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1 Introduction

Since Jordà (2005) introduced the popular local projection (LP) impulse response estimator,
there has been a debate about its benefits and drawbacks relative to Vector Autoregression
(VAR) estimation (Sims, 1980). Recently, Plagborg-Møller & Wolf (2021) proved that these
two methods in fact estimate precisely the same impulse responses asymptotically, provided
that the lag length used for estimation tends to infinity. This result holds regardless of
identification scheme and regardless of the underlying data generating process (DGP). Nev-
ertheless, the question of which estimator to choose in finite samples remains open. It is also
an urgent question, since researchers have remarked that LPs and VARs can give conflicting
results when applied to central economic questions such as the effects of monetary or fiscal
stimulus (e.g., Ramey, 2016; Nakamura & Steinsson, 2018).

Whereas the LP estimator utilizes the sample autocovariances flexibly by directly pro-
jecting an outcome at the future horizon h on current covariates, a VAR(p) estimator instead
extrapolates longer-run impulse responses from the first p sample autocovariances. Hence,
though the estimates from the two methods agree approximately at horizons h ≤ p, they
can disagree substantially at intermediate and long horizons.1 Intuitively, the extrapola-
tion employed by VARs should yield a lower variance but potentially a higher bias than for
LPs, perfectly analogous to the trade-off between direct and iterated reduced-form forecasts
(Schorfheide, 2005; Kilian & Lütkepohl, 2017).2 How much more should one care about bias
than variance to optimally choose the LP estimator over the VAR estimator in realistic sam-
ple sizes? And how does the trade-off depend on the DGP? Unfortunately, these questions
are challenging to answer analytically, due to the dynamic and nonlinear nature of the time
series estimators, as well as the breadth of DGPs encountered in applied practice.

In this paper we illuminate the bias-variance trade-off in impulse response estimation
through a comprehensive simulation study, applying LP and VAR methods to thousands
of empirically relevant DGPs. Our goal is to identify which estimators perform well on
average across many DGPs and thus may serve as practical default procedures. Rather
than insisting on the usual binary distinction between “local projections” and “VARs”, we
furthermore consider an entire menu of related estimation approaches that employ bias
correction, shrinkage, or model-averaging. We find that the usual least-squares LP estimator

1See Plagborg-Møller & Wolf (2021, Proposition 2) for a formal result.
2The trade-off is also conceptually similar to the relationship between polynomial series estimators and

kernel estimators in cross-sectional nonparametric regression.
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tends to have lower bias than the least-squares VAR estimator, as expected, but also that this
bias reduction comes at the cost of substantially higher variance. Out of all the procedures
we analyze, bias-corrected LP is the most attractive estimator if and only if the researcher
overwhelmingly prioritizes bias. If, however, the researcher also cares about precision (as in
the conventional mean squared error criterion), then VAR methods are the most attractive;
in particular, Bayesian VARs perform well at short and long horizons, while it is difficult to
beat the least-squares VAR estimator at intermediate and long horizons.

Our simulation study considers an extensive array of DGPs, obtained by drawing specifi-
cations at random from a large-scale, empirically calibrated dynamic factor model (DFM).3

We fit the DFM to the data set of Stock & Watson (2016), which contains a large number of
quarterly U.S. macroeconomic time series spanning a wide variety of variable categories. As
emphasized by Stock & Watson, such DFMs can accurately capture the joint co-movements
of conventional macroeconomic data, and so our simulation results will be informative about
the universe of standard U.S. time series. This estimated DFM exhibits realistic and com-
plex dynamics in the short and long run, including cointegrating relationships among the
latent factors. From the encompassing 207-variable DFM we then draw 6,000 random subsets
of five variables (subject to constraints that emulate applied practice); all results reported
below are essentially unchanged if instead we limit attention to 17 of the most commonly
used macro series out of the 207. The randomly drawn subsets of time series constitute the
set of DGPs that we consider for our simulation study. As the calibrated DFM is known
to us, we can compute the true impulse responses, and therefore also estimator biases and
mean squared errors. Importantly, none of these many DGPs can be exactly represented
as a finite-order VAR model, yielding a non-trivial bias-variance trade-off between the LP
and VAR estimators. Moreover, our DGPs exhibit substantial heterogeneity in how well
they can be approximated by VAR models, in persistence and shape of impulse response
functions, and in the invertibility of the structural shocks, consistent with the heterogeneity
faced by applied researchers. While our results inevitably depend on the specification of
the encompassing model, we believe that an estimation method that works well across our
multitude of empirically calibrated DGPs has substantial promise as a default procedure.

