Local Projections vs. VARs: Lessons From Thousands of DGPs

Dake LiMikkel Plagborg-MøllerChristian K. WolfTwo SigmaPrinceton UniversityMIT

September 12, 2023

Estimation of IRFs

• How to estimate impulse response functions (IRFs) in finite samples?

$$\theta_h \equiv E(y_{t+h} \mid \varepsilon_{j,t} = 1) - E(y_{t+h} \mid \varepsilon_{j,t} = 0), \quad h = 0, 1, 2, \dots$$

1 Structural Vector Autoregression (VAR): Sims (1980)

$$w_t = \sum_{\ell=1}^{p} A_{\ell} w_{t-\ell} + B \varepsilon_t, \quad \varepsilon_t \sim WN(0, I_n).$$

Extrapolates θ_h from first p autocovariances. Low variance, potentially high bias.

2 Local Projections (LP): Jordà (2005)

$$y_{t+h} = \beta_h \varepsilon_{j,t} + \text{controls} + \text{residual}_{h,t}, \quad h = 0, 1, 2, \dots$$

Estimates θ_h from sample autocovariances out to lag h. Low bias, high variance.

LP or VAR?

- Choice of LP or VAR seems to matter for important applied questions. Ramey (2016)
- LP and VAR share same population IRF estimand at horizons $h \le p$ (lag length). Plagborg-Møller & Wolf (2021)
 - No meaningful trade-off if interest centers on short horizons
 - ... or if we choose very large lag length (high variance).
- Applied interest in LP suggests concerns about substantial VAR misspecification at intermediate/long horizons. Justified? Nakamura & Steinsson (2018)
- Analytical guidance is murky: Under local misspecification of VAR(*p*) model, bias-variance trade-off depends on numerous aspects of DGP. Schorfheide (2005)

This paper

- Our approach: Large-scale simulation study of impulse response estimators.
 - Draw 1,000s of DGPs from empirical Dynamic Factor Model. Stock & Watson (2016)
 - Several estimation methods: LP, VAR, bias correction, shrinkage, ...
 - Several identification schemes: observed shock, recursive, proxy/instrument.
 - Pay attention to researcher's loss function and role of horizon.
- Which estimators perform well on average across many DGPs?

This paper

- Our approach: Large-scale simulation study of impulse response estimators.
 - Draw 1,000s of DGPs from empirical Dynamic Factor Model. Stock & Watson (2016)
 - Several estimation methods: LP, VAR, bias correction, shrinkage, ...
 - Several identification schemes: observed shock, recursive, proxy/instrument.
 - Pay attention to researcher's loss function and role of horizon.
- Which estimators perform well on average across many DGPs?
 - **1** Bias-corrected LP preferred method if *and only if* researcher overwhelmingly prioritizes bias.
 - Pror researchers who also care about precision, BVAR attractive at short horizons, least-squares VAR at intermediate horizons, similar at long horizons.

Literature

- Direct vs. iterated forecasts: Marcellino, Stock & Watson (2006)
- LP vs. VAR simulation studies: Jordà (2005); Meier (2005); Kilian & Kim (2011); Brugnolini (2018); Choi & Chudik (2019); Austin (2020); Bruns & Lütkepohl (2021)
- Analytical comparisons: Schorfheide (2005); Kilian & Lütkepohl (2017); Plagborg-Møller & Wolf (2021)
- Shrinkage estimation: Hansen (2016); Barnichon & Brownlees (2019); Miranda-Agrippino & Ricco (2021)
- Inference about IRFs:

Inoue & Kilian (2020); Montiel Olea & Plagborg-Møller (2021); Xu (2023)

Outline

Analytical illustration

- 2 Data generating processes
- 8 Estimators

4 Results

G Conclusion

Simple analytical example

• Locally misspecified VAR(1) in the data $w_t \equiv (\varepsilon_{1,t}, y_t)'$:

$$y_t = y_{t-1} + \varepsilon_{1,t} + \tau \varepsilon_{1,t-1} + \frac{\alpha}{\sqrt{T}} \varepsilon_{1,t-2} + \varepsilon_{2,t}, \quad (\varepsilon_{1,t}, \varepsilon_{2,t})' \stackrel{i.i.d.}{\sim} N(0, \operatorname{diag}(1, \sigma_2^2)).$$

