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Estimation of IRFs

• How to estimate impulse response functions (IRFs) in finite samples?

θh ≡ E (yt+h | εj,t = 1) − E (yt+h | εj,t = 0), h = 0, 1, 2, . . .

1 Structural Vector Autoregression (VAR): Sims (1980)

wt =
∑p

ℓ=1 Aℓwt−ℓ + Bεt , εt ∼ WN(0, In).

Extrapolates θh from first p autocovariances. Low variance, potentially high bias.

2 Local Projections (LP): Jordà (2005)

yt+h = βhεj,t + controls + residualh,t , h = 0, 1, 2, . . .

Estimates θh from sample autocovariances out to lag h. Low bias, high variance.
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LP or VAR?

• Choice of LP or VAR seems to matter for important applied questions. Ramey (2016)

• LP and VAR share same population IRF estimand at horizons h ≤ p (lag length).
Plagborg-Møller & Wolf (2021)

• No meaningful trade-off if interest centers on short horizons . . .

• . . . or if we choose very large lag length (high variance).

• Applied interest in LP suggests concerns about substantial VAR misspecification at
intermediate/long horizons. Justified? Nakamura & Steinsson (2018)

• Analytical guidance is murky: Under local misspecification of VAR(p) model,
bias-variance trade-off depends on numerous aspects of DGP. Schorfheide (2005)
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This paper

• Our approach: Large-scale simulation study of impulse response estimators.

• Draw 1,000s of DGPs from empirical Dynamic Factor Model. Stock & Watson (2016)

• Several estimation methods: LP, VAR, bias correction, shrinkage, . . .

• Several identification schemes: observed shock, recursive, proxy/instrument.

• Pay attention to researcher’s loss function and role of horizon.

• Which estimators perform well on average across many DGPs?

1 Bias-corrected LP preferred method if and only if researcher overwhelmingly prioritizes bias.

2 For researchers who also care about precision, BVAR attractive at short horizons, least-squares
VAR at intermediate horizons, similar at long horizons.
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Simple analytical example
• Locally misspecified VAR(1) in the data wt ≡ (ε1,t , yt)′:

yt = yt−1 + ε1,t + τε1,t−1 + α√
T

ε1,t−2 + ε2,t , (ε1,t , ε2,t)′ i .i .d .∼ N
(
0, diag(1, σ2

2)
)
.

• Parameter of interest: θh,T ≡ ∂yt+h
∂ε1,t

= 1 + τ1(h ≥ 1) + α√
T 1(h ≥ 2).

• Two estimators (later consider other ones):

1 LP: yt+h = β̂hε1,t + ζ̂ ′
hwt−1 + residualh,t .

2 VAR: wt = Âwt−1 + Ĉ η̂t , where Ĉ = Cholesky. Impulse response estimate δ̂h ∝ e′
2ÂhĈe1

normalized so first variable w1,t responds by 1 unit on impact.

• Proposition (building on Schorfheide, 2005): Prop

√
T (β̂h − θh,T ) d→ N(0, aVarLP,h),

√
T (δ̂h − θh,T ) d→ N(aBiasVAR,h, aVarVAR,h).
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How much should we care about bias to pick LP over VAR?

• At horizons h ∈ {0, 1}, LP and VAR asy. equivalent. Plagborg-Møller & Wolf (2021)

• At horizons h ≥ 2:

• VAR extrapolation causes bias: | aBiasVAR,h | = |α| > 0 = | aBiasLP,h |.

• LP less precise: aVarLP,h − aVarVAR,h = 1 + σ2
2 + (h − 2)

[
(1 + τ)2 + σ2

2
]

> 0.

• Given “loss function”

Lω(θh,T , θ̂h) = ω ×
(
E[θ̂h − θh,T ]

)2
+ (1 − ω) × Var(θ̂h),

LP preferred over VAR (asymptotically) if and only if

ω ≥ ω∗
h ≡ 1 − α2

α2 + aVarLP,h − aVarVAR,h
∈ (0, 1).
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Analytical illustration: take-aways

• Even in simple DGP, bias-variance trade-off is non-trivial. Depends on. . .