We study the ability of several variants of LP and VAR methods to accurately estimate
impulse response functions. Consistent with the majority of applied work, the estimators are
applied to data in levels, rather than transforming to stationarity prior to estimation. Since

3Our overall approach is inspired by Lazarus et al. (2018), who are instead interested in the question of
how to select among different long-run variance estimators.
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VARs with very large lag lengths are asymptotically equivalent to LPs (Plagborg-Møller &
Wolf, 2021; Xu, 2023), we focus on VAR estimators with moderate lag length choices, as
conventionally found in the literature. In addition to the popular least-squares LP and VAR
estimators, we further enrich the bias-variance possibility frontier by considering: (i) small-
sample bias correction of the VAR coefficients (Pope, 1990; Kilian, 1998) and LP impulse
response estimates (Herbst & Johannsen, 2023); (ii) penalized LP (Barnichon & Brownlees,
2019), which smooths out impulse response functions; (iii) Bayesian VAR estimation, with
priors selected as in Giannone et al. (2015); and (iv) model averaging of univariate and mul-
tivariate VAR models of various lag lengths (Hansen, 2016). For each estimation method,
we consider three oft-used structural identification schemes: observed shocks, instrumental
variables (IVs)/proxies, and recursive identification. For IV identification, we further dis-
tinguish between internal IV methods (Ramey, 2011; Plagborg-Møller & Wolf, 2021) and
external IV methods (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn, 2013). We then
evaluate the performance of these estimators through the lens of loss functions with varying
weights on bias and variance.

Applying the estimation methods to simulated data from the thousands of DGPs, a clear
and unavoidable bias-variance trade-off emerges. We highlight four main lessons:

1. Though they perform similarly at short horizons, least-squares LP and VAR estimators lie
on opposite ends of the bias-variance spectrum at intermediate and long horizons: small
bias and large variance for LPs, and large bias and small variance for VARs. Strictly
speaking, this statement is only true after applying the small-sample bias correction pro-
cedures of Pope (1990), Kilian (1998), and Herbst & Johannsen (2023), which partially
ameliorate the deleterious effects of the high persistence of our DGPs on the biases of the
respective estimators. We find such bias correction to be particularly important for LPs.

2. Out of all the estimators we consider, bias-corrected LP is the preferred option if and only
if the loss function almost exclusively puts weight on bias (at the expense of variance).
This is because the lower bias of LP relative to VAR comes at the cost of substantially
higher variance, especially at longer horizons.

3. If the loss function attaches at least moderate weight to variance (in addition to bias),
such as in the case of mean squared error loss, VAR methods are attractive. But the
optimal VAR method depends on the horizon: Bayesian VARs tend to perform well at
short horizons, least-squares VARs at intermediate horizons, and the two methods are
comparable at long horizons.
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4. In the case of IV identification, the SVAR-IV estimator is heavily median-biased, but pro-
vides substantial reduction in dispersion, measured by the interquartile range. Depending
on the weight attached to bias, it may therefore be justifiable to use external IV methods
despite their lack of robustness to non-invertibility (unlike internal IV methods).

Our findings provide a novel perspective on recent work emphasizing the potential dangers
of VAR model mis-specification (Ramey, 2016; Nakamura & Steinsson, 2018). We consider
DGPs that do not admit finite-order VAR representations, so VAR methods indeed suffer
from larger bias, as cautioned there. Reducing that bias via direct projection, however,
tends to incur a steep cost in terms of increased sampling variance at intermediate and long
horizons. Researchers who prefer to employ LP estimators should therefore be prepared to
pay that price, and furthermore should apply the Herbst & Johannsen (2023) bias correction
procedure when their data is persistent, as is usually the case.