- Parameter of interest: $\theta_{h,T} \equiv \frac{\partial y_{t+h}}{\partial \varepsilon_{1,t}} = 1 + \tau \mathbb{1}(h \ge 1) + \frac{\alpha}{\sqrt{T}} \mathbb{1}(h \ge 2).$
- Two estimators (later consider other ones):

1 LP:
$$y_{t+h} = \hat{\beta}_h \varepsilon_{1,t} + \hat{\zeta}'_h w_{t-1} + \text{residual}_{h,t}$$
.

- **2** VAR: $w_t = \hat{A}w_{t-1} + \hat{C}\hat{\eta}_t$, where $\hat{C} =$ Cholesky. Impulse response estimate $\hat{\delta}_h \propto e'_2 \hat{A}^h \hat{C} e_1$ normalized so first variable $w_{1,t}$ responds by 1 unit on impact.
- Proposition (building on Schorfheide, 2005):

$$\sqrt{T}(\hat{\beta}_h - \theta_{h,T}) \stackrel{d}{\rightarrow} N(0, \mathsf{aVar}_{\mathsf{LP},h}), \quad \sqrt{T}(\hat{\delta}_h - \theta_{h,T}) \stackrel{d}{\rightarrow} N(\mathsf{aBias}_{\mathsf{VAR},h}, \mathsf{aVar}_{\mathsf{VAR},h}).$$

How much should we care about bias to pick LP over VAR?

- At horizons $h \in \{0,1\}$, LP and VAR asy. equivalent. Plagborg-Møller & Wolf (2021)
- At horizons $h \ge 2$:
 - VAR extrapolation causes bias: $| aBias_{VAR,h} | = |\alpha| > 0 = | aBias_{LP,h} |$.
 - LP less precise: $aVar_{LP,h} aVar_{VAR,h} = 1 + \sigma_2^2 + (h-2)[(1+\tau)^2 + \sigma_2^2] > 0.$
 - Given "loss function"

$$\mathcal{L}_{\omega}(heta_{h, au},\hat{ heta}_{h})=\omega imes \left(\mathbb{E}[\hat{ heta}_{h}- heta_{h, au}]
ight)^{2}+(1-\omega) imes \mathsf{Var}(\hat{ heta}_{h}),$$

LP preferred over VAR (asymptotically) if and only if

$$\omega \geq \omega_h^* \equiv 1 - \frac{\alpha^2}{\alpha^2 + \mathsf{aVar}_{\mathsf{LP},h} - \mathsf{aVar}_{\mathsf{VAR},h}} \in (0,1).$$

Analytical illustration: take-aways

- Even in simple DGP, bias-variance trade-off is non-trivial. Depends on...
 - ... IRF shape τ , importance σ_2^2 of nuisance shocks, and degree α of misspecification.
 - ... bias weight ω in loss function.
 - ... impulse response horizon h.
- Our approach going forward:
 - Study trade-off through simulations in thousands of empirically calibrated DGPs. Will inform us about empirically relevant " τ ", " σ_2^2 ", and " α ".
 - Enrich menu of estimation procedures to trace out bias-variance possibility frontier.
 - Also consider identification schemes that don't require observed shocks.

Outline

1 Analytical illustration

- ② Data generating processes
- 8 Estimators

4 Results

G Conclusion

Encompassing model

• Dynamic Factor Model (DFM):

$$X_t = \Lambda f_t + v_t$$

$$f_t = \Phi(L)f_{t-1} + H\varepsilon_t$$

$$v_{i,t} = \Delta_i(L)v_{i,t-1} + \Xi_i\xi_i,$$

- X_t : 207 quarterly macro time series in levels, spanning various categories.
 - Stock & Watson (2016) argue that DFM captures 2nd moments of U.S. data well.
- f_t : six latent driving factors, evolve as VAR(4), driven by six aggregate shocks ε_t .
- $v_{i,t}$: idiosyncratic noise, evolves as AR(4), independent across *i*.
- Estimation: PCA on ΔX_t , cumulate factors, VECM for \hat{f}_t with 4 common stoch'c trends. (*H*: next slide.) Gaussian shocks. Bai & Ng (2004); Barigozzi, Lippi & Luciani (2021)

Lower-dimensional DGPs and estimands

- Draw 6,000 subsets of 5 variables $\bar{w}_t \subset X_t$. DFM implies that \bar{w}_t follows VAR(∞).
- \bar{w}_t contains at least one activity and one price series, and depending on type of DGP...
 - 1 Monetary shock: $i_t =$ federal funds rate.

