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Estimation of IRFs

® How to estimate impulse response functions (IRFs)?
E(Yesn | ejrt=1)— E(ye+n | €t =0), h=0,1,2,...
® Two popular competing semi-structural approaches:
@ Structural Vector Autoregression (SVAR): Sims (1980)
A(L)we = Bey,  A(L) = I — S22 ALY, e ~ WN(O, I,).
@ Local Projections (LP): Jorda (2005)

Yt+h :Mh+ﬁh5j,t+contr0|s+§h,t7 h= 071527"'



SVAR vs. LP: State of the literature

® Conventional wisdom:
® SVAR is “more efficient”. LP is "more robust to misspecification”.

® |P requires that we observe a measure of the “shock”. SVAR needed for more exotic
identification approaches (long-run/sign restrictions, etc.).

® Simulation studies offer conflicting rankings. Meier (2005); Kilian & Kim (2011); Brugnolini
(2018); Nakamura & Steinsson (2018); Choi & Chudik (2019)

® SVAR and LP approaches often yield different empirical conclusions. Ramey (2016)



Our contributions

@ Proposition: In population, linear LPs and SVARs estimate the same IRFs.

® Nonparametric result. Only requires unrestricted lag structures.
Jorda (2005); Kilian & Litkepohl (2017)

® Derive implications for. . .
® Efficient estimation.
® Structural identification.
® |dentification using IV/proxy.

® |inear estimands in nonlinear DGPs.
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@ Proposition: In population, linear LPs and SVARs estimate the same IRFs.

® Nonparametric result. Only requires unrestricted lag structures.
Jorda (2005); Kilian & Litkepohl (2017)

® Derive implications for. . .
® Efficient estimation.
® Structural identification.
® |dentification using IV/proxy.

® |inear estimands in nonlinear DGPs.

e Caveat: Focus on identification and estimation of IRFs. No inference or other param's.
Plagborg-Mgller & Wolf (2020); Montiel Olea & Plagborg-Mgller (2020)
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Equivalence result: Nonparametric assumptions

nrx1l 1x1 1x1 ngx1
=
e Observed data: wy = ("r ", %, ye ,"qr
® Interested in response of y; to an impulse in x;. Other var's: “controls” (more soon).

Assumption: Nonparametric regularity

{w;} is covariance stationary and purely non-deterministic, with an everywhere nonsingular
spectral density matrix and absolutely summable Wold coefficients.

To simplify notation, we proceed as if {w;} were a (strictly stationary) jointly Gaussian
vector time series.

® No assumption (yet) about underlying causal structure.

e Gaussianity: use conditional expectation/variance. Can replace with projections.



Equivalence result: Definition of LP IRF

Consider for each h=0,1,2,... the linear projection
o0
Yesh = th + Buxe +Ypre + Z O We—p + Enye-
(=1

&En,e: projection residual.
thy BhsVhy On1,0n2, .. .- projection coefficients.
LP IRF of y; with respect to x¢: {84}n>0.

Note: Projection controls for the contemporaneous value of r; but not of g;. Also
controls for all lags of all series.



Equivalence result: Definition of SVAR IRF

Consider the multivariate linear “VAR(o0)” projection
We = C~+ > poq AeWr_g + Ut
ur = wy — E(wy | {w;}_co<r<t): projection residual. ¢, Aj, Ap,...: proj. coefficients.
Cholesky decomp.: ¥, = E(u;u,) = BB’, where B lower triangular.
Corresponding recursive SVAR representation w. orthogonal “shocks":
A(Dwy = c+ By, A(L)=1-2, ALY 0 =B lu,.
Note: r; ordered first, g; ordered last.

VAR IRF of y; with respect to an innovation in x;: {04 }n>0, where

9h = Ch,n,+2,oBo,n,+1, ZZ’io C€L€ = C(L) = A(L)_l



Equivalence result

Proposition: Equivalence between LP and SVAR

Under Assumption “Nonparametric Regularity”, the LP and VAR IRFs are equal, up to a
constant of proportionality:

Op =\/E(%2) x By forall h=0,1,2,...,

% = x¢ — E(xe | re, {wr }—cocr<t)

where

\.