Literature. Our simulation study is inspired by the seminal work of Marcellino et al.
(2006) on direct and iterated multi-step forecasts, though we focus instead on structural
impulse responses. While simulation studies in the forecasting literature often analyze
low-dimensional specifications, we consider multi-variable systems, consistent with standard
practice in the applied structural macroeconometrics literature. The structural perspec-
tive also requires us to contend with issues such as the variety of different popular shock
identification schemes, normalization of impulse responses, and the special role of external
instrumental variables.

Our large-scale model set-up differs from prior simulation studies of LP and VAR meth-
ods, which have considered at most a handful of DGPs. Examples here include Jordà (2005),
Meier (2005), Kilian & Kim (2011), Brugnolini (2018), Choi & Chudik (2019), Austin (2020),
and Bruns & Lütkepohl (2022). These papers either obtain their DGPs from stylized, low-
dimensional VARMA models, calibrated DSGE models, and/or a few empirically calibrated
VAR models. Our encompassing DGP is instead designed to closely mimic applied practice:
we consider a non-stationary DFM with rich common and idiosyncratic dynamics that accu-
rately captures key properties of the kinds of aggregate time series typically used in standard
macroeconometric analyses. Our analysis also differs in the following respects: we consider
shrinkage estimation procedures as competitors to the least-squares estimators; we study
several popular structural identification schemes; and we examine how our conclusions vary
with the impulse response horizon and the researcher’s loss function. All these features are
essential to the above-mentioned main lessons that we draw from our results.
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Even though the simulation results are at the heart of our analysis, we start off by illus-
trating the bias-variance trade-off through an analytical example that builds on Schorfheide
(2005). That paper develops a general theory of the asymptotic bias and variance of direct
and iterated (reduced-form) forecasts under local mis-specification. While these theoretical
results are valuable for analytically distilling the forces at work, they do not by themselves
resolve the bias-variance trade-off faced by practitioners, as this trade-off invariably depends
in a complicated fashion on many features of the DGP.

Finally, we stress that our paper focuses solely on point estimation, as opposed to in-
ference or hypothesis testing. See Inoue & Kilian (2020), Montiel Olea & Plagborg-Møller
(2021), and Xu (2023) for theoretical as well as simulation results on VAR and LP confidence
interval procedures. Moreover, we focus exclusively on impulse response estimands, rather
than variance decompositions or historical decompositions.

Outline. Section 2 illustrates the bias-variance trade-off for LP and VAR estimators using
a simple analytical example. Section 3 describes the empirically calibrated dynamic factor
model that we use to generate our many DGPs. Section 4 defines the menu of LP- and VAR-
based estimation procedures. Section 5 contains our main simulation results and robustness
checks. Section 6 summarizes the lessons for applied researchers and then offers guidance for
future research. The appendix contains implementation details. A supplemental appendix
with proofs and further simulation results as well as a Matlab code suite are available online.4

2 The bias-variance trade-off

This section motivates our simulation study with an analytical discussion of the bias-variance
trade-off between LP and VAR impulse response estimators. Section 2.1 analyzes these
estimators in the context of a simple toy model that cleanly illustrates the trade-off, and
Section 2.2 connects this analytical discussion to the rest of the paper.

2.1 Illustrative example

Plagborg-Møller & Wolf (2021) show that the impulse response estimands of VAR and LP
estimators with p lags generally differ at horizons h > p: the VAR extrapolates from the
first p sample autocovariances, while LP exploits all autocovariances out to horizon h + p.

4https://github.com/dake-li/lp_var_simul
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This observation suggests the presence of a bias-variance trade-off whenever the true DGP
is not a finite-order VAR, perfectly analogous to the choice between “direct” and “iterated”
predictions in multi-step forecasting (Marcellino et al., 2006). We here formalize this basic
intuition by extending the arguments of Schorfheide (2005) to structural impulse response
estimation in a simple, albeit non-stationary DGP.

Model. Consider a simple sequence of drifting DGPs for the scalar time series yt:

yt = yt−1 + ε1,t + τε1,t−1 + α√
T
ε1,t−2 + ε2,t, (1)

where εt ≡ (ε1,t, ε2,t)′ is an i.i.d. white noise process with Var(εt) = diag(1, σ2
2), and y0 = 0.

