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Estimation of IRFs

® How to estimate impulse response functions (IRFs) in finite samples?
Oh=E(Yern |l €je =1)— E(Yegn| e =0), h=0,1,2,...
@ Structural Vector Autoregression (VAR): Sims (1980)
we =30 1 Apwe_g + Bey, e ~ WN(O, I,).
Extrapolates 8, from first p autocovariances. Low variance, potentially high bias.
® Local Projections (LP): Jorda (2005)
Ye+h = Bhej,t + controls + residual, ;, h=0,1,2,...

Estimates 6;, from sample autocovariances out to lag h. Low bias, high variance.



LP or VAR?

Choice of LP or VAR seems to matter for important applied questions. Ramey (2016)

LP and VAR share same population IRF estimand at horizons h < p (lag length).
Plagborg-Mgller & Wolf (2021)

® No meaningful trade-off if interest centers on short horizons ...

® .. .or if we choose very large lag length (high variance).

Applied interest in LP suggests concerns about substantial VAR misspecification at
intermediate/long horizons. Justified? Nakamura & Steinsson (2018)

Analytical guidance is murky: Under local misspecification of VAR(p) model,
bias-variance trade-off depends on numerous aspects of DGP. Schorfheide (2005)



This paper

® Qur approach: Large-scale simulation study of impulse response estimators.
® Draw 1,000s of DGPs from empirical Dynamic Factor Model. Stock & Watson (2016)
® Several estimation methods: LP, VAR, bias correction, shrinkage, ...
® Several identification schemes: observed shock, recursive, proxy/instrument.
® Pay attention to researcher’s loss function and role of horizon.

® Which estimators perform well on average across many DGPs?
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® Qur approach: Large-scale simulation study of impulse response estimators.
® Draw 1,000s of DGPs from empirical Dynamic Factor Model. Stock & Watson (2016)
® Several estimation methods: LP, VAR, bias correction, shrinkage, ...
® Several identification schemes: observed shock, recursive, proxy/instrument.
® Pay attention to researcher’s loss function and role of horizon.
® Which estimators perform well on average across many DGPs?
@ Bias-corrected LP preferred method if and only if researcher overwhelmingly prioritizes bias.

@ For researchers who also care about precision, BVAR attractive at short horizons, least-squares
VAR at intermediate horizons, similar at long horizons.
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Simple analytical example
Locally misspecified VAR(1) in the data wy = (€14, y¢):

i.i.d. .
Ve=Ye1+e1e 111+ ——=c1r2 tear,  (ELt e2:) N N(0,diag(l,03)).

ﬁ

Parameter of interest: 6, 1 = %};t;rh =1+71(h>1)+ -=1(h>2).

VT
Two estimators (later consider other ones):
O LP: y,., = Bpere + Clwe_y + residualy, ;.

® VAR: w; = /2\Wt,1 + (A:ﬁt, where C = Cholesky. Impulse response estimate Sh x eézz\h(t"el
normalized so first variable wy ; responds by 1 unit on impact.

Proposition (building on Schorfheide, 2005):

ﬁ(éh — (9;,,7') £> N(O, aVarLP’h), \/?(Sh — eh,T) i) N(aBiasVAR,h, aVarVAR’h).



How much should we care about bias to pick LP over VAR?

® At horizons h € {0,1}, LP and VAR asy. equivalent. Plagborg-Mgller & Wolf (2021)
® At horizons h > 2:
® VAR extrapolation causes bias: |aBiasyar,n| = || > 0 = |aBiasip s |.
® LP less precise: aVarip s —aVaryars = 14 03 + (h—2)[(1 4 7)? + 03] > 0.
® Given “loss function”
Lo(On7,0n) = w x (E[é,, - 9h,T])2 (1 —w) x Var(dy),
LP preferred over VAR (asymptotically) if and only if

a2

w>wp=1

_ €(0,1).
a? + aVarpp » —aVarvar,s ©.1)



Analytical illustration: take-aways

® Even in simple DGP, bias-variance trade-off is non-trivial. Depends on. ..

