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Appendix A Further results

A.1 Integrals of the weight function

The following lemma provides an identification result for integrals of the causal weight func-
tion ωX defined in Section 3.1.

Lemma A.1. Let ωX be given by (9). Assume that E[X2
t ] < ∞. Let x, x be constants such

that −∞ ≤ x < x ≤ ∞. Then

∫ x

x
ωX(x) dx = Cov (max{min{Xt, x}, x}, Xt)

Var(Xt)
.

Proof. By Fubini’s theorem and linearity of the covariance operator,

∫ x

x
Cov(1{Xt ≥ x}, Xt) dx = Cov

(∫ x

x
1{Xt ≥ x} dx,Xt

)
.

Considering separately the three cases Xt < x, Xt ∈ [x, x], and Xt > x, it can be verified
that ∫ x

x
1{Xt ≥ x} dx = max{min{Xt, x}, x} − x.

Note that the lemma holds even if Xt has a discrete distribution (e.g., the empirical dis-
tribution). It implies in particular that the ordinary least squares (OLS)-estimated weight
function discussed in Section 3.1 integrates to 1 across all x ∈ R in finite samples.
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A.2 Identification with instruments under endogeneity

We now generalize the setup in Section 3.2 by allowingXt to be endogenous and incorporating
covariates Wt. In particular, we retain the nonparametric structural model (1), but drop
the independence assumption (2) and the selection-on-observables assumption (17). Let

Xt = ξ(Zt,Wt, Ṽt) (A.1)

denote the first-stage equation, with Ṽt corresponding to the unobservable determinants of
Xt. To accommodate a variety of alternatives to the classic Imbens and Angrist (1994)
monotonicity assumption, we follow Small, Tan, Ramsahai, Lorch, and Brookhart (2017)
and suppose there is a vector Vt (not necessarily observable) containing the covariates Wt

that is a sufficient statistic for endogeneity in the sense that

E[ψh(x,Uh,t+h) | Xt, Zt,Vt] = Ψh(x,Vt), (A.2)

where
Ψh(x,v) ≡ E[ψh(x,Uh,t+h) | Vt = v]

denotes the marginal treatment response function. We also make the exclusion restriction
that the expectation of Zt conditional on Vt depends only on Wt. To ensure it is sufficient
to control for the covariates linearly, we further assume the conditional expectation is linear:

E[Zt | Vt] = W′
tγ. (A.3)

We assume implicitly that the conditional expectations in equations (A.2) and (A.3) are
well-defined.

This setup accommodates several scenarios. On the one hand, including more variables in
Vt makes equation (A.2) less restrictive; on the other hand, as we will see shortly, it requires
stronger conditions to ensure non-negative weights in the instrumental variables estimand.
As a leading case, we may put Vt = (Wt, Ṽt). Then equations (A.2) and (A.3) hold if the
instrument is conditionally randomly assigned (and E[Zt | Wt] is linear). In this case, with
a binary shock Xt, the difference Ψh(1,v) − Ψh(0,v) corresponds to the marginal treatment
effect of Heckman and Vytlacil (1999, 2005). Second, under selection on observables, we
can simply put Vt = Wt. In this case, equation (A.2) states that Zt is a valid proxy for
Xt, analogously to equation (13); moreover, Ψh equals the conditional average structural
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function. Third, we may put Vt = (Wt,Uh,t+h), in which case equation (A.2) holds trivially,
and Ψh = ψh. See Small, Tan, Ramsahai, Lorch, and Brookhart (2017, Section 6) for
examples of other choices for Vt (which is denoted by U in their notation) when Xt is
assumed to be binary.

Under equations (1), (A.2), and (A.3), it follows by the Frisch-Waugh theorem and
iterated expectations that the coefficient on Zt in a linear “reduced-form” regression of Yt+h

onto Zt and a vector of controls Wt is given by

β̃h = E[(Zt − W′
tγ)Ψh(Xt,Vt)]

E[(Zt − W′
tγ)2] . (A.4)

As in Section 6.2, we assume that the support of Xt conditional on Vt is contained in an
interval IVt . If there are gaps in the support of Xt, such as when Xt is discrete, we assume
that we can extend Ψh(·,Vt) to IVt such that the extension is locally absolutely continuous.
Applying Lemma 2 with Vt playing the role of the covariates W then yields the following
result:

Proposition A.1. Suppose equation (A.3) holds and that E[(Zt − W′
tγ)2] is positive and

finite. Let α(Vt, Xt) = E[Zt − W′
tγ | Vt, Xt]. Suppose also that conditional on Vt, the

following holds almost surely: (i) the support of Xt is contained in a (possibly unbounded)
interval IVt ⊆ R; and (ii) Ψh(·,Vt) is locally absolutely continuous on IVt. Suppose also that
(iii) there exists a function x0(Vt) ∈ IVt such that E[|α(Vt, Xt)

∫Xt
x0(Vt)

|Ψ′
h(x,Vt)| dx|] < ∞;

and that (iv) E[|α(Vt, Xt)|(1 + |Ψh(Xt,Vt)|)] < ∞. Then the estimand (A.4) satisfies

β̃h = E
[∫

ω(x,Vt)Ψ′
h(x,Vt) dx

]
,

where ω(x,v) ≡ E[1{Xt ≥ x}(Zt − W′
tγ) | Vt = v]/Var(Zt − W′

tγ), and Ψ′
h(x,v) denotes

the partial derivative with respect to x.

Proposition A.1 shows that the reduced-form regression of Yt onto Zt identifies a weighted
average of derivatives of the marginal treatment response function.1 A sufficient condition
ensuring non-negative weights ω(x,v) is the stochastic monotonicity condition that E[Zt |
Xt = x,Vt] is almost surely monotone increasing (or decreasing) in x.

Applying the result with Vt = (Wt, Ṽt) generalizes Theorem 1 of Angrist, Graddy, and

1An analogous application of Lemma 2 to a linear “first-stage regression” of Xt onto Zt and a vector of
controls Wt shows that it identifies the integral of the weights, E[

∫
ω(x, Vt)dx], so that the weights in the

associated instrumental variables regression integrate to one.
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Imbens (2000) in several ways: we don’t require differentiability of the potential outcome
function ψh, only of the marginal treatment response function; Xt is not required to be
continuous—it may be discrete or mixed; Zt is not restricted to be binary; we impose no
structure on the first-stage equation; and finally, we impose only very weak moment condi-
tions. In this case, the stochastic monotonicity assumption is equivalent to the first-stage
monotonicity condition that ξ(z,Wt, Ṽt) is increasing in z: this corresponds to Assumption
4 in Angrist, Graddy, and Imbens (2000) if z is binary. Under this condition, β̃h can be in-
terpreted as identifying a weighted average of marginal effects for compliers. Let Cw collect
all ṽ in the support of Ṽt such that ξ(·,w, ṽ) is not constant. Following Angrist, Imbens, and
Rubin (1996), we refer to the set Cw as the set of compliers, since if Ṽt ∈ CWt , the shock Xt

complies with the instrument assignment in the sense that it increases with Zt. If Ṽt ̸∈ CWt ,
variation in the instrument Zt has no impact on Xt, and hence ω(x,Wt, Ṽt) = 0 for all x.
Thus, the estimand β̃h only places positive weight on the marginal effect Ψ′

h(x,Wt, Ṽt) for
compliers.

As discussed in Small, Tan, Ramsahai, Lorch, and Brookhart (2017) in the context
with a binary treatment, the first-stage monotonicity assumption may be too strong in
some contexts. In such scenarios, other choices of Vt may be preferable, such as setting
Vt = (Wt,Uh,t+h). For this choice of Vt, Proposition A.1 generalizes Proposition 1 in
Borusyak and Hull (2024) by allowing Xt to have full support, and dropping the requirement
that Xt be continuous.

If Xt is exogenous, we may set Vt = Wt, which both weakens the condition ensuring
non-negative weights and broadens the interpretation of the estimand. In particular, now
Ψ′

h(x,v) = ∂E[ψh(x,Uh,t+h) | Wt = w]/∂x gives the overall marginal effect, not just the
effect for compliers. Also, now the stochastic monotonicity condition requires only that
E[Zt | Xt = x,Wt] is increasing in x. Without covariates, this reduces to the condition that
ζ(x) = E[Zt | Xt = x] is monotone, as discussed in Section 3.2. This is clearly weaker than
the Angrist, Graddy, and Imbens (2000) condition that E[Zt | Xt = x,Wt, Ṽt] is increasing
in x: we only require this to be true on average over Ṽt rather than for almost all realizations
of Ṽt. This condition holds for many measurement error models for Zt, even though the
stronger first-stage monotonicity condition may be violated.
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A.3 Identification via heteroskedasticity: linear case

Here we derive the linear identification result (23), following Rigobon and Sack (2004) and
Lewbel (2012). Note first that

E[Z | U] = E[(θ1X + γ1(U))(D − E[D]) | U]

= θ1E[X(D − E[D]) | U] + γ1(U)E[D − E(D) | U]

= θ1 Cov(X,D) + γ1(U)E[D − E(D)]

= 0.