We assume that the researcher observes wt ≡ (ε1,t, yt)′, i.e., she observes the shock ε1,t but
not ε2,t. The above DGP drifts towards a unit-root VAR(1) process in wt at rate T−1/2,
where T is the sample size. We show below that this ensures a non-trivial bias-variance
trade-off in the limit T → ∞. The DGP captures the notion that finite-order autoregressive
models are often a good—but not exact—approximation to the true underlying DGP. The
degree of autoregressive mis-specification is governed by the parameter α.5

We are interested in the impulse responses of yt with respect to a unit impulse in ε1,t.
The true impulse response function implied by the model (1) equals θh,T ≡ 1 + τ1(h ≥
1)+αT−1/2

1(h ≥ 2) at horizon h. This impulse response function reflects—in stark fashion—
the common empirical finding that signal-to-noise ratios are especially low at longer horizons,
here h ≥ 2, in the sense that the increment θ2,T − θ1,T is of the same asymptotic order as
the standard errors of the LP and VAR estimators, as shown formally below.

Estimators. For now, we consider two estimators of θh,T .

1. LP. The least-squares local projection estimator β̂h is obtained from the OLS regression

yt+h = β̂hε1,t + ζ̂ ′
hwt−1 + residualt,h, (2)

at each horizon h. Notice that this LP specification controls for one lag of the data.

2. VAR. We consider a recursive VAR specification in wt = (ε1,t, yt)′, again with one lag.
Define the usual least-squares coefficient estimator Â ≡ (∑T

t=2 wtw
′
t−1)(

∑T
t=2 wt−1w

′
t−1)−1

5To interpret its units, consider a distributed lag regression of ∆yt on ε1,t, ε1,t−1, and ε1,t−2. Then it is
standard to show that the t-statistic for significance of the second lag converges in distribution to N(α/σ2, 1).
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and residual covariance matrix Σ̂ ≡ T−1 ∑T
t=2 ûtû

′
t, where ût ≡ wt − Âwt−1. Define the

lower triangular Cholesky factor Ĉ, where ĈĈ ′ = Σ̂. The un-normalized VAR impulse
responses with respect to the first orthogonalized shock at horizon h are given by ÂhĈe1,
where ej is the j-th unit vector of dimension 2, j = 1, 2. To facilitate comparison with
LP, we normalize the impact response of the first variable in the VAR (i.e., ε1,t) with
respect to the first shock to be 1. This yields the estimator δ̂h ≡ e′

2Â
hγ̂, where γ̂ ≡ (1, κ̂)′

and κ̂ ≡ Σ̂21/Σ̂11.6

Trade-off. Along the stated asymptote, the researcher faces a clear bias-variance trade-
off between the LP and VAR impulse response estimators:

Proposition 1. Consider the model (1), and fix h ≥ 0, τ ∈ R, σ2 > 0, and α ∈ R. Assume
E(ε4

j,t) < ∞ for j = 1, 2. Then, as T → ∞,

√
T (β̂h −θh,T ) d→ N(aBiasLP,h, aVarLP,h),

√
T (δ̂h −θh,T ) d→ N(aBiasVAR,h, aVarVAR,h), (3)

where for all h ≥ 0,

aBiasLP,h ≡ 0, aVarLP,h ≡ {1 + (h− 1)(1 + τ)2}1(h ≥ 1) + (h+ 1)σ2
2.

For h ∈ {0, 1}, we have aBiasVAR,h = aBiasLP,h = 0 and aVarVAR,h = aVarLP,h. For h ≥ 2,

aBiasVAR,h ≡ −α, aVarVAR,h ≡ (1 + τ)2 + 2σ2
2.

Proof. Please see Supplemental Appendix G.

At horizons h ∈ {0, 1}, there is no bias-variance trade-off: on impact, the two estimators
are numerically equivalent; at h = 1, both are asymptotically unbiased with identical asymp-
totic variance, consistent with Plagborg-Møller & Wolf (2021). Intuitively, the equivalence
at h = 1 reflects the fact that the VAR(1) estimator does not extrapolate, instead reporting
the direct projection of yt+1 on wt, exactly as LP does (Plagborg-Møller & Wolf, 2021).