2 Fiscal shock: i_t = federal government spending.

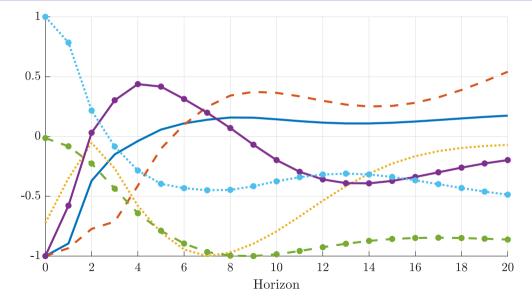
- Select response variable $y_t \in \overline{w}_t$ at random (not i_t).
- For today, assume shock $\varepsilon_{1,t}$ is observed. Estimand: $\theta_h = \frac{\partial y_{t+h}}{\partial \varepsilon_{1,t}}$, $h = 0, 1, 2, \dots, 20$.
 - In paper: proxy/IV, recursive identification.
- $H = \frac{\partial f_t}{\partial \varepsilon_t^r}$ chosen to maximize impact response of i_t wrt. $\varepsilon_{1,t}$.

DGPs are heterogeneous along various dimensions

Percentile	min	10	25	50	75	90	max
Data and shocks							
trace(long-run var)/trace(var)*	0.03	0.27	0.54	1.02	1.98	3.54	23.73
Fraction of VAR coef's $\ell \geq 5$	0.07	0.14	0.17	0.23	0.29	0.37	0.81
Degree of shock invertibility	0.24	0.30	0.34	0.39	0.44	0.49	0.65
IV first stage F-statistic	7.18	7.91	10.55	21.13	24.20	33.29	33.97
Impulse responses up to $h = 20$							
No. of interior local extrema	0	1	2	2	3	3	5
Horizon of max abs. value	0	0	1	4	8	19	20
Average/(max abs. value)	-0.87	-0.67	-0.48	0.01	0.33	0.64	0.89
R^2 in regression on quadratic	0.04	0.46	0.70	0.85	0.95	0.98	1.00

Combining 6,000 monetary and fiscal DGPs. Observed shock or IV identification. *: first diff.

Impulse response estimands are also heterogeneous



Outline

- 1 Analytical illustration
- 2 Data generating processes
- Stimators
- 4 Results
- 6 Conclusion

- Local projection methods:
 - 1 Least squares. Jordà (2005)
 - **2** Bias-corrected: corrects $O(T^{-1})$ bias due to persistence. Herbst & Johanssen (2021)
 - **3** Penalized: shrinks towards quadratic polynomial in *h*. Barnichon & Brownlees (2019)
- VAR methods:
 - 4 Least squares.
 - **5 Bias-corrected**: corrects $O(T^{-1})$ bias due to persistence. Pope (1990)
 - **6** Bayesian: Minnesota prior favoring cointegration, automatic hyper-parameter selection via marginal likelihood. Giannone, Lenza & Primiceri (2015)
 - 7 Model averaging: Data-dependent weighted average of estimates from 40 models, AR(1) to AR(20) and VAR(1) to VAR(20). Hansen (2016); Miranda-Agrippino & Ricco (2021)

Outline

- 1 Analytical illustration
- 2 Data generating processes
- 8 Estimators
- 4 Results
- 6 Conclusion

Specification and simulation settings

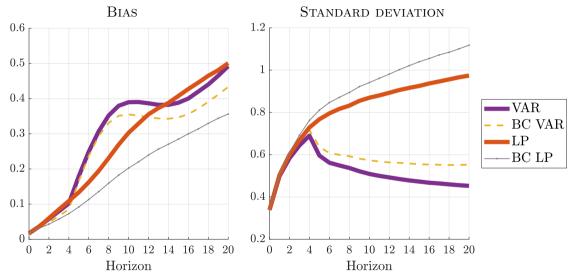
- p = 4 lags in LP and VAR, except VAR model averaging.
 - AIC almost always selects fewer than 4 lags.
- Show results for 6,000 monetary and fiscal shock DGPs jointly.
- Loss function:

$$\mathcal{L}_\omega(heta_h, \hat{ heta}_h) = \omega imes \left(\mathbb{E}[\hat{ heta}_h - heta_h]
ight)^2 + (1 - \omega) imes \mathsf{Var}(\hat{ heta}_h).$$

Divide estimator bias/std by $\sqrt{\frac{1}{21}\sum_{h=0}^{20}\theta_h^2}$ to remove units.

