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We thank the discussants for their thoughtful and stimulating comments. The goal of
our paper was to highlight a robustness wedge: vector autoregression (VARs) and linear
local projections onto observed shocks or proxies (LLPs) are robust to nonlinearities in
the data generating process (DGP) in that they deliver a meaningful causal summary—a
convex average of marginal effects—regardless of the extent of nonlinearities. By contrast,
identification approaches that exploit heteroskedasticity or non-Gaussianity of latent shocks
are fragile: they do not generally deliver a meaningful causal summary once the DGP is
nonlinear. We were gratified to see that virtually all discussion focused on interpreting and
extending our positive results pertaining to LLPs (and VARs, though we will henceforth
refer only to LLPs for brevity). While absence of evidence is not evidence of absence, we
hope this is a signal that we were at least partially successful in our goal.

This rejoinder addresses three issues raised in the discussions. First, is the LLP estimand
indeed a sufficiently interesting causal summary? Second, are negative weights always a
problem? Third, can our results be extended to cover non-stationarity DGPs?

1 Is “good” good enough?

All four discussions raised the point that we were perhaps not sufficiently ambitious in our
goal: while it is good that LLPs identify an average marginal effect, this fact alone may not
be a strong enough argument to use them, for two reasons. First, all discussants questioned
the empirical usefulness of average marginal effects. Second, Herbst and Johannsen (HJ) and
Gonçalves, Herrera, and Pesavento (GHP) both raised the point that LLPs use a weighting
function that differs from the historic shock density, which they argued may provide a more
natural weighting.
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To evaluate these critiques, one first has to define the goal of the exercise. Most commonly,
as Jordà’s comment discusses, impulse responses are used to validate or (quantitatively or
qualitatively) calibrate structural macro models. For this goal, it is crucial to know the
weighting function, so that we can weight marginal effects in the model using the same
weights. As we show in the paper, LLPs have the advantage that the weighting function can
easily be estimated using regression methods; its estimation is much easier than that of the
historical shock density fX , for instance. The convex weighting ensures we get the sign right
if the marginal effect is uniformly positive or negative, which is useful when the calibration
is qualitative. But robustness is not limited to the sign: convexity also ensures that if the
marginal effects Ψ′

h(x) all lie in some bounded interval [θ, θ], then the LLP estimand will also
lie in that interval. This implies that if the DGP is only moderately non-linear, so that the
interval [θ, θ] is not too wide, we automatically get the magnitude of the causal effects broadly
right. The other important property of this estimand is that it can be estimated relatively
precisely even in small samples, and its estimation doesn’t involve tuning parameters; noisy
or sensitive estimates make for poor calibration targets.1 In our view, these properties lend
theoretical support to the common practice of using LLPs for validation of structural models.

Should LLPs be the only tool? Clearly, exploring nonlinearities in the data can be in-
formative and provide further insights. The results table of any careful empirical analysis
typically features multiple columns; researchers don’t just report a single specification. In
our view, the properties of LLPs are compelling enough that they make a good candidate
for the first column; the other columns can explore how the results change with alternative
weighting schemes or nonlinear specifications. Our results in Section 6 discuss how to build
weighting-based and doubly robust estimators targeting any alternative weighting scheme;
one should just be careful to examine their sensitivity to functional form and tuning param-
eters. Jordà and HJ suggest reporting state-dependent impulse responses: our framework
easily accommodates this by conditioning on states. As we discuss at the end of Section 3.1,
this can be implemented either via full interactions with state dummies or by estimation on
subsamples.2

Another way of exploring nonlinearities is to estimate the effects of large shocks. GHP

1Goldsmith-Pinkham, Hull, and Kolesár (2024) show, building on the work of Crump, Hotz, Imbens, and
Mitnik (2006), that for a binary treatment, linear regression targets the easiest-to-estimate treatment effect.
It would be interesting to know whether the average marginal effect identified by LLPs shares this property.

2Jordà questions whether state dependence may break down the equivalence between VARs and local
projections. Provided the state variable is discrete, the equivalence still holds since we can simply estimate
the VAR or local projection on a subsample; Section 3.1 discusses this point when the state is binary.
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motivate this by empirical applications in which the researcher is interested in estimating the
response of GDP growth to oil price shocks that exceed one standard deviation, and suggest
estimating average causal effects. In their conclusion, GHP posit that to examine the impact
of large shocks, it may be necessary to resort to nonparametric estimation or a flexible
parametric model. We agree that such empirical applications are interesting. However,
average causal effects identify the effect of shifting the shock distribution by a given amount,
such as exactly one standard deviation, not the effect of shocks exceeding one standard
deviation. The latter is simply estimated using our framework by running a regression on a
binary indicator that the shock exceeds one standard deviation. To obtain finer comparisons
within our framework, we can discretize the shock into more than two groups (e.g., by
rounding a monetary shock to the nearest 25 basis points) and run a regression on these
dummies: it is not necessary to resort to full nonparametric estimation.