At horizons h ≥ 2 (i.e., exceeding the lag length used for estimation), the bias-variance
trade-off is non-trivial. Specifically, the asymptotic biases satisfy | aBiasVAR,h | = |α| > 0 =

6We have Ĉ =
( √

Σ̂11 0
Σ̂21/

√
Σ̂11 Σ̂22−Σ̂2

21/Σ̂11

)
. We therefore achieve the desired normalization of the impact

effect of the shock by dividing Ĉe1 by
√

Σ̂11. This gives the normalized impulse responses Âhγ̂.
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| aBiasLP,h | whenever α ̸= 0, while the asymptotic variances satisfy aVarLP,h − aVarVAR,h =
1+σ2

2 +(h−2)[(1+τ)2+σ2
2] > 0. Intuitively, LP directly projects yt+h on the shock ε1,t, which

is uncorrelated with any lagged controls, so the asymptotic bias is always zero. In contrast,
the VAR(1) estimator extrapolates the response at horizon h: the model’s structure implies
that the precisely estimated autocovariances at lag 1 suffice to compute impulse responses
at longer horizons. Though this tight parametric extrapolation yields a low variance relative
to LP, it incurs a bias due to dynamic mis-specification when α ̸= 0. In the simple DGP
(1), the asymptotic bias of the VAR estimator could be eliminated by simply increasing the
lag length to 2 or higher, but in practice it may be difficult to determine the appropriate lag
length, as we demonstrate below in Section 5.6. The fact that both the asymptotic bias and
variance of the VAR impulse response estimator are constant at horizons h ≥ 2 is a special
feature of the stylized DGP (1).7 Nevertheless, our simulation study below will demonstrate
the robustness of the qualitative predictions that (i) the bias of VAR is high at intermediate
and long horizons relative to LP, and (ii) the difference between the variance of LP and that
of VAR tends to increase as a function of the horizon.8

How does the optimal choice of estimator depend on the researcher’s preferences con-
cerning bias and variance? To evaluate the performance of a given estimator θ̂h of θh,T , we
will throughout this paper consider loss functions of the form9

Lω(θh,T , θ̂h) = ω ×
(
E[θ̂h − θh,T ]

)2
+ (1 − ω) × Var(θ̂h). (4)

For ω = 1
2 , this is proportional to the mean squared error (MSE). For ω > 1

2 , the researcher is
more concerned about (squared) bias than variance, and for ω = 1 the researcher exclusively
cares about bias. Substituting the asymptotic bias and variance expressions in Proposition 1
into the above loss function, we find that LP is preferred over VAR (asymptotically) if and
only if the researcher prioritizes bias sufficiently heavily at the expense of variance, namely
when ω ≥ ω∗

h ≡ 1 −α2/(α2 + aVarLP,h − aVarVAR,h) ∈ (0, 1) (focusing here on the interesting
case h ≥ 2 and α ̸= 0). We remark that—even in the very simple DGP (1)—the indifference
weight ω∗

h depends sensitively on all the model parameters and the horizon h.

7In this DGP, the VAR coefficients on lagged yt are estimated super-consistently due to the unit root, so
to first order, estimation uncertainty arises only from the coefficients on lagged ε1,t.

8We derived similar analytical results for a stationary DGP in a previous working paper version of this
article (Li et al., 2022).

9The objective function (4) is not a loss function in the usual decision theoretic sense (which would call
it a risk function when ω = 1

2 ). We proceed with the non-standard terminology for ease of exposition.
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2.2 Outlook

Because analytical bias-variance calculations will invariably end up depending in complicated
ways on a multitude of parameters, we will in the rest of this paper use simulations to explore
the nature of the bias-variance trade-off across a rich and empirically relevant set of DGPs.
In the language of Section 2.1, these DGPs will inform us about empirically plausible degrees
of mis-specification α, impulse response function shapes τ , and relative shock importances
σ2

2, and therefore about the practically relevant bias weight ω∗
h necessary to justify the use

of one linear projection technique over another one. Moreover, we will also consider several
variants of the standard least-squares LP and VAR estimators, thus allowing us to further
trace out the bias-variance possibility frontier.