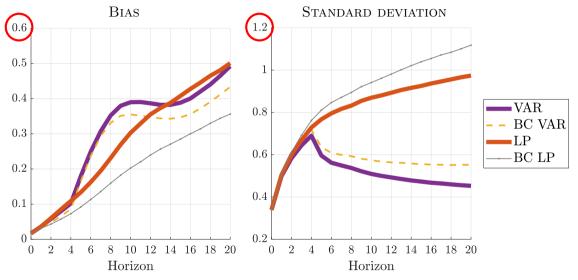
- T = 200. 5,000 Monte Carlo repetitions per DGP.
 - Simulations take about a week in Matlab on research cluster with 300 parallel cores.

#1: Clear bias-variance trade-off between LP & VAR after bias-corr'n



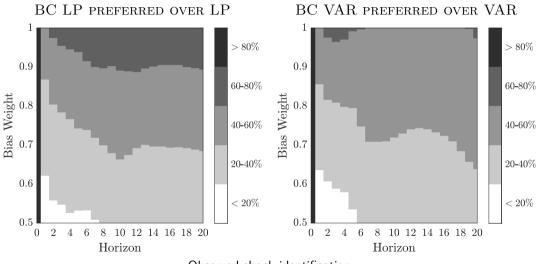
Observed shock identification, medians across 6,000 DGPs

#1: Clear bias-variance trade-off between LP & VAR after bias-corr'n

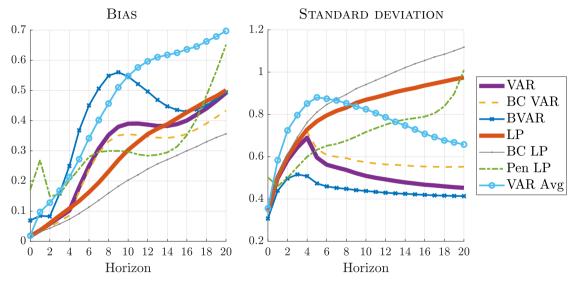


Observed shock identification, medians across 6,000 DGPs

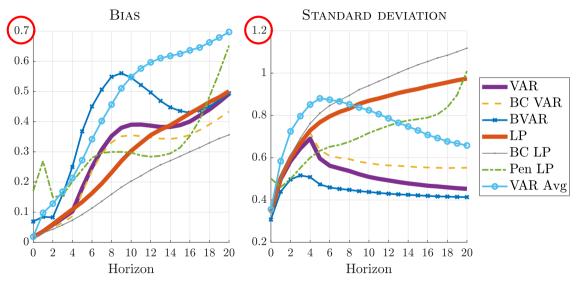
... but bias-correction is not a free lunch



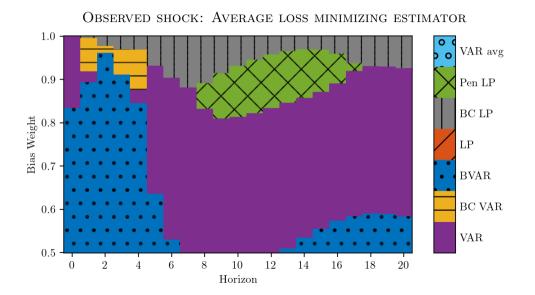
Observed shock identification

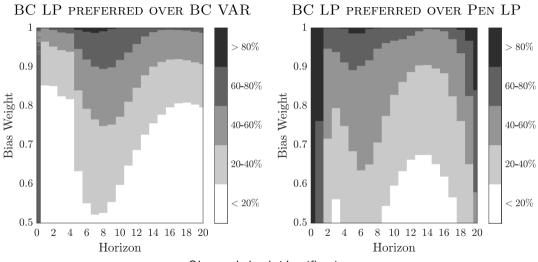


Observed shock identification, medians across 6,000 DGPs



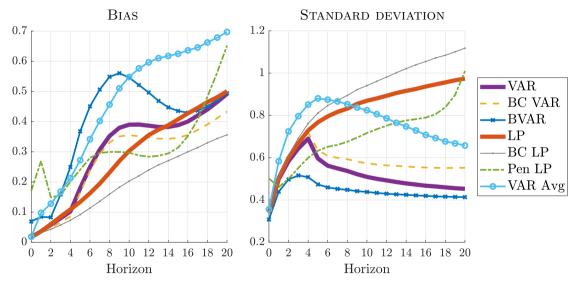
Observed shock identification, medians across 6,000 DGPs