Hence,
Cov(Y, Z) = θCov(X,Z) + Cov(γ(U), Z) = θCov(X,Z),

and the claim (23) follows, provided that Cov(X,Z) ̸= 0. The latter holds if θ1 ̸= 0 and
Cov(X2, D) ̸= 0, since

Cov(X,Z) = E[X(θ1X + γ1(U))(D − E[D])]

= θ1 Cov(X2, D) + Cov(X,D)E[γ1(U)]

= θ1 Cov(X2, D).

A.4 Details for Example 4

Let Ũ1 and Ũ2 be independent uniforms on [0, 1]. By the Box-Muller transform, the two
variables

Ỹ1 ≡
√

−2 log Ũ1 cos(2πŨ2), Ỹ2 ≡
√

−2 log Ũ1 sin(2πŨ2),

have a bivariate standard normal distribution.
Define X ≡ log(−2 log Ũ1) and U ≡ log cos2(2πŨ2), so that X and U are independent

and non-Gaussian. By construction, the following two variables are independent:

Y1 ≡ log Ỹ 2
1 = X + U, Y2 ≡ log Ỹ 2

2 = X + γ(U),

where
γ(u) ≡ log (1 − exp(u)) , u < 0,

and we have used that exp(U) = cos2(2πŨ2) = 1 − sin2(2πŨ2). Note that in this example,
the shocks X and U do not have mean zero as commonly assumed in the literature, but this
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is easily rectified by just subtracting off their means in the calculations.

A.5 Additional empirical estimates of causal weights

Complementing the results for government spending shocks in Figure 1 (Section 3.1), Fig-
ures A.1 to A.3 show estimated causal weight functions for several identified tax shocks,
technology shocks, and monetary policy shocks. The data is obtained from the replication
files for Ramey (2016), as discussed in Section 3.1. While many of the shocks yield approx-
imately symmetric weight functions, the Romer and Romer (2010) and Mertens and Ravn
(2014) tax shocks are both skewed towards tax cuts, while the Christiano, Eichenbaum, and
Evans (1999) and Gertler and Karadi (2015) monetary shocks are skewed towards interest
rate cuts. As discussed in Section 3.1, this is important to keep in mind when using impulse
response estimates to discipline structural models that feature asymmetries.
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Empirical weight functions: tax shocks
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Mertens & Ravn (ω>0: 0.369) Romer & Romer (ω>0: 0.286)

Leeper et al. (ω>0: 0.474)

Figure A.1: Estimated causal weight functions ωX for tax shocks obtained from the replication files
for Ramey (2016), quarterly data. Horizontal axis in units of standard deviations. “ω > 0”: total
weight

∫∞
0 ωX(x) dx on positive shocks. Papers referenced: Mertens and Ravn (2014), Romer and

Romer (2010), Leeper, Richter, and Walker (2012).
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Empirical weight functions: technology shocks
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Figure A.2: Estimated causal weight functions ωX for technology shocks obtained from the repli-
cation files for Ramey (2016), quarterly data. Horizontal axis in units of standard deviations.
“TFP” = total factor productivity. “IST” = investment-specific technology. “ω > 0”: total weight∫∞

0 ωX(x) dx on positive shocks. Papers referenced: Justiniano, Primiceri, and Tambalotti (2011),
Fernald (2014), Francis, Owyang, Roush, and DiCecio (2014).
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Empirical weight functions: monetary policy shocks
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Figure A.3: Estimated causal weight functions ωX for monetary policy shocks obtained from the
replication files for Ramey (2016), quarterly data. Horizontal axis in units of standard deviations.
“ω > 0”: total weight

∫∞
0 ωX(x) dx on positive shocks. Papers referenced: Christiano, Eichenbaum,

and Evans (1999), Romer and Romer (2010), Gertler and Karadi (2015).
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Appendix B Proofs

B.1 Auxiliary lemma

Lemma B.1. Suppose that conditions (i)–(iii) of Lemma 1 hold. Suppose additionally that
for some x, x ∈ I, x ≤ x, it holds that either (a) α(x) only changes sign for x ∈ [x, x] and∫

I |ω(x)g′(x)| dx < ∞, or (b) g(x) is monotone for x ≤ x and for x ≥ x. Then condition
(iv) of Lemma 1 holds for any x0 ∈ [x, x].