J

® Any LP IRF can be obtained as an appropriately ordered SVAR IRF. Ordering corresponds
to contemporaneous control variables in LP. Dufour & Renault (1998)

e Constant of proportionality does not depend on y; or h.



Equivalence result: Intuition

® |ntuition: Impulse responses are just linear projections.
i) VAR impulse response: h-step least-squares forecast based on model-implied second moments.
i) VAR(o0) captures all second moments of data.
= VAR(c0) impulse response: direct projection (LP).

e Extension in paper: non-recursive SVARs.

® Arbitrary SVAR IRF = LP on a linear combination b’w; (and lags).



Equivalence result: Finite lag length

® Let O4(p) and Bu(p) denote the VAR and LP impulse response estimand at horizon h
when we project on only p lags of the data w;.

Proposition: Equivalence between LP and SVAR, finite lag length

Let “Nonparametric Regularity” assumption hold. Define
)?t(g) = Xt — E(Xt | rt,{WT}t_£S7-<t), 620,1,2,....

Let the nonnegative integers h, p satisfy h < p.

If %:(p) = X¢(p — h), then O4(p) = \/ E(%:(p)?) x Bn(p)-

\. J

® If x; is a "shock” that doesn’t affect r; on impact, then X:(¢) = x; for all £ > 0.

® More generally, in practice, we often have X;(p) ~ X:(p — h) for h < p.
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Efficient estimation: Bias/variance trade-off

® Proposition (in paper): Sample LP and VAR estimators equivalent as p, T — oo.
® Finite-T bias-variance trade-off: Which dimension reduction for lin. proj. is best?
® If DGP = VAR(p), SVAR estimator has small bias and extrapolates efficiently. Unrealistic.

® Bias-variance trade-off in forecasting literature: direct vs. iterated multi-step forecasts.
Schorfheide (2005); Marcellino, Stock & Watson (2006); Chevillon (2007); Pesaran, Pick &
Timmermann (2011); McElroy (2015)

® There exists spectrum of “shrinkage” techniques: Bayes, model averaging, smoothness priors.
Giannone, Lenza & Primiceri (2015); Hansen (2016); Plagborg-Mgller (2016); Barnichon & Brownlees
(2018); Miranda-Agrippino & Ricco (2018)

® No method uniformly dominates in terms of MSE. Depends on DGP.

® Work in progress (w. Dake Li): empirically calibrated sim'n study of VAR/LP /shrinkage.

12
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Structural identification: SVAR vs. LP

Assume causal model: Structural Vector Moving Average. Stock & Watson (2018)

We = 1+ D020 Ouer—s,

j.id.
Et = (5171-, N 7€ng,t)/ " N(O, Ing).
For now, assume all shocks are invertible (SVAR assumption):
gjt €5pan ({Wr}—socr<t), J=1,2,...,n..

Main result = Recursive SVAR identification can be implemented through LPs.

Other "SVAR” ID schemes also implementable using LPs: long-run/sign restrictions.

13



Structural identification: Long-run restrictions

Data: wy = (Agdp,, unrt)’, log GDP growth and unemployment rate.

Assume SVMA model with n. = 2 shocks. e; ;: supply shock, €2 +: demand shock.

Assume > 72,012, = 0. No long-run effect of demand shock on the /evel of output.

Blanchard & Quah (1989)

Given a large horizon H, run two linear projections:

@ gdp,. 1y — &dp, 1 = fir + Br'we + 3001 Oy oWemt + Enie
O Witih = finH+ Bh,H(BH/Wt) + >y SZ,H,th—e + gh,H,t

Proposition: limy_soo Bh,H x ©j 1, for h>0.

14



Structural identification: Sign restrictions

Want IRF of y; wrt. monetary shock. Assume SVMA + invertibility.

Impulse response at horizon h given by /3, for unknown v € R™, where /3, is obtained
from projection

Yerh = fon + Bpwe + 72, 5;77£Wt—f +&ht-

Impose sign restrictions: ry responds positively to a monetary shock at all horizons
s=0,1,...,H. Uhlig (2005)

For s =0,1,..., H, store coef. vector (5 from projection

reys = fls + B;Wt + 2021 5;,th—e + fns,t-

Largest possible response of y;.p, to a monetary shock that raises r; by 1 unit on impact:

sup v/f, subjectto Biv=1, flv>0s=1,...,H.
vERMW

15



Implementing “SVAR" identification using LP: Summary

® SVAR identification approaches work if and only if corresponding LP approaches work.

