demand disturbance,
the other a supply disturbance.

We have νt = A0et and Aj = CjA0. The long-run restriction identifies A0 and thus the entire
sequence of IRs. Let S be the lower triangular Cholesky factor of Ω. Because A0A

′
0 = Ω, we have

A0 = SQ for an orthonormal matrix Q. The restriction on the (1, 1) entry of∑
j

Aj = (
∑
j

Cj)A0 = (
∑
j

Cj)SQ

restricts the left column of Q to be orthogonal to e′1(
∑

j)S. Because the right column of Q is or-
thogonal to the first, and both columns have unit length, this uniquely identifies Q. This procedure
is also the estimation procedure used by Blanchard and Quah. One-standard-deviation bands are
computed by a residual bootstrap.

Blanchard and Quah argue against the interpretation of the supply shock component of Xt as
a “trend,” while the demand shock component is the “cycle.” If prices are sticky, supply shocks
have cyclical effects as well.

In the appendix the authors give an example of an economy in which there is one supply shock
but two separate demand shocks. It is shown that the single demand shock estimated by the
Blanchard-Quah procedure is not in general an average (of any kind) of the actual two demand
shocks. Conditions are given under which their inference is approximately valid.

6.8 Gaĺı (1999): “Technology, Employment, and the Business Cycle: Do Tech-
nology Shocks Explain Aggregate Fluctuations?”

Summary RBC models have typically been evaluated based on their ability to fit unconditional
second moments in the data. The basic RBC model predicts a high positive correlation between
hours and labor productivity, which isn’t found in the data. To salvage the model, researchers
have added additional shocks. However, the models still have very specific predictions about the
conditional second moments, i.e., the responses to certain types of shocks. For example, in a
flexible price model a technology shock should induce positive comovement between hours and
labor productivity. The prediction is the opposite in a NK model: Due to nominal rigidities in
the short run, aggregate demand doesn’t rise enough to meet the increased productive potential in
the economy, so hours initially fall when productivity rises. The author identifies technology and
non-technology shocks in a bivariate VAR in the first differences of labor productivity and labor
input (hours and effort). The system is subject to the long-run restriction that only technology
shocks can have a long-run effect on measured productivity. The conditional correlations and IRFs
obtained from the data agree with the NK model’s predictions but not the RBC model’s. The
results are robust to expanding the system to five variables. The identified demand shock accounts
for the bulk of postwar business cycles.
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Theory The set-up for the two-variable system is exactly as in Blanchard and Quah (1989),
except that both variables are in first differences.

Consider instead the extended VAR with five variables, where the first one is the first difference
of labor productivity. The structural representation is

xt = C(L)εt, E[εtε
′
t] = I.

Partition εt = (εzt , ε
m′
t )′, where εmt is a vector of four demand shocks. Let the reduced form be

xt = A(L)ut, A0 = I, E[utu
′
t] = Σ.

The relations are ut = C0εt, AjC0 = Cj . The identifying restrictions are that all four demand
shocks have zero long-run impact on the level of labor productivity, i.e., the first row of

∑
j Cj

has zeros in its last four entries. This only allows Gaĺı to identify the technology shock. Write
C0 = SQ, where S is the lower triangular Cholesky factor of Σ and Q is orthonormal. Partition
Q = (q, Q̃), where q is a 5-dimensional vector. We seek to identify q. Partition I5 = (e1, E1), where
E1 is 5× 4. The long-run restrictions are

0 = e′1

∑
j

Cj

E1 = e′1

∑
j

AjS

QE1 = vQ̃,

where v = e′1(
∑

j AjS) ∈ R1×5. If v 6= 0, then the dimension of its null space is 4. The above

equation says that the four columns of Q̃ span this null space. To be orthogonal to Q̃, q must
therefore lie in the row space of v. Since v is just a row vector, this means that q is a scalar
multiple of v, and the scale is pinned down by the restriction that q has unit length. Thus, the first
column of C0 is identified.

7 Estimation and inference in linearized DSGEs

7.1 Iskrev (2010): “Local identification in DSGE models”

Summary Gives sufficient conditions for local identification of structural DSGE parameters from
observed first and second moments. Analytical formulas for calculating the Jacobian are provided.
It’s emphasized that identification failure can be due to both lack of data (too few moment con-
ditions) or, more commonly, intrinsic ambiguity in the model’s mapping from deep parameters to
observable features. A case study of the Smets and Wouters (2007) model is undertaken, and it’s
shown how analysis of the Jacobian can point out which parameters cause the lack of identification.
Both full information and limited information estimation (IRF matching) is considered.