3 Data generating processes

This section presents our DGPs. We define the empirically calibrated encompassing model in
Section 3.1, from which we draw thousands of DGPs with corresponding structural impulse
response estimands, as described in Section 3.2. We discuss implementation details in Sec-
tion 3.3, and provide summary statistics for the DGPs in Section 3.4. Various modifications
to this baseline set of DGPs are considered later in Section 5.5.

3.1 Encompassing model

We construct our simulation DGPs from an encompassing model that is known to accurately
capture the time series properties of many U.S. macroeconomic time series: a dynamic factor
model (DFM) fitted to the well-known Stock & Watson (2016) data set. Because we seek
to follow applied practice in using data in levels rather than first differences, we employ a
non-stationary variant of the DFM estimated by Stock & Watson.

The DFM postulates that a large-dimensional nX × 1 vector Xt of observed macroeco-
nomic time series is driven by a low-dimensional nf × 1 vector ft of latent factors, as well as
an nX × 1 vector vt of idiosyncratic components. The latent factors are assumed to follow a
non-stationary Vector Error Correction Model (VECM) with VAR(pf ) representation

ft = Φ(L)ft−1 +Hεt, (5)

where εt = (ε1,t, . . . , εnf ,t)′ is an nf ×1 vector of aggregate shocks, which are i.i.d. and mutu-
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ally uncorrelated, with Var(εt) = Inf
. The nf ×nf matrix H determines the impact impulse

responses of the factors with respect to the aggregate shocks. The observed macroeconomic
series Xt are given by

Xt = Λft + vt, (6)

where the idiosyncratic component vi,t for macro observable Xi,t follows the potentially non-
stationary AR(pv) process

vi,t = Γi(L)vi,t−1 + Ξiξi,t, (7)

with ξi,t i.i.d. across t and i. We assume that all shocks and innovations are jointly normal
and homoskedastic. We will next in Section 3.2 describe how we construct our many lower-
dimensional DGPs from this encompassing large-scale DFM; Section 3.3 then follows up with
implementation details, including in particular a discussion of how the parameters of this
non-stationary DFM are calibrated to the Stock & Watson (2016) data set.

3.2 DGPs and impulse response estimands

We use the encompassing model (5)–(7) to build thousands of lower-dimensional DGPs for
our simulation study. Specifically, for each DGP, we draw a random subset of nw̄ variables
w̄t from the large vector Xt, i.e., w̄t ⊂ Xt. The variables w̄t follow the time series process
implied by the encompassing model (5)–(7). In particular, w̄t is driven by some combination
of aggregate structural shocks εt and idiosyncratic components vt. We draw thousands of
such random combinations of variables, thus yielding thousands of lower-dimensional DGPs.
The details of how we select the variable combinations are postponed until Section 3.3.

For each DGP drawn in this way, we consider three types of structural impulse response
estimands, chosen to mimic as closely as possible popular schemes for identifying the effects
of policy shocks in applied macroeconometrics (Ramey, 2016; Stock & Watson, 2016). In
the following, yt ∈ w̄t denotes a response variable of interest in the DGP, it ∈ w̄t is a policy
variable used to normalize the scale of the shock (if applicable), zt is an external instrument
(if applicable), and wt denotes the vector of all observed time series in the DGP.

1. Observed shock identification. In this identification scheme we assume that the
econometrician observes both the endogenous variables w̄t and the first structural shock
ε1,t, so the full vector of observables is wt = (ε1,t, w̄t)′. The objects of interest are the
impulse responses of an outcome variable yt with respect to a one standard deviation (i.e.,
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one unit) innovation to ε1,t:

θh ≡ Λ̄ιy ,•Θf
•,1,h, h = 0, 1, 2, . . . , (8)

where Θf (L) are the impulse responses of the factors ft to the structural shocks εt implied
by (5), while Λ̄ are those rows of Λ that correspond to the observables w̄t. The index ιy
corresponds to the location of yt in the vector w̄t.

This set-up captures those empirical studies in which the researcher has constructed a
plausible direct measure of the shock of interest. Examples include the monetary shock
series of Romer & Romer (2004) or the fiscal shock series of Ramey (2011). While one may
worry about measurement error in practice, it is common in applied work to treat shocks
as known, so we include this identification approach as a useful baseline. Measurement
error is introduced in the next identification scheme.