• . . . IRF shape τ , importance σ2
2 of nuisance shocks, and degree α of misspecification.

• . . . bias weight ω in loss function.

• . . . impulse response horizon h.

• Our approach going forward:

• Study trade-off through simulations in thousands of empirically calibrated DGPs. Will inform
us about empirically relevant “τ”, “σ2

2”, and “α”.

• Enrich menu of estimation procedures to trace out bias-variance possibility frontier.

• Also consider identification schemes that don’t require observed shocks.
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Encompassing model

• Dynamic Factor Model (DFM):
Xt = Λft + vt

ft = Φ(L)ft−1 + Hεt

vi ,t = ∆i(L)vi ,t−1 + Ξiξi ,t

• Xt : 207 quarterly macro time series in levels, spanning various categories.

• Stock & Watson (2016) argue that DFM captures 2nd moments of U.S. data well.

• ft : six latent driving factors, evolve as VAR(4), driven by six aggregate shocks εt .

• vi ,t : idiosyncratic noise, evolves as AR(4), independent across i .

• Estimation: PCA on ∆Xt , cumulate factors, VECM for f̂t with 4 common stoch’c trends.
(H: next slide.) Gaussian shocks. Bai & Ng (2004); Barigozzi, Lippi & Luciani (2021)
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Lower-dimensional DGPs and estimands

• Draw 6,000 subsets of 5 variables w̄t ⊂ Xt . DFM implies that w̄t follows VAR(∞).

• w̄t contains at least one activity and one price series, and – depending on type of DGP. . .

1 Monetary shock: it = federal funds rate.

2 Fiscal shock: it = federal government spending.

• Select response variable yt ∈ w̄t at random (not it).

• For today, assume shock ε1,t is observed. Estimand: θh = ∂yt+h
∂ε1,t

, h = 0, 1, 2, . . . , 20.

• In paper: proxy/IV, recursive identification.

• H = ∂ft
∂ε′

t
chosen to maximize impact response of it wrt. ε1,t .
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DGPs are heterogeneous along various dimensions

Percentile min 10 25 50 75 90 max

Data and shocks
trace(long-run var)/trace(var)* 0.03 0.27 0.54 1.02 1.98 3.54 23.73
Fraction of VAR coef’s ℓ ≥ 5 0.07 0.14 0.17 0.23 0.29 0.37 0.81
Degree of shock invertibility 0.24 0.30 0.34 0.39 0.44 0.49 0.65
IV first stage F-statistic 7.18 7.91 10.55 21.13 24.20 33.29 33.97

Impulse responses up to h = 20
No. of interior local extrema 0 1 2 2 3 3 5
Horizon of max abs. value 0 0 1 4 8 19 20
Average/(max abs. value) -0.87 -0.67 -0.48 0.01 0.33 0.64 0.89
R2 in regression on quadratic 0.04 0.46 0.70 0.85 0.95 0.98 1.00

Combining 6,000 monetary and fiscal DGPs. Observed shock or IV identification. *: first diff.
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Impulse response estimands are also heterogeneous
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Impulse response estimators
• Local projection methods:

1 Least squares. Jordà (2005)

2 Bias-corrected: corrects O(T −1) bias due to persistence. Herbst & Johanssen (2021)

3 Penalized: shrinks towards quadratic polynomial in h. Barnichon & Brownlees (2019)

• VAR methods:

4 Least squares.

5 Bias-corrected: corrects O(T −1) bias due to persistence. Pope (1990)

6 Bayesian: Minnesota prior favoring cointegration, automatic hyper-parameter selection via
marginal likelihood. Giannone, Lenza & Primiceri (2015)

7 Model averaging: Data-dependent weighted average of estimates from 40 models, AR(1) to
AR(20) and VAR(1) to VAR(20). Hansen (2016); Miranda-Agrippino & Ricco (2021)
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Specification and simulation settings

• p = 4 lags in LP and VAR, except VAR model averaging.