Theory A typical linearized DSGE has the form

Γ0(θ)zt = Γ1(θ)Etzt+1 + Γ2(θ)zt−1 + Γ3(θ)ut, Eut = 0, E[utu
′
t] = I,

where zt = ẑt − ẑ∗ are deviations from steady state, ẑ∗ are the steady state values and θ ∈ Θ ⊂ Rk
are the structural parameters. Let Θ′ ⊂ Θ be the determinate region. In this region, the reduced
form of the model may be written

zt = A(θ)zt−1 +B(θ)ut.

31



Let Ω = BB′. Let τ = (τ ′z, τ
′
A, τ

′
Ω)′ denote the non-constant elements of ẑ∗, A and Ω, i.e., those

that depend on the structural parameters. We typically observe only a subset of the zt series, so
we have a measurement equation

xt = s(θ) + Czt, s(θ) = Cẑ∗(θ), C ∈ Rl×m.

It’s straight-forward to derive the first moment and autocovariances of xt as functions of A, C and
Ω. Let mT be the collection of unique first and second moments, using all available autocorrelations
in a sample of size T .

Let X = (x1, . . . , xT ). Identification requires that if f(X; θ̃) = f(X; θ0) with probability 1, then
θ̃ = θ0. Local identification only requires this to hold in an open neighborhood around θ0. Theorem
1 says that a sufficient condition for θ0 the be globally identified is that mT (θ̃) = mT (θ0) iff. θ̃ = θ0,
i.e., the mapping from population moments to θ is unique. Theorem 2 says that a sufficient condition
for local identification is that the Jacobian J(θ) = ∂mq/∂θ

′ has full column rank at θ0 for some
q ≤ T . A necessary condition for the latter is the order condition k ≤ (T − 1)l2 + l(l + 3)/2, i.e.,
that the number of structural parameters doesn’t exceed the dimension of mT (θ). One example
of identification failure is if a structural parameter is irrelevant for the statistical properties of the
model-generated data (such as the Taylor rule coefficients, cf. Cochrane, 2007). Another example
is when two variables enter the equilibrium relations in a way that makes them indistinguishable,
say, as a product.

It’s best to compute the Jacobian analytically. This may be done in the following way. First,
use the chain rule

J(T ) =
∂mT

∂τ ′
∂τ

∂θ′
. (2)

The first factor is explicitly available from the formulas determining mT as a function of (A,C,Ω).
To get the second, note that ∂τz/∂θ only involves steady-state relationships, which are easily
differentiable. To get ∂τA/∂θ and ∂τΩ/∂θ, we compute ∂vec(A)/∂θ′ and vech(A)/∂θ′ and remove
the irrelevant rows. Note that from the reduced form, Etzt+1 = Azt, which can be inserted into
the structural equation to yield

Γ0zt = Γ1Azt + Γ2zt−1 + Γ3ut,

and again using the reduced form,

[(Γ0 − Γ1A)A− Γ2]zt−1 + [(Γ0 − Γ1A)B − Γ3]ut = 0.

We can use the IFT to get ∂vec(A)/∂θ′ from (Γ0−Γ1A)A−Γ2. Then B = (Γ0−Γ1A)−1Γ3, which
gives us ∂vec(B)/∂θ′ and thus ∂vech(Ω)/∂θ′.

The decomposition (2) shows that identification depends on two things. First, the structural
parameters must map uniquely into the characteristics of the underlying zt process. This is intrinsic
to the economic model. Second, the we must observe enough variables in the measurement equation
and the sample size must be large enough that there are enough moments to allow us to map from
the observed data to the latent processes zt.

Practically, Iskrev recommends the following procedure for checking local identification. Draw
from a prior on Θ. Determine if θ ∈ Θ′ (the determinate region), if not, discard. Then check
whether J(q) has full rank at θ. q can be chosen at first as the smallest value for which the order
condition holds; typically this will be enough.
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A couple of extensions are pursued where estimation is based on a transformation of the first
and second moments of the data. The leading example is IRFs. The IRF of the i-th variable in xt to
the j-th shock in ut in the above model is given by the (i, j) element of ξh = CAhB. Identification
can be checked by directly computing ∂ξhi,j/∂θ

′. This particular estimator doesn’t utilize the mean
of xt.