2. IV/proxy identification. In this scheme, instead of directly observing the structural
shock ε1,t, the econometrician observes the noisy proxy

zt = ρzzt−1 + ε1,t + νt, (9)

where νt is an i.i.d. process (independent of all shocks and innovations in the DFM) with
Var(νt) = σ2

ν . The full vector of observables is thus wt = (zt, w̄t)′. As is standard in IV
applications, we here adopt the “unit effect” normalization of Stock & Watson (2016), so
the object of interest becomes

θh ≡
Λ̄ιy ,•Θf

•,1,h

Λ̄ιi,•Θ
f
•,1,0

, h = 0, 1, 2, . . . , (10)

where the index ιi corresponds to the location of a policy variable it in the vector w̄t. The
above unit effect normalization defines the magnitude of the shock ε1,t such that it raises
the policy variable it by one unit on impact.

One example of an IV zt is the high-frequency change in futures prices around monetary
policy announcements employed by Gertler & Karadi (2015) to identify the effects of
monetary policy shocks.

3. Recursive identification. The final identification scheme is recursive (Cholesky) shock
identification (e.g., Christiano et al., 1999). Because it turns out that the simulation
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results for such shocks are qualitatively similar to the results when the shock is directly
observed, we relegate discussion of recursive identification to a robustness check in Sec-
tion 5.5, with technical definitions in Supplemental Appendix D.

3.3 Implementation

This section first discusses how we estimate the DFM and then specifies the particular DGPs
and structural impulse responses that we consider in the simulation study.

DFM parameters. We parametrize the DFM (5)–(7) by estimating the model on the
Stock & Watson (2016) data set. Recall that we model the variables in levels rather than
first differences, unlike Stock & Watson. We provide a brief overview of our approach here,
with details in Supplemental Appendix C.

We begin with the vector of observables Xt. As in Stock & Watson (2016), that vector
contains quarterly observations on 207 time series for 1959Q1–2014Q4, mostly consisting of
real activity variables, price measures, interest rates, asset and wealth variables, and pro-
ductivity series.10 Each series is seasonally adjusted as in Stock & Watson (2016). However,
unlike those authors we do not transform the series to stationarity. Instead, variables that
they transform to (non-log or log) first differences, we now keep in (non-log or log) levels;
and variables that they transform to log second differences (which are mostly price indices),
we only transform to log first differences. All estimation procedures mentioned below control
for series-specific and common deterministic linear time trends.

Our estimation approach is intended to allow for rich long- and short-run dynamics, open-
ing the door for meaningful mis-specification of short-lag VARs. Following Bai & Ng (2004)
and Barigozzi et al. (2021), we estimate the non-stationary DFM by extracting factors from
differenced (and subsequently de-meaned) data, cumulating these factors, and then fitting a
VECM to the cumulated factors; the aforementioned papers show that this estimation strat-
egy consistently estimates the true VECM parameters under weak conditions that allow for
cointegration. We set the number of factors nf equal to 6 as in Stock & Watson (2016). The
VECM is estimated by quasi-maximum-likelihood without restricting the adjustment coef-
ficients or cointegrating relations.11 The cointegration rank of the VECM is selected by the

10Table 1 and the Data Appendix of Stock & Watson (2016) list all variables and their categories.
11The reason we fit a VECM rather than an unrestricted VAR in levels to the factors is that the VAR

estimator may underestimate persistence in finite samples, as is well known. While bias correction procedures
exist, they may not always work well in practice. The VECM approach instead errs on the side of overstating
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Johansen (1995) maximum eigenvalue test, which indicates that the latent factors are driven
by four common stochastic trends. As in Stock & Watson (2016), we fit AR(pv) processes
by OLS to each idiosyncratic residual after removing the estimated factors, separately for
each i. We use lag lengths pf = pv = 4 for both the factor process and the idiosyncratic
component processes, which is at the upper end of what is preferred by the Akaike Infor-
mation Criterion, consistent with our goal of allowing rich dynamics. The above-mentioned
estimation procedure pins down all parameters of the DFM except for the structural impact
response matrix H; we discuss below how we construct that matrix.