® |esson: Choice of identification approach is logically+practically distinct from choice of
dimension reduction technique (i.e., linear projection estimator).

® Finite-sample bias/variance trade-off depends on specifics of DGP.

16
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LP-IV

® Popular applied strategy: ldentify IRFs using proxy/IV z; for 1 ¢

zZr=c+ > o1 (Weze—p + /\’th—e) + aeyr + vi,

where v; "% N(0,02) and independent of ; at all leads/lags.

17



LP-IV

® Popular applied strategy: ldentify IRFs using proxy/IV z; for 1 ¢

zZr=c+ > o1 (Weze—p + Nth—f) + ag1 + Vi,

where v; "% N(0,02) and independent of ; at all leads/lags.

e LP-1V: Given SVMA+1V, can estimate relative structural IRF using 2SLS version of LP:

Yerh = fin + Bnxe + 2721 (02, h0Ze—0 + 0y p o We—r) + Ene With z¢ as IV for x;.

Mertens (2015); Jorda et al. (2015, 2018); Ramey & Zubairy (2018); Stock & Watson (2018)

. e +2,1,h . . e
® Reason: Cov(yiih, 2t | {Wr, Zr}—oocrct) =X Op i01p = m identified.

17
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zZr=c+ > o1 (Weze—p + Nth—f) + ag1 + Vi,

where v; "% N(0,02) and independent of ; at all leads/lags.

LP-1V: Given SVMA+IV, can estimate relative structural IRF using 2SLS version of LP:

Yerh = fin + Bnxe + 2721 (02, h0Ze—0 + 0y p o We—r) + Ene With z¢ as IV for x;.

Mertens (2015); Jorda et al. (2015, 2018); Ramey & Zubairy (2018); Stock & Watson (2018)

. e +2,1,h . . e
Reason: Cov(yiih, 2t | {Wr, Zr}—oocrct) =X Op i01p = m identified.

e1,¢ allowed to be non-invertible: €1+ ¢ Span({w;} —co<r<t).

17



LP-1V: Estimand

Will now reinterpret LP-1V estimand. Set W; = (z;, wy)'.

“Reduced-form” LPs:

Ye+h = BRF.h + BREZt + 22021 Opp p e We—t + §RF pt,  h > 0.

“First-stage” LP (doesn’t depend on h):
Xt = pFs + Brsze + D72y 5;:573 Wi—¢ + &Fs ¢
As usual (one IV, one endogenous covariate), 2SLS estimand given by ratio

BLpiv,h = BRF’h, h > 0.
BFs

Equivalence result = 3, pjv » can be obtained from an SVAR.

18



LP-1V: Equivalence with recursive SVAR
Proposition: Equivalence of LP-IV and recursive SVAR

Let “Nonparametric Regularity” assumption hold for expanded data W; = (z;, wy)'.

Consider a recursive SVAR(o0) in W;, with z; ordered first. Define:

® 0, n: SVAR-implied imp. resp. of y; wrt. first shock at horizon h.

° 5)(70: SVAR-implied imp. resp. of x; wrt. first shock on impact.

Then Brpv.p = 0,.0/0x0.

® Under structural SVMA-+IV as'ns: Consistently estimate relative IRFs by ordering IV first
in recursive SVAR (“internal instrument”). Robust to non-invertibility! Noh (2018)

19



LP-1V: Equivalence with recursive SVAR

Proposition: Equivalence of LP-IV and recursive SVAR

Let “Nonparametric Regularity” assumption hold for expanded data W; = (z;, wy)'.

Consider a recursive SVAR(o0) in W;, with z; ordered first. Define:

® 0, n: SVAR-implied imp. resp. of y; wrt. first shock at horizon h.

° 5)(70: SVAR-implied imp. resp. of x; wrt. first shock on impact.

Then Brpv.p = 0,.0/0x0.