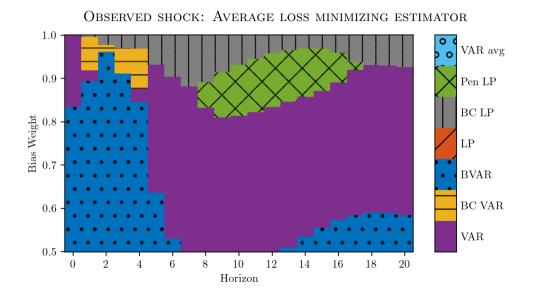
Observed shock identification

#3: For researchers who also care about precision, (B)VAR is attractive

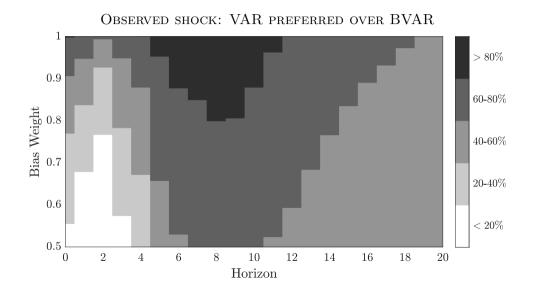


Observed shock identification, medians across 6,000 DGPs

#3: For researchers who also care about precision, (B)VAR is attractive



#3: For researchers who also care about precision, (B)VAR is attractive



Robustness checks in paper

- Stationary DGPs (first diff): bias-correction doesn't matter, shrinkage attractive.
- Other identification schemes: IV, recursive.
- Monetary and fiscal shocks considered separately.
- Longer estimation lag length p = 8.
- Smaller sample size T = 100.
- Break down results by variable categories.
- Smaller, salient set of observables.
- Near-worst-case performance: 90th percentile loss across DGPs instead of median.

► IV

Can we select the estimator based on the data?

- In-sample, data-driven estimator choice \implies best of all worlds?
- Disappointing performance of VAR model averaging estimator suggests caution.
- In our DGPs, conventional model selection/evaluation criteria fail to detect even substantial misspecification of VAR(4) model.
 - AIC: 90th percentile of \hat{p}_{AIC} does not exceed 2 in any DGP.
 - LM test of residual serial correlation (signif. level = 10%): rejection probability below 25% in 92% of DGPs; below 50% in all DGPs.

Outline

- 1 Analytical illustration
- 2 Data generating processes
- 8 Estimators
- 4 Results
- G Conclusion

Conclusion

- Large-scale simulation study of LP, VAR, and related impulse response estimators.
- Thousands of DGPs drawn from encompassing empirical DFM.
- Lessons:
 - 1 Clear bias-variance trade-off between LP and VAR after persistence-bias-correction.
 - 2 Bias-corrected LP preferred method if and only if researcher overwhelmingly prioritizes bias.
 - **3** For researchers who also care about precision, VAR is attractive: BVAR at short horizons, OLS at intermediate horizons, similar at long horizons.
- Future research: Panel data, model selection, shrinkage for medium-run responses.

Conclusion

- Large-scale simulation study of LP, VAR, and related impulse response estimators.
- Thousands of DGPs drawn from encompassing empirical DFM.
- Lessons:
 - 1 Clear bias-variance trade-off between LP and VAR after persistence-bias-correction.
 - 2 Bias-corrected LP preferred method if and only if researcher overwhelmingly prioritizes bias.
 - **3** For researchers who also care about precision, VAR is attractive: BVAR at short horizons, OLS at intermediate horizons, similar at long horizons.
- Future research: Panel data, model selection, shrinkage for medium-run responses.

Thank you!