Application As an application, Iskrev carries out a case study of the Smets and Wouters (2007)
DSGE with 41 structural parameters, seven shocks and seven observed series. It’s demonstrated
that ∂τ/∂θ′ is rank-deficient at the prior mean. The Jacobian allows the researcher to determine
which of the parameters cause the rank deficiency. In this case, it’s due to the curvature of the
cost function having the same effect (in a linearization) on observed price stickiness as the Calvo
parameter, since higher curvature implies smaller adjustments conditional on resetting.

The dependence of the various theoretical IRFs on the structural parameters shows which IRFs
we may use to draw inference about certain parameters. In the Smets-Wouters model, each IRF
can only identify about half of the structural parameters (but different IRFs identify different
parameters, of course).

Finally, the exercise underscores the need to use analytical derivatives. Using finite-difference
approximations leads to ambiguous results.

7.2 Komunjer and Ng (2011): “Dynamic Identification of Dynamic Stochastic
General Equilibrium Models”

Summary Provides conditions under which structural parameters in a DSGE are identified.
Identifiability is defined relative to the spectral density matrix, which avoids dependence on the
sample size as in Iskrev (2010). Furthermore, the conditions for local identification are stated
directly in terms of the coefficients matrices in the state space representation so that numerical
computation of the autocovariances is not necessary. The framework covers both stochastically
singular models (the number of disturbances is less than or equal to the number of observable
variables) and non-singular ones (more disturbances than observed variables), and measurement
error as well as a priori restrictions on the parameters are easily accommodated.

Theory The parameter of interest is θ ∈ Θ ⊂ Rnθ . Let Xa
t denote the variables of the model.

The log-linearized equilibrium conditions take the form EtΓ0(θ)Xa
t+1 = Γ1(θ)Xa

t + εzt. Let Xt be
a subvector of Xa

t of state variables. The reduced form of the model, if unique, is then written

Xt+1 = A(θ)Xt +B(θ)εt+1,

and since we may not observe all latent variables, the measurement equation is

Yt+1 = C(θ)Xt +D(θ)εt+1.

Here εt+1 is white noise which includes both the model disturbances εz,t+1 and potentially mea-
surement error. Let Σε(θ) = E[εtε

′
t]. The VMA(∞) representation for Yt is

Yt =
∞∑
j=0

hε(j, θ)εt−j = Hε(L
−1; θ)εt, (3)
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where the Markov parameters are

hε(0, θ) =

{
D(θ), j = 0
C(θ)A(θ)j−1B(θ), j ≥ 1

,

and the transfer function (the z-transform of the impulse response function) is

Hε(z; θ) = D(θ) + C(θ)[zInX −A(θ)]−1B(θ) =

∞∑
j=0

hε(j, θ)z
−j ,

with nX = dim(Xt). The spectral density matrix of Yt can then be written

ΩY (z; θ) = Hε(z; θ)Σε(θ)Hε(z
−1; θ)′.

Two parameter vectors θ0 and θ1 are defined to be observationally equivalent if ΩY (z; θ0) =
ΩY (z; θ1) for all z ∈ C. This is equivalent with the j-th autocovariance coinciding for all j ≥ 0. θ0

is then said to be locally identifiable if there exists an open neighborhood around it such that for
all θ1 in this neighborhood, θ0 and θ1 are observationally equivalent only if θ0 = θ1.

Equivalent spectral densities can arise if, for given Σε(θ) multiple quadruples A(θ), . . . , D(θ)
imply the same transfer function Hε(z; θ), i.e., the same impulse responses to given innovations.
However, they can also arise if many pairs of Σε(θ) and transfer functions give rise to the same
spectral density, which means that innovations combine with the propagation mechanism to yield
the same autocovariances.

One approach to giving conditions for identifiability would be to analyze the Jacobian of the
autocovariances wrt. θ. However, the autocovariances would have to be computed numerically
given A(θ), . . . , D(θ), and the highest available autocovariance is of order T . Instead, the authors
develop conditions directly in terms of A(θ), . . . , D(θ).