® .. .IRF shape 7, importance o3 of nuisance shocks, and degree o of misspecification.
® ... bias weight w in loss function.
® .. .impulse response horizon h.

® QOur approach going forward:

® Study trade-off through simulations in thousands of empirically calibrated DGPs. Will inform
us about empirically relevant “7", “a%”, and “a.

® Enrich menu of estimation procedures to trace out bias-variance possibility frontier.

® Also consider identification schemes that don't require observed shocks.
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Encompassing model

Dynamic Factor Model (DFM):
X = Ny + vt
fe = ®(L)fr—1 + Hey
Vit = Di(L)vie—1+ =i&i s

X¢: 207 quarterly macro time series in levels, spanning various categories.

® Stock & Watson (2016) argue that DFM captures 2nd moments of U.S. data well.
fi: six latent driving factors, evolve as VAR(4), driven by six aggregate shocks &;.
vi ¢: idiosyncratic noise, evolves as AR(4), independent across i.

Estimation: PCA on AX;, cumulate factors, VECM for f‘t with 4 common stoch’c trends.
(H: next slide.) Gaussian shocks. Bai & Ng (2004); Barigozzi, Lippi & Luciani (2021)



Lower-dimensional DGPs and estimands

Draw 6,000 subsets of 5 variables w; C X;. DFM implies that w; follows VAR(c0).

w; contains at least one activity and one price series, and — depending on type of DGP. ..
@ Monetary shock: iy = federal funds rate.

® Fiscal shock: iy = federal government spending.

Select response variable y; € w; at random (not i¢).

For today, assume shock ¢; ; is observed. Estimand: 0, = %ys—*:f, h=0,1,2,...,20.

® In paper: proxy/IV, recursive identification.

H= % chosen to maximize impact response of ir wrt. €1 ¢.
t
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DGPs are heterogeneous along various dimensions

Percentile \min 10 25 50 75 90  max

Data and shocks

trace(long-run var)/trace(var)* | 0.03 027 054 1.02 198 354 23.73
Fraction of VAR coef's £ > 5 0.07 014 017 023 029 037 0381

Degree of shock invertibility 024 030 034 039 044 049 0.65
IV first stage F-statistic 718 791 1055 21.13 2420 3329 33.97
Impulse responses up to h = 20

No. of interior local extrema 0 1 2 2 3 3 5
Horizon of max abs. value 0 0 1 4 8 19 20
Average/(max abs. value) -0.87 -0.67 -0.483 0.01 033 064 0.89

R? in regression on quadratic 004 046 070 085 095 0.98 1.00

Combining 6,000 monetary and fiscal DGPs. Observed shock or IV identification. *: first diff.



lg

Impulse response estimands are also heterogeneous

Horizon
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Impulse response estimators

® | ocal projection methods:

@ Least squares. Jorda (2005)

@® Bias-corrected: corrects O(T 1) bias due to persistence. Herbst & Johanssen (2021)

© Penalized: shrinks towards quadratic polynomial in h. Barnichon & Brownlees (2019)
® VAR methods:

@ Least squares.

@ Bias-corrected: corrects O(T 1) bias due to persistence. Pope (1990)

@ Bayesian: Minnesota prior favoring cointegration, automatic hyper-parameter selection via
marginal likelihood. Giannone, Lenza & Primiceri (2015)

@ Model averaging: Data-dependent weighted average of estimates from 40 models, AR(1) to
AR(20) and VAR(1) to VAR(20). Hansen (2016); Miranda-Agrippino & Ricco (2021)
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Specification and simulation settings

p =4 lags in LP and VAR, except VAR model averaging.

® AIC almost always selects fewer than 4 lags.
Show results for 6,000 monetary and fiscal shock DGPs jointly.

Loss function:

L0, 08) = wx (E[s — 04])” + (1 — ) x Var(Dh).

Divide estimator bias/std by \/% Z%&O 62 to remove units.
T = 200. 5,000 Monte Carlo repetitions per DGP.