In addition to validation of structural models, a second possible use of impulse responses
is to identify particular causal effects, or, more ambitiously, directly inform policy. Kitagawa,
Wang, and Xu (KWX) suggest directly formulating the policy choice problem, and using it
to form the estimation target. In the current context, this would be an ambitious exercise
since most policies will have general equilibrium effects that the average structural function
does not capture (the so-called Lucas critique). Barnichon and Mesters (2023) and McKay
and Wolf (2023) show that impulse response functions can be used as inputs into evaluating
counterfactuals and optimal policy rules in certain classes of linear structural macroeconomic
models, but their results heavily leverage the linearity assumption and the resulting certainty
equivalence. To our knowledge, it is an open question how to tackle the Lucas critique in
nonlinear settings without imposing a complete structural model.

Let us therefore consider the less ambitious goal of identifying causal effects. Such causal
effects (impulse responses) are policy relevant in the specific context where policy-makers
are considering whether to surprise the public with a one-off policy intervention, and by
how much. For concreteness, consider the example from GHP’s discussion: what is the
magnitude of the government spending multiplier and does it exceed unity? As alternatives
to the LLP weighting, GHP consider targeting the average marginal effect weighted by the
historical shock density fX and estimating the average causal effect when we shift the shock
distribution by a given fixed amount.

As we discuss in the paper, average causal effects can be represented as average marginal
effects, but using a different weighting function. For example, reporting the average causal
effect of a one standard deviation government spending shock, relative to a baseline of
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no shock, is tantamount to choosing a particular weighting of marginal effects. Thus, for
estimating a particular causal effect, such as the government spending multiplier, one needs to
choose how to weight the marginal effects: there is no single “government spending multiplier”
when the average structural function is nonlinear, so one cannot ask what is the magnitude of
the marginal effects without specifying the weighting function. In the cross-sectional binary
treatment effect literature, the average treatment effect is a natural target, comparing the
world in which everyone receives treatment with one in which nobody does. Since in the
presence of covariates, regression does not generally yield the average treatment effect, it is
commonly argued that regression is “biased” for the average treatment effect (e.g., Aronow
and Samii, 2016). HJ and GHP both argue that LLPs are similarly biased relative to the
average marginal effect that uses the historical shock density fX as weights.3

But with a continuously distributed treatment or a shock, it is less clear to us why the
density fX should be the default weighting. If the impulse responses are to be used to inform
policymaking going forward, there is no reason to privilege the historical shock distribution.
For this reason, it seems reasonable to report results for alternative weighting schemes in
different columns of the results table to see how they impact the magnitude of the effect—say,
whether the government spending multiplier exceeds unity. Given the properties of LLPs,
they make a good candidate for the first column. Our proposal of reporting the estimated
weight function allows the reader to gauge whether the first column is relevant for their
specific decision problem.

One factor that should influence the choice of estimand is the variance of the estimator.
Linear local projections can be viewed as a local linear kernel regression, as used by GHP to
estimate the density-weighted average marginal effect, but with a bandwidth set to infinity.
Since the first-order effect of increasing the bandwidth is to decrease the variance of the
estimator, we expect linear local projections to typically be more precise than nonparametric
local linear alternatives.

One limitation of our analysis is that we abstract from finite-sample issues in order to
establish clean identification results. HJ show, using simulations, that when the data is very
persistent, LLPs can be biased and consequently subject to coverage distortions. We agree
that this concern merits serious attention in empirical work. In the context of linear DGPs,
Montiel Olea, Plagborg-Møller, Qian, and Wolf (2025) find that the coverage distortions

3GHP make this point using simulations with highly heavy-tailed or skewed shocks. We remark that in
the specification in panel (a) of Figure 4, the shock xt is so heavy-tailed that the expectation E[ytxt] does
not exist, so it is unclear whether the bias of the LLP estimator is well-defined in that DGP.
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of LLPs can be greatly ameliorated by employing a residual block bootstrap based on an
auxiliary VAR (Brüggemann, Jentsch, and Trenkler, 2016), combined with analytical bias
correction (Herbst and Johannsen, 2024). Alternatively, the persistence of the data could be
reduced by differencing, as suggested by Piger and Stockwell (2025). It would be worthwhile
investigating whether these fixes are equally successful in nonlinear DGPs.