Appendix

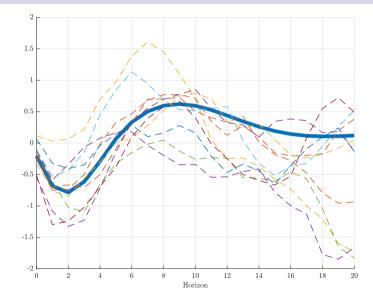
Bias-variance trade-off in simple DGP

Proposition 1

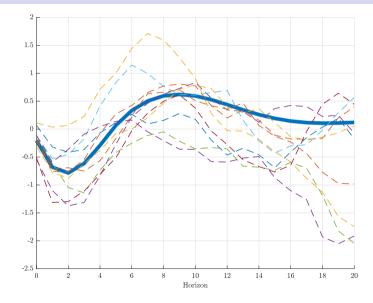
Fix
$$h \ge 0$$
, $\tau \in \mathbb{R}$, $\sigma_2 > 0$, and $\alpha \in \mathbb{R}$. Assume $E(\varepsilon_{j,t}^4) < \infty$ for $j = 1, 2$.
Then, as $T \to \infty$,
 $\sqrt{T}(\hat{\beta}_h - \theta_{h,T}) \xrightarrow{d} N(aBias_{LP,h}, aVar_{LP,h}), \quad \sqrt{T}(\hat{\delta}_h - \theta_{h,T}) \xrightarrow{d} N(aBias_{VAR,h}, aVar_{VAR,h}),$
where for all $h \ge 0$,
 $aBias_{LP,h} \equiv 0$, $aVar_{LP,h} \equiv \{1 + (h-1)(1+\tau)^2\}\mathbb{1}(h \ge 1) + (h+1)\sigma_2^2$,
and for $h \ge 1$,

$$\operatorname{aBias}_{\mathsf{VAR},h} \equiv -\alpha \mathbb{1}(h \ge 2), \quad \operatorname{aVar}_{\mathsf{VAR},h} \equiv \{1 + \tau \mathbb{1}(h \ge 2)\}^2 + 2\sigma_2^2.$$

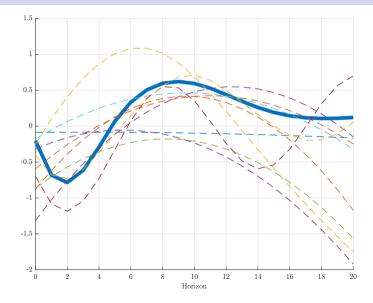
Example IRF estimates: Least-squares LP



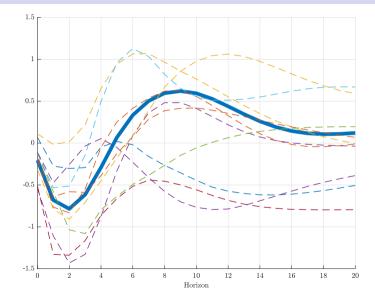
Example IRF estimates: Bias-corrected LP



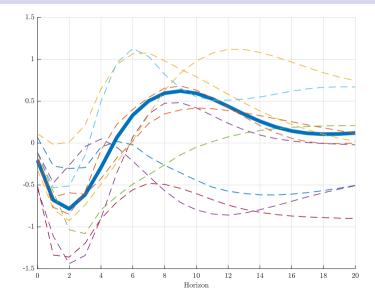
Example IRF estimates: Penalized LP



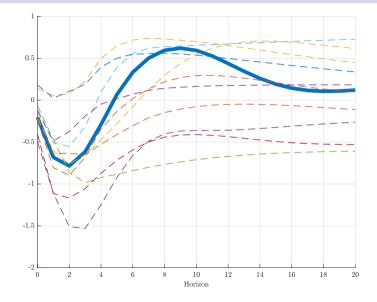
Example IRF estimates: Least-squares VAR



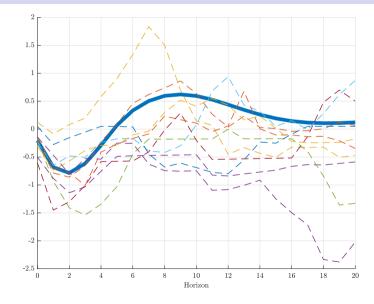
Example IRF estimates: Bias-corrected VAR



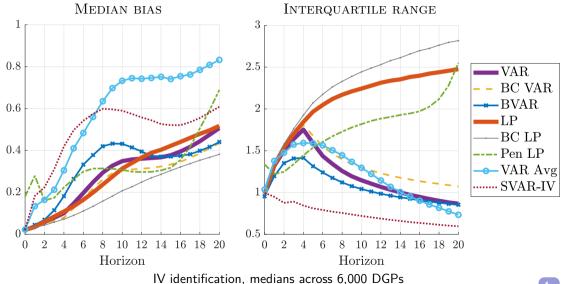
Example IRF estimates: Bayesian VAR



Example IRF estimates: VAR model averaging



#4: SVAR-IV is heavily biased, but has relatively low dispersion



Stationary DGPs: bias-correction doesn't matter, shrinkage attractive