In the singular case, the number nε of disturbances is smaller than or equal to the number of ob-

served variables nY . Let ΛS(θ) be a vectorization of the quadruple A(θ), . . . , B(θ) and vech(Σε(θ)).
The spectral density of Yt depends on θ only through ΛS(θ). Assumptions are made such that the
system is left-invertible, i.e., the disturbances are fundamental (lie in the span of Yt, Yt−1, Yt−2, . . . ).
Furthermore, the system is assumed to be minimal, a term from the optimal control literature. This
requires that (1) for any initial state it’s possible to design an input sequence that puts the system
in any given desired final state, and (2) the initial state can be reconstructed by observing the
evolution of the output and input sequence. Such conditions imply restrictions on A(θ), B(θ), C(θ).
In practice, for DSGE models one is required to write the system in terms of the smallest possible
vector of exogenous and endogenous variables that gets rid of redundant dynamics but still fully
characterizes the properties of the model. For example, if Xt can be split into X1,t and X2,t, and
it’s possible to express X2,t+1 = Ã2(θ)X1,t + B̃2(θ)εt+1, then X2,t can be dropped from the state
vector and the expression for Yt can be rewritten to only include X1,t plus measurement error.

The minimality and left-invertibility assumptions imply that observational equivalence arises
if and only if the elements of ΛS(θ0) and ΛS(θ1) are obtained from each other by a particular
transformation using square matrices U and T (Proposition 1-S). Let the transformation be de-
noted δS(θ, T, U). This implies that to check identifiability, we must check whether the equations
δS(θ0, InX , Inε) = δS(θ1, T, U) have a locally unique solution (θ1, T, U) = (θ0, InX , Inε). Hence, we
get local identifiability if and only if the Jacobian of δS(·) has full rank (Proposition 2-S). Note that
it is not generally enough that ∂δS/∂θ′ has full rank, because the assumptions don’t necessarily
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ensure that ΛS(θ) is identifiable from the data. As the authors show on p. 2013, the nullspace of
the Jacobian reveals which parameters in θ cause the lack of identification.

In the non-singular case, we have nε ≥ nY . It’s then impossible for εt to be fundamental, and
(3) is not the Wold representation for Yt. Instead, the system may be written in the innovations
representation

X̂t+1|t+1 = A(θ)X̂t|t +K(θ)at+1,

Yt+1 = C(θ)X̂t|t + at+1,

where K(θ) is the steady state Kalman gain, X̂t|t is the optimal linear predictor of Xt based on the
history of Yt, and at+1 is the one-step ahead forecast error. The innovations representation exists
if the discrete algebraic Ricatti equation (DARE) has a solution, which the authors give primitive
conditions for.

Importantly, at+1 is nY -dimensional and fundamental by construction. It’s then possible to
express the spectral density matrix of Yt in terms of the transfer function and error covariance
in the innovations representation, and the analysis of observational equivalence proceed largely as
above. The rank conditions now involve the Kalman gain K(θ), which must be solved numerically
by filtering.

For both the singular and non-singular cases, it’s straight-forward to incorporate additional a
priori restrictions on θ of the form ϕ(θ0) = 0. These could for example be steady-state restrictions
involving the means of variables, or long-run restrictions. The δS function above is then augmented
with the ϕ(·) restrictions, and local injectivity in θ around θ0 of the augmented restriction function
is then necessary and sufficient for local identifiability.

Finally, the authors study identification in the model in An and Schorfheide (2007).

8 Dynamic Factor Models

8.1 Onatski (2009): “Testing Hypotheses About the Number of Factors in
Large Factors Models”

Summary Considers dynamic factor models with large n and T . The objective is to test the null
of k0 dynamic factors against the alternative that there are k ∈ (k0, k1]. The data is subjected to a
discrete Fourier transform (DFT). The spectral density matrix at some frequency of interest is then
obtained by smoothing over the DFTs at nearby frequencies. The test statistic is a measure of the
curvature of the scree plot (associated with the smoothed spectral density matrix) for eigenvalues
of order i = k0 + 1, . . . , k1. Intuitively, if k is the true number of factors, the largest k eigenvalues
should explode in size as n, T →∞, while the remaining eigenvalues that stem from the idiosyncratic
errors should be determined by a Tracy-Widom-like distribution. Hence, the scree plot drops off
dramatically after order k, and the curvature test statistic is consistent.

Model and test The model is a generalized dynamic factor model with k factors,

Xit = Λi1(L)F1t + · · ·+ Λk1(L)Fkt, t = 1, . . . , T, i = 1, . . . , n.