2 Should we worry about negative weights?

KWX point out that the presence of negative weights ω(x) in an estimand is not necessarily
a cause for alarm. Formally, their comment shows that if each point x where ω is negative
can be matched with a unique point Q(x) such that (i) the weight ω(Q(x)) is positive and
larger in magnitude than ω(x) and (ii) the marginal effect g′ takes on the same value at x

and Q(x), then we can simply zero out the negative weight at x by subtracting it off the
positive weight at Q(x), obtaining a new weighting function that places zero weight over the
region where ω is negative and is non-negative otherwise.

This is a very nice result! Thinking of points x where ω is negative as “defier” points and
points x where ω is positive as “complier” points, the conditions (i) and (ii) generalize the
“more compliers than defiers” condition of de Chaisemartin (2017), made in the context of an
instrumental variables regression with a binary treatment and a binary instrument when the
Imbens and Angrist (1994) monotonicity condition is violated. We expect this generalization
to be useful not just for salvaging estimands with negative weights in the settings we focused
on, but also well beyond it, such as alleviating the negative weighting issue in two-way fixed
effects regressions (e.g., de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021).

Does this result diminish the value of knowing that LLPs deliver positive weights? In
our view, no: it is clearly useful to know that LLPs deliver a meaningful causal summary
regardless of the shape of the marginal effect function. We agree with the broader point of
KWX that positive weights are sufficient, but not always necessary for an estimand to pro-
vide a meaningful causal summary once one is willing to place restrictions on the marginal
effect function. But for alternative estimands where the weights may be negative, reason-
able restrictions are necessarily context-dependent, so that one needs to consider KWX’s
conditions (i) and (ii) on a case-by-case basis. Are these conditions applicable in the con-
text of identification via heteroskedasticity and non-Gaussianity? Although KWX do not
offer examples, perhaps there exist some, and we hope future work will lay them out. How-
ever, as several analytical counterexamples in our paper show, these particular identification
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strategies cannot generally be salvaged by placing weak restrictions on the DGP.

3 Allowing for non-stationarity

KWX raise the interesting question of whether our results on the properties of LLPs extend
to models with structural equations that are unstable over time. A first remark is that
our baseline results already allow for stationary time-varying parameters, such as in the
stochastic regime switching model in Example 1 in our paper. Non-stationarity in the form
of stochastic trends caused by unit roots is also easily accommodated: simply replace the
trending outcome Yt+h in the local projection with the stationary long difference Yt+h − Yt−1

(equivalently, we can control for the lagged outcome on the right-hand side). Our results
should then go through if we use the long-differenced outcome in the definition of the average
structural function.

As hinted by KWX, we can also follow Casini and McCloskey (2024) and extend our
results to environments with smooth deterministic time-variation. Assume that the DGP is
locally stationary (Dahlhaus, 2012): for sufficiently large sample size T , the data (Yt+h, Xt)
can be well-approximated by a triangular array (Yt+h(t/T ), Xt(t/T )), where at each fractional
time point τ ∈ [0, 1] the approximating process {Yt+h(τ), Xt(τ)}t∈Z is stationary, but the law
of motion is allowed to change smoothly as a function of τ . Abstracting from covariates and
assuming E[Xt(τ)] = 0 for notational simplicity, the LLP estimator will under regularity
conditions satisfy

β̂h ≡
∑T −h

t=1 Yt+hXt∑T −h
t=1 X2

t

p→
∫ 1

0 Cov(Yt+h(τ), Xt(τ)) dτ∫ 1
0 Var(Xt(τ)) dτ

≡ βh as T → ∞,

as discussed by Casini and McCloskey (2024). If we define the local conditional expectation
gh(x, τ) ≡ E[Yt+h(τ) | Xt(τ) = x], it is an immediate corollary of Proposition 1 in our paper
that

βh =
∫ 1

0

∫
ωX(x, τ)g′

h(x, τ) dx dτ, where ωX(x, τ) ≡ Cov(1{Xt(τ) ≥ x}, Xt(τ))∫ 1
0 Var(Xt(τ)) dτ

,

and g′
h(x, τ) denotes the partial derivative with respect to x. Here we require that the

regularity conditions of the proposition hold for (Yt+h(τ), Xt(τ)) at all τ ∈ [0, 1] and that the
above integrals exist. Thus, in the presence of smooth deterministic time-variation in the
DGP, LLPs continue to estimate a convex weighted average of marginal effects, but we now
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additionally average over fractional time τ . We conjecture that analogous results obtain for
instrumental variable estimators, including in settings with controls.
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