J

® Under structural SVMA-+IV as'ns: Consistently estimate relative IRFs by ordering IV first

in recursive SVAR (“internal instrument”). Robust to non-invertibility! Noh (2018)

® In contrast, SVAR-IV (“external instruments") estimator requires invertibility.
Stock (2008); Stock & Watson (2012); Mertens & Ravn (2013); Paul (2019); P-M & W (2019)

19



LP-IV: Intuition for equivalence

Why does recursive SVAR work even under non-invertibility?
Shock €1 ¢ still non-invertible wrt. expanded info set:
e1,¢ ¢ span ({wr, zr } —co<r<t) in general.
But remaining non-invertibility is due only to classical measurement error in
Ze =2zt — E(z¢ [ {wr, Zr} —cocr<t) = @1t + Vi

Attenuation bias is the same (in pct terms) for all horizons and response variables

nr+2,1,h

— Relative impulse responses g e correctly identified (not absolute).

20
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Estimands in non-linear models

Often claimed that LP is “robust to misspecification/non-linearities”. Our equivalence
result implies that this is not true.

Assume the general non-linear DGP (assumed stationary)
j.id.
wr = g(ee,et-1,6t-2,...), €t~ N(0,1,.).
Using Wold decomposition, can represent as linear SVMA model
wr =+ 32020070+ 2i2o Vi

Ct: ny-dimensional white noise, uncorrelated at all leads/lags with e¢.

Linear SVMA impulse responses ©F corresponding to the structural shocks ¢; have a
best linear approximation interpretation:

~ 2
(©5,01,...) € argmin E [(g(st, Et—1,---) — 2ieo @gat,g) } )
(©0,01,...)

22



Estimands in non-linear models (cont.)

. 2
(©5,05,...) € argmin E {(g(st,at_l, ) =2 @gst,g) }
(©0,01,...)

e Linear SVAR/LP IRF estimand can be given "best linear approximation” interpretation.

® Estimators that rely on higher moments are not as easy to interpret under
misspecification.

® In some applications, non-linearities may be the key objects of interest, in which case
linear SVAR/LP methods are not useful.

23
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Conclusion

® Linear LPs and SVARs share the same population IRF estimand. Nonparametric result.

® |mplications:
® Unavoidable bias/variance trade-off in finite samples. Estimation procedures lie on a spectrum.
® |dentification L dimension reduction. “SVAR" identification can be phrased in terms of LPs.

® LP-1V estimator can be implemented by ordering IV /proxy first in SVAR (“internal
instruments”). Robust to non-invertibility, unlike SVAR-IV (“external instruments”).
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Conclusion

® Linear LPs and SVARs share the same population IRF estimand. Nonparametric result.

® |mplications:
® Unavoidable bias/variance trade-off in finite samples. Estimation procedures lie on a spectrum.
® |dentification L dimension reduction. “SVAR" identification can be phrased in terms of LPs.

® LP-1V estimator can be implemented by ordering IV /proxy first in SVAR (“internal
instruments”). Robust to non-invertibility, unlike SVAR-IV (“external instruments”).

® This has all been about identification /estimation of IRFs.
® Variance/historical decompositions: Plagborg-Mgller & Wolf (2020)

® Inference on IRFs with persistent data or long horizons: Montiel Olea & P-M (2020)

24



Thank you!



LP vs. SVAR: High-freq. identification of monetary shocks
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Fig. 3 Gertler—Karadi's monetary shock. (A) Gertler—Karadi's monetary proxy SVAR, VAR from 1979m7
to 2012m6, instrument from 1991m1 to 2012m6. (B) Gertler—Karadi monetary shock, Jorda
1990m1-2012mé. Light gray bands are 90% confidence bands.

°<
=]
n
S
w
S
IS
S

Source: Ramey (2016) handbook chapter

26



Equivalence result: Proof sketch

® Formal proof just requires least-squares algebra.
® |P estimand from Frisch-Waugh Theorem:

5’7 — COV(yt+h7 )?f)
E(x?)

27



Equivalence result: Proof sketch (cont.)

VAR reduced-form impulse responses A(L)~! from Wold decomp.:
we =X+ C(L)ur = x4+ > 020 GBne, x = C(1)c.
Hence, VAR estimand equals
Oh = Chn,+2,0Ben+1 = COV(YH—ha"?X,t)a
where we partition n: = (10} ¢, Nx,t5 My.e5 Ne.t) -
By u; = Bn; and properties of Cholesky decomposition,
Mx,t X Ux ¢,
where we partition u; = (uLt, Ux.t, Uyt uf%t)’ and define
Uyt = Ux,t — E(Ux,t ’ Ur,t) = Xt.