The idiosyncratic error process is independent of the factor process. Let X̂s = T−1/2
∑T

t=1Xte
−iωst

be the DFT of Xt = (X1t, . . . , Xnt)
′, where ωs = 2πs/T , and similarly for et. Let further Λ̂s =∑∞

j=0(Λj,1, . . . ,Λj,n)′e−ijωs .
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Choose a set of m frequencies ωs around some frequency of economic interest ω0. Then calculate
the smoothed periodogram estimate (2πm)−1

∑m
s=1 X̂sX̂

′
s. Denote its i-th largest eigenvalues by

γi. The test statistic of H0 : k = k0 against Ha : k0 < k ≤ k1 is

R = max
k0<i≤k1

γi − γi+1

γi+1 − γi+2
.

It rejects for large critical values. Note that the statistic is a measure of the largest curvature of
the scree plot for orders i = k0 + 1, . . . , k1.

The reason why the above test statistic is sensible is as follows. Under an assumption about
the rate at which the factor loadings die out with the lag j, one can write

X̂s = Λ̂0F̂s + ês +Rs,

where the remainder Rs can be bounded uniformly. As usual, the DFTs ê1, . . . , êm converge in
distribution tom independent normal vectors whose variance depends on the matrix spectral density
of et. Consequently, the smoothed periodogram estimate of the matrix spectral density of et
converges to a complex Wishart random matrix. If properly centered and scaled, its eigenvalues
follow the Tracy-Widom law of type 2.

Because X̂s has an approximate k-factor structure asymptotically, the first k eigenvalues will
explode. For example, suppose k = 1 and that we are dealing with an exact factor model Xt = Ftlt,
where λt ∈ Rn. Then E[XtX

′
t] = E[F 2

t ]λtλ
′
t, with eigenvalues γ1 = ||λ||2E[F 2

t ] = O(n) and
γ2 = · · · = γn = 0.

Going back to Onatski’s model, if the true number of factors is k = k0, the eigenvalues
γk0+1, . . . , γk1 will asymptotically equal the first k1−k0 eigenvalues of the above-mentioned complex
Wishart matrix associated with the idiosyncratic errors. Hence, since R gets rid of the centering
and scaling, R will be pivotal and a functional of the Tracy-Widom distribution under H0. However,
under the alternative Ha, the eigenvalue γk0+1 will explode, so the test will reject w.p.a. 1.

The technical results requires T to diverge faster than m and n (and also n/m be bounded),
but simulations show that the test works well even when n is large relative to T .

The test can also be used to estimate the number of factors with high probability by sequentially
testing up from some a priori lower bound. The test will then estimate the true number of factors
w.p.a. 1− α, the confidence level of the test.

9 Forecast Evaluation

9.1 West (2006): “Forecast Evaluation”

Summary West surveys the literature on out-of-sample forecast evaluation, and in particular
how to test whether a model significantly outperforms others. The main example is Mean Square
Prediction Error (MSPE), but a general framework is introduced as well. The discussion is split up
into asymptotic theory that applies to non-nested models, and asymptotic theory that applies to
nested models. Non-nested models are handled in a fairly standard way, and asymptotics are based
on normal approximations with a possible correction for estimation error if the estimation sample
is not very large compared to the prediction sample. Nested models are more challenging because a
critical long-run variance is rank deficient under the null of no superior predictive ability. Finally,
the bootstrap procedure of White (2000) is discussed as a way of dealing with tests between a large
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number of models, maybe even a larger number than the sample size (in which case the previous
asymptotics are dubious or infeasible).

Theory Assume first that the true parameters are known, so that predictions don’t rely on
estimated parameters. The object of interest if Eft, which is a vector of moments of predictions
or prediction errors, e.g., Eft = Ee2

1t −Ee2
2t if the MSPE criterion is used to compare two models.

We have a sample of size P to make predictions with. Let f̄∗ = P−1
∑

t ft be the sample mean.
Then √

P (f̄∗ − Eft)
d→ N (0, V ∗),

where V ∗ is the long-run covariance matrix of ft. The null Eft = 0 can then be tested with a
standard Wald test. The relevant estimator of V ∗ depends on the application. If (e1t, e2t) are
τ -step ahead forecast errors, then they are (τ−1)-dependent, and V ∗ may be estimated with a NW
estimator with τ − 1 lags (this is positive semidefinite, unlike the sample analog of the population
V ∗). In more general cases, a non-parametric estimator may be needed.