• AIC almost always selects fewer than 4 lags.

• Show results for 6,000 monetary and fiscal shock DGPs jointly.

• Loss function:

Lω(θh, θ̂h) = ω ×
(
E[θ̂h − θh]

)2
+ (1 − ω) × Var(θ̂h).

Divide estimator bias/std by
√

1
21

∑20
h=0 θ2

h to remove units.

• T = 200. 5,000 Monte Carlo repetitions per DGP.

• Simulations take about a week in Matlab on research cluster with 300 parallel cores.
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. . . but bias-correction is not a free lunch

BC LP preferred over LP BC VAR preferred over VAR

Observed shock identification
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#3: For researchers who also care about precision, (B)VAR is attractive

Observed shock: VAR preferred over BVAR
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Robustness checks in paper

• Stationary DGPs (first diff): bias-correction doesn’t matter, shrinkage attractive.

• Other identification schemes: IV, recursive. IV

• Monetary and fiscal shocks considered separately.

• Longer estimation lag length p = 8.

• Smaller sample size T = 100.

• Break down results by variable categories.

• Smaller, salient set of observables.

• Near-worst-case performance: 90th percentile loss across DGPs instead of median.

23



Can we select the estimator based on the data?

• In-sample, data-driven estimator choice =⇒ best of all worlds?

• Disappointing performance of VAR model averaging estimator suggests caution.

• In our DGPs, conventional model selection/evaluation criteria fail to detect even
substantial misspecification of VAR(4) model.

• AIC: 90th percentile of p̂AIC does not exceed 2 in any DGP.

• LM test of residual serial correlation (signif. level = 10%): rejection probability below 25% in
92% of DGPs; below 50% in all DGPs.
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Conclusion

• Large-scale simulation study of LP, VAR, and related impulse response estimators.

• Thousands of DGPs drawn from encompassing empirical DFM.

• Lessons:

1 Clear bias-variance trade-off between LP and VAR after persistence-bias-correction.

2 Bias-corrected LP preferred method if and only if researcher overwhelmingly prioritizes bias.

3 For researchers who also care about precision, VAR is attractive: BVAR at short horizons, OLS
at intermediate horizons, similar at long horizons.

• Future research: Panel data, model selection, shrinkage for medium-run responses.

Thank you!
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Appendix



Bias-variance trade-off in simple DGP

Proposition 1

Fix h ≥ 0, τ ∈ R, σ2 > 0, and α ∈ R. Assume E (ε4
j,t) < ∞ for j = 1, 2.

Then, as T → ∞,
√

T (β̂h − θh,T ) d→ N(aBiasLP,h, aVarLP,h),
√

T (δ̂h − θh,T ) d→ N(aBiasVAR,h, aVarVAR,h),

where for all h ≥ 0,

aBiasLP,h ≡ 0, aVarLP,h ≡ {1 + (h − 1)(1 + τ)2}1(h ≥ 1) + (h + 1)σ2
2,

and for h ≥ 1,

aBiasVAR,h ≡ −α1(h ≥ 2), aVarVAR,h ≡ {1 + τ1(h ≥ 2)}2 + 2σ2
2.
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Example IRF estimates: Least-squares LP
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Example IRF estimates: Bias-corrected LP
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Example IRF estimates: Penalized LP
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Example IRF estimates: Least-squares VAR
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Example IRF estimates: Bias-corrected VAR
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Example IRF estimates: Bayesian VAR
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Example IRF estimates: VAR model averaging
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#4: SVAR-IV is heavily biased, but has relatively low dispersion
Median bias Interquartile range

IV identification, medians across 6,000 DGPs 35



Stationary DGPs: bias-correction doesn’t matter, shrinkage attractive

Observed shock: Average loss minimizing estimator
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