Proof. Bound

E

[∣∣∣∣∣α(X)
∫ X

x0
|g′(x)| dx

∣∣∣∣∣
]

≤ E[|α(X)|]
∫ x

x
|g′(x)| dx+ E

[
1{X ≥ x}|α(X)|

∫ X

x
|g′(x)| dx

]

+ E
[
1{X ≤ x}|α(X)|

∫ x

X
|g′(x)| dx

]
.

The first term on the right-hand side is finite since g is absolutely continuous on [x, x]. Now
consider the second term on the right-hand side; the third term can be handled analogously.
Under condition (a), α(x) has the same sign for all x ≥ x, so the second term equals

∫
I
1{x ≥ x} |E[1{X ≥ x}α(X)]| |g′(x)| dx ≤

∫
I

|ω(x)||g′(x)| dx < ∞.

Under condition (b), since g(x) is monotone for x ≥ x,
∫X

x |g′(x)| dx = |
∫X

x g′(x) dx|, so that
the second term on the right-hand side in the first display equals

E

[
1{X ≥ x}|α(X)|

∣∣∣∣∣
∫ X

x
g′(x) dx

∣∣∣∣∣
]

= E [1{X ≥ x}|α(X)||g(X) − g(x)|]

≤ E[|α(X)g(X)|] + |g(x)|E[|α(X)|] < ∞.

B.2 Proof of Proposition 1

This is a special case of Proposition 3 with Z = ζ(X) = X. Lemma A.1 implies that the
weights integrate to 1.

10



B.3 Proof of Proposition 2

Since g′
h(x) is locally absolutely continuous and E[|g′′

h(Xt)|] < ∞, by Stein’s lemma (Stein,
1981, Lemma 1),

E[g′′
h(Xt)] = E[Xtg

′
h(Xt)].

Since E[|gh(Xt)|] < ∞, another application of Stein’s lemma yields E[Xtg
′
h(Xt) + gh(Xt)] =

E[X2
t gh(Xt)]. Hence, Cov(gh(Xt), X2

t ) = E[Xtg
′
h(Xt)] = E[g′′

h(Xt)]. A third application
of Stein’s lemma yields E[g′

h(Xt)] = Cov(Xt, gh(Xt)). The result then follows from the
definitions (10)–(11).

B.4 Proof of Proposition 3

The representation of the estimand follows directly from Lemma 1 and Lemma B.1 with
α(Xt) = ζ(Xt)−E[Zt]. Claim (i) for the weights follows from a simple calculation. Claim (ii)
follows from Cov(1{Xt ≥ x}, ζ(Xt)) = Var(1{Xt ≥ x}){E[ζ(Xt) | Xt ≥ x] −E[ζ(Xt) | Xt <

x]}. For the last statement of the proposition, observe that for xU > xL, ω̃Z(xL) − ω̃Z(xU)
is proportional to E[1{xL < Xt < xU}(ζ(Xt) − E[Zt])], which is positive if x0 < xL < xU

and negative if xL < xU < x0.

B.5 Proof of Proposition 4

Let τ be a Rademacher random variable independent of (D,R,U), i.e., P (τ = 1 | D,R,U) =
P (τ = −1 | D,R,U) = 1/2. Since the distribution of R is symmetric around zero, R has the
same distribution as |R| × τ , and thus (X,U) has the same distribution as (|X|τ,U). Let
Ũ be uniform on [0, 1] independently of (D,R), and let ϕτ : R → R and ϕU : R → Rm−1 be
measurable functions such that (τ,U) has the same distribution as (ϕτ (Ũ),ϕU(Ũ)) (see the
discussion after Proposition 6 on the construction of such functions). Then it follows that
(X,U) has the same distribution as (|X|ϕτ (Ũ),ϕU(Ũ)), and the conclusion of the proposition
obtains by defining ψ̃(x, ũ) ≡ ψ(|x|ϕτ (ũ),ϕU(ũ)).

B.6 Proof of Proposition 5

Since γ(U) is independent of (X,D) with mean zero,

Cov(Y, Z | X) = Cov(γ(U), (Ψ1(X) + γ1(U))(D − E[D]) | X)

= Cov(γ(U), γ1(U)){E[D | X] − E[D]}.
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The law of total covariance therefore implies

Cov(Y, Z) = E[Cov(Y, Z | X)] + Cov(E[Y | X], E[Z | X])

= 0 + E[Ψ(X){E[Z | X] − E[Z]}].