® Simulations take about a week in Matlab on research cluster with 300 parallel cores.
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#1: Clear bias-variance trade-off between LP & VAR after bias-corr'n
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but bias-correction
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#2: Bias-corr'd LP best iff. researcher heavily prioritizes bias
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#2: Bias-corr'd LP best iff. researcher heavily prioritizes bias

OBSERVED SHOCK: AVERAGE LOSS MINIMIZING ESTIMATOR
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Bias Weight

#2: Bias-corr'd LP best iff. researcher heavily prioritizes bias
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#3: For researchers who also care about precision, (B)VAR is attractive
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#3: For researchers who also care about precision, (B)VAR is attractive
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Robustness checks in paper

Stationary DGPs (first diff): bias-correction doesn’'t matter, shrinkage attractive.
Other identification schemes: IV, recursive.

Monetary and fiscal shocks considered separately.

Longer estimation lag length p = 8.

Smaller sample size T = 100.

Break down results by variable categories.

Smaller, salient set of observables.

Near-worst-case performance: 90th percentile loss across DGPs instead of median.
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Can we select the estimator based on the data?

® |n-sample, data-driven estimator choice = best of all worlds?

® Disappointing performance of VAR model averaging estimator suggests caution.

® In our DGPs, conventional model selection/evaluation criteria fail to detect even
substantial misspecification of VAR(4) model.

® AIC: 90th percentile of pajc does not exceed 2 in any DGP.

® LM test of residual serial correlation (signif. level = 10%): rejection probability below 25% in
92% of DGPs; below 50% in all DGPs.
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Conclusion

® | arge-scale simulation study of LP, VAR, and related impulse response estimators.
® Thousands of DGPs drawn from encompassing empirical DFM.
® |essons:
@ Clear bias-variance trade-off between LP and VAR after persistence-bias-correction.
@® Bias-corrected LP preferred method if and only if researcher overwhelmingly prioritizes bias.

© For researchers who also care about precision, VAR is attractive: BVAR at short horizons, OLS
at intermediate horizons, similar at long horizons.

® Future research: Panel data, model selection, shrinkage for medium-run responses.
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Conclusion

Large-scale simulation study of LP, VAR, and related impulse response estimators.
Thousands of DGPs drawn from encompassing empirical DFM.

Lessons:

@ Clear bias-variance trade-off between LP and VAR after persistence-bias-correction.

@® Bias-corrected LP preferred method if and only if researcher overwhelmingly prioritizes bias.

© For researchers who also care about precision, VAR is attractive: BVAR at short horizons, OLS
at intermediate horizons, similar at long horizons.

Future research: Panel data, model selection, shrinkage for medium-run responses.

Thank youl!
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Appendix



Bias-variance trade-off in simple DGP

Fix h>0, 7€R, 00 >0, and o € R. Assume E(Eﬁt) < oo forj=1,2.

Then, as T — oo,
\/?(Bh —6h7) LS N(aBiasip 4, aVarip ), \/?(3;, —Oh 1) 4 N(aBiasyar n, aVarvar.n),
where for all h > 0,
aBiasip s =0, aVarpp={l+(h—1)(1+7)*}1(h>1)+ (h+1)o3,
and for h > 1,

aBiasVAR’h = —a]l(h > 2), aVarVAR,h = {]. + T]l(h > 2)}2 + 20‘%.
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Example IRF estimates: Least-squares LP
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Example IRF estimates: Bias-corrected LP
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Example IRF estimates: Penalized LP
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Example IRF estimates: Least-squares VAR
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Example IRF estimates: Bias-corrected VAR
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Example IRF estimates: Bayesian VAR
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Example IRF estimates: VAR model averaging
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#4: SVAR-1V is heavily biased, but has relatively low dispersion
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Stationary DGPs: bias-correction doesn't matter, shrinkage attractive

OBSERVED SHOCK: AVERAGE LOSS MINIMIZING ESTIMATOR
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