Now suppose we have R observations to estimate the parameters β of some parametric models,
and then we compute P prediction observations, so that the total sample size is R + P . The
estimation can be done either recursively (where data from T = 1, . . . , R is used to predict P + 1,
then T = 1, . . . , R+ 1 is used to predict P + 2, etc.), using a rolling scheme (where the estimation
window is always R long) or using a fixed scheme (where only one estimate for β is produced). The
prediction errors will be polluted by estimation noise, which may be non-negligible if not R� P .

Let ft(β
∗) be a random variable whose expectation is of interest. For MSPE, we have ft(β

∗) =
e2

1t − e2
2t = (yt − X ′1tβ

∗
1)2 − (yt − X ′2tβ

∗
2)2. If we set ft(β

∗) = e1tX
′
2tβ
∗
2 = (yt − X ′1tβ

∗
1)X ′2tβ

∗
2 ,

then Eft = 0 means there is zero correlation between one model’s prediction error and another’s
prediction, which is a type of forecast encompassing test (Chong and Hendry, 1986). Let f̂t+1 =
ft+1(β̂t) be the sample counterpart and f̄ = P−1

∑T
t=R f̂t+1. Also, let F = ∂Eft(β

∗)/∂β. Then we
can often expand

√
P (f̄ − Eft) =

√
P (f̄∗ − Eft) + F (P/R)1/2Op(1) + op(1).

Here the Op(1) factor stems from estimation error in the sequence of estimates β̂t. The expansion
says the uncertainty about Eft can be split into (1) the uncertainty that would be present if β∗

were known, and (2) additional uncertainty due to estimation. If P/R→ 0 (asymptotic irrelevance)
or F = 0, the latter doesn’t matter asymptotically, so inference can proceed as described above.
Otherwise, estimation error contributes to the asymptotic limit distribution. West gives a general
result in Section 5.

Consider a simple Mean Prediction Error example, ft = et. Suppose the only parameter is
the constant term, yt = β∗ + et, and that a fixed scheme is used. We are interested in testing
whether Eft = 0. This single estimate is β̂R = R−1

∑R
s=1 ys. Then êt+1 = et+1 − (β̂R − β∗) =

et+1 −R−1
∑R

s=1 es. Thus,

P−1/2
T∑
t=R

êt+1 = P−1/2
T∑
t=R

et+1 − (P/R)1/2

(
R−1/2

R∑
s=1

es

)
.

Suppose et is i.i.d. with finite variance σ2. Then the vector (P−1
∑T

s=R et+1, R
−1
∑R

s=1 es)
′ is
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asymptotically normal with variance σ2I2, so

P−1/2
T∑
t=R

et+1 − (P/R)1/2

(
R−1/2

R∑
s=1

es

)
d→ N (0, (1 + π)σ2),

where π = limT→∞ P/R. Thus, estimation error in β∗ scales up the variance by a factor (1 + π).
For the general result to hold, a full-rank condition on a long-run variance must apply. In

particular, this requires that the long-run matrix V ∗ from above is positive definite. But this often
won’t be the case under the null if models are nested. For example, consider an out-of-sample test
for Granger causality in which Model 1 is

yt = β10 + β11yt−1 + e1t,

and Model 2 is
yt = β20 + β21yt−1 + β22xt−1 + e2t.

Under the null β22 = 0 of no Granger causality, we have e1t = e2t. Consequently, expressions
such as e2

2t − e2
1t for the MSPE are degenerate, so the usual asymptotics break down. Clark and

McCracken have developed non-standard limit theory for special cases in a series of papers. For
MSPE, we get that

√
P (σ̂2

1 − σ̂2
2) = op(1) and P (σ̂2

1 − σ̂2
2) = Op(1), unlike in the non-nested case.

Simulation evidence indicates that one rejects the null hypothesis of equal predictive power far
too rarely if inference is based on the standard asymptotic theory. Intuitively, in finite samples
the added estimation error in the larger (alternative) model will bias upward the estimate of its
MSPE relative to the MSPE of the null model, leading to too few rejections. Clark and West have
suggested that one could increase power by analytically adjusting for the finite-sample difference
in the MSPEs.

Finally, the author discusses West’s (2000) “reality check” bootstrap procedure, which may be
employed even when the number of potential models is very large. The procedure assumes asymp-

totic irrelevance, P/R
→
0 , and the idea is to sample with replacement from the computed prediction

errors and then calculate the maximal amount by which any of the alternative models in each boot-
strapped sample outperforms the benchmark. The quantiles of these bootstrapped outperformance
measures may then be compared with the actual relative performance of the benchmark model in
the data.

38