The result now follows from Lemma 1 and Lemma B.1, with weights given by

ω̌(x) ≡ E[1{X ≥ x}{E[Z | X] − E[Z]}]

= Cov(1{X ≥ x}, E[Z | X,D])

= Cov(1{X ≥ x},Ψ1(X)(D − E[D])),

where the last equality follows from

E[Z | X,D] = E[Y1 | X,D](D − E[D]) = Ψ1(X)(D − E[D]).

B.7 Proof of Proposition 6

Let Qj(τ | Ỹj−1, Ỹj−2, . . . , Ỹ1) denote the τ -th quantile of Ỹj conditional on Ỹj−1, Ỹj−2, . . . , Ỹ1.
Now construct an n-dimensional vector Y∗ = (Y ∗

1 , . . . , Y
∗

n ) as follows. First set Y ∗
1 ≡ Ỹ1.

Then for j > 1, let Y ∗
j ≡ Qj(Ūj−1 | Ỹj−1 = Y ∗

j−1, . . . , Ỹ1 = Y ∗
1 ). Standard arguments

yield that Y∗ has the same distribution as Ỹ. Consequently, Ȳ ≡ Υ−1(Y∗) has the same
distribution as Y = Υ−1(Ỹ). The mapping from (X̃, Ū1, . . . , Ūn−1) to Y∗ is continuous by
the assumptions on Qj, and so is the implied ψ̄ mapping by continuity of Υ−1.

B.8 Proof of Lemma 1

This result follows directly from Lemma 2 by letting W equal a constant.

B.9 Proof of Lemma 2

Observe

E
[∫

ω(x,W)g′(x,W) dx
]

= E
[∫

IW
E[1{X ≥ x ≥ x0(W)}α(X,W) | W]g′(x,W) dx

]
− E

[∫
IW
E[1{X < x < x0(W)}α(X,W) | W]g′(x,W) dx

]
= E

[∫
IW

1{X ≥ x ≥ x0(W)}α(X,W)g′(x,W) dx
]
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− E
[∫

IW
1{X < x < x0(W)}α(X,W)g′(x,W) dx

]
= E [1{X ≥ x0(W)}α(X,W)(g(X,W) − g(x0(W),W))]

− E [1{X < x0(W)}α(X,W)(g(x0(W),W) − g(X,W))]

= E [α(X,W)(g(X,W) − g(x0(W),W))]

= E [α(X,W)g(X,W)] ,

where the first equality uses the fact that since E[α(X,W) | W] = 0 by condition (iii),
ω(x,w) = −E[1{X < x}α(X,w) | W = w], the second equality uses Fubini’s theorem,
which is justified since both integrals exist by condition (iv), the third equality follows by
the fundamental theorem of calculus and condition (ii), the fourth equality collects terms,
and the last equality uses iterated expectations, which is justified since

E [|α(X,W)g(x0(W),W)|]

≤ E [|α(X,W)g(X,W)|] + E [|α(X,W)(g(X,W) − g(x0(W),W))|]

≤ E [|α(X,W)g(X,W)|] + E

[∣∣∣∣∣α(X,W)
∫ X

x0(W)
|g′(x,W)| dx

∣∣∣∣∣
]
< ∞,

by conditions (iv) and (v).

B.10 Proof of Proposition 7

Observe that under either condition (a) or condition (b),

E[(X − π(W))g(X,W)]

= E[(X − π∗(W))g(X,W)] + E
[
(π∗(W) − π(W))

∫
λ(x,W)g′(x,W) dx

]
.

Applying Lemma 2 with α(X,W) = X − π∗(W) and x0(W) = π∗(W) yields

E[(X − π∗(W))g(X,W)] = E
[∫

ω∗(x,W)g′(x,W) dx
]
.

Note that condition (iv) of Lemma 2 follows from a similar argument as in Lemma B.1
(conditional on W).
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Since (X − π(W)) is orthogonal to π(W) and to a constant function,

Var(X − π(W)) = E[(X − π∗(W))X] + E[(π∗(W) − π(W))π∗(W)]

= E[(X − π∗(W))X] + E
[
(π∗(W) − π(W))

∫
λ(x,W) dx

]
,

and it follows that the weights integrate to one. The last statement of the proposition can
be shown using the same argument as in the proof of Proposition 3.
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