Conclude

On o< Cov(yeqn, Xt) o< Bp.
28



Equivalence result: Non-recursive specifications

® In general, any SVAR identification scheme studies the propagation of some rotation of
the Wold innovations:

e = b uy.

e Can show that the SVAR IRF to this innovation corresponds to coefficients {Bh}hzo from
linear projections

Yt+h = fp + Bh(b/Wt) + 302 5;,7th—€ + g_h,tv

up to constant of proportionality.

e Equivalent LP projects on linear combination b'w; of variables.

29



Sample asymptotic equivalence

Consider least-squares sample analogues of LP and VAR. Include p lags of w; in both
methods.

R¢(p): residual from regression of x; on intercept, ry, we_1, ..., We_p.

LP estimator (from Frisch-Waugh theorem):

A . 23—7311 YernXe(p)
)= T e

éh(p): horizon-h impulse response of y; to an innovation in x; in a Cholesky-identified
estimated VAR(p) model (with intercept).

Will now show that Bh(p) ~ constant X éh(p) as T — oo, provided p — oo at
appropriate rate.

30



Sample asymptotic equivalence (cont.)

Proposition: In-sample near-equivalence of LP and SVAR

Suppress notation p = p(T). Assume:

i) {w:} is covariance stationary and has a VAR(o0) representation with >~p2; [|A¢|| < oo.
Wold innovations u; have finite and pos. def. cov. matrix X. (Perhaps non-Gaussian.)

i) Reduced-form least-squares VAR estimator satisfies
12(p) = cll = 0p(1), [IA(p) = A(p)I| = 0p(1), I=(p) = Z|| = 0p(1).
Lewis & Reinsel (1985); Goncalves & Kilian (2007)
Then as p, T — oo,

-1/2

0n(p) = (755 S pia %)) " x Balp) + Op(R(p)).

N max{l,suplStST [|we|| }2 1/2

R(p) = T—p * (Zg:p—h—i-l ||’2\f(p)”2) Ea




Structural identification: Short-run restrictions

® “Fast-r-slow” short-run identification of monetary policy shocks: CEE (2005)

re Brie1:
A(L) | xe | = | Boien,e + Baoeant
qt Bzie1,t + Bzoear + Bzes

(n = 3 for clarity.)
® x;: Federal Funds Rate. r;: “slow-moving”. q;: “fast-moving”.

¢ Given this model, our equivalence result implies that the IRF of g; (say) wrt. e3¢ is
proportional to {84 }h>0 from the LP

Qe+h = fth + Baxe + ypre + 3021 5;,,th—£ +&h,t-

32



Long-run restrictions: Proof sketch

=x+ C(L)ut, ur= Bey

Standard argument: Long-run restriction ©12(1) = 0 implies
ei C(].)Ut == 6171(1) X €1t
Since wy ; = Agdp,

1y = Cov(gdp, y — 8dp,_1, ur) Tyt = SiLo Cov(wy epr, up) 5

Wold decomposition (t) implies

Ze oCOV(Wt+€, Ut) Ze 0C = C( )

So )
Jim oy = €1 C(1).

Finally, apply main equivalence result.

33



Examples of IVs/proxies

Narrative monetary shocks. Romer & Romer (2004)

Narrative fiscal shocks. Mertens & Ravn (2013); Ramey & Zubairy (2017); Mertens & M. Olea
(2018)

High-frequency asset price changes around FOMC announcements. Barakchian & Crowe
(2013); Gertler & Karadi (2015)

Oil supply disruptions. Hamilton (2003)
Large oil discoveries. Arezki, Ramey & Sheng (2016)
Utilization-adjusted TFP growth. Fernald (2014); Caldara & Kamps (2017)

Volatility spikes. Carriero et al. (2015)

34



LP-1V: Comparison with SVAR-IV

® The alternative SVAR-IV approach manipulates the Wold innovations
ur = wp — E(wy | {w;}_co<r<t) from an SVAR in w; alone.

e Specifically, SVAR-IV identifies the shock of interest as

_ 1 51
El,t = X Z;

where

® 1+ # €1,¢, except if the shock is invertible. Plagborg-Mgller & Wolf (2019)
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