While the estimated encompassing DFM assumes a cointegrated VECM for the latent
factors, the lower-dimensional DGPs that we subsequently extract from the DFM will not
satisfy exact finite-order VECM or VAR processes, and will not be exactly cointegrated. This
follows from the presence of the idiosyncratic components and the mismatch in dimensions
between the latent factors and the observable series (as specified below). Indeed, we show
below that most of the lower-dimensional DGPs feature a combination of exact unit roots
(imposed in the factor VECM), several roots near unity (owing partly to the factor process
and partly to the idiosyncratic component processes), as well as smaller roots that induce
transitory dynamics. Our DGPs are therefore consistent with the common empirical finding
that there is often substantial ambiguity about the appropriate VAR lag lengths, the exact
magnitude of roots, and the presence or absence of cointegrating relationships.

DGP and estimand selection. To provide a comprehensive picture of the bias-variance
trade-off, we select thousands of different sets of observables w̄t ⊂ Xt. We consider two
protocols for selecting these observables—one aimed at mimicking monetary policy shock
applications, and one aimed at fiscal policy shock applications. Specifically, for each type of
policy shock, we randomly draw 3,000 configurations of nw̄ = 5 macroeconomic observables
w̄t. Thus, we end up with a total of 6,000 DGPs. For the monetary policy DGPs we restrict
w̄t to always contain the federal funds rate, while for the fiscal policy DGPs we restrict w̄t

to contain federal government spending. These two series are chosen as the policy variables
it for the IV and recursive estimands. The remaining four variables in w̄t are then selected
uniformly at random from Xt, except we impose that at least one variable should be a
measure of real activity, and at least one other variable a measure of prices.12 The impulse

the role of permanent shocks, consistent with our goal of allowing for rich long-run dynamics.
12Real activity series correspond to categories 1–3 in the classification in Table 1 of Stock & Watson (2016),

while price series correspond to category 6.
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response variable yt is selected uniformly at random from the four series (other than it).
For each of the DGPs, we implement the structural impulse response estimands as follows:

1. Observed shock. We select the structural impact response matrix H in the factor equa-
tion (5) so as to maximize the impact effect of the shock ε1,t on the federal funds rate (for
monetary shocks) and government spending (for fiscal shocks), subject to the constraint
that H is consistent with our estimate of the reduced-form innovation variance-covariance
matrix for the factors. This ensures that monetary and fiscal shocks account for substan-
tial short-run variation in nominal interest rates and government spending, respectively.
Additionally, we avoid issues related to division by near-zeros when normalizing the im-
pulse responses for the IV estimand. See Appendix A.1 for further details.

2. IV. The matrix H is defined just as in the “observed shock” case. Next, turning to the IV
parameters in equation (9), we draw ρz uniformly at random from the set {0, 0.25, 0.5}.13

To ensure an empirically plausible signal-to-noise ratio, we calibrate σ2
ν to three different

values that yield population IV first-stage F-statistics between 10 and 30, roughly in line
with heterogeneity in applied practice. See Appendix A.2 for details.

3. Recursive identification. Implementation details are in Supplemental Appendix D.

3.4 Summary statistics

Consistent with the experience of applied researchers, our DGPs exhibit substantial hetero-
geneity along several dimensions. Table 1 displays the distribution of various population
parameters across our 6,000 DGPs. The table focuses on impulse responses with respect
to directly observed monetary policy and government spending shocks, though results for
recursively defined shocks are similar, as shown in Supplemental Appendix F.3.

First of all, the DGPs feature varying degrees of persistence. All DGPs have unit roots
by construction; nevertheless, the DGPs differ in how heavily they load on the various non-
stationary and stationary linear combinations of the latent factors. Table 1 reports the
ratio of the traces of the long-run variance matrix and variance matrix applied to differenced
data, trace(LRV (∆w̄t))/ trace(Var(∆w̄t)). This measure varies widely across the DGPs, with
median equal to 1.02 (as when all series are simple random walks), and the 90th percentile
equal to 3.54 (consistent with strong positive autocorrelation of the first differences). We

13The external IVs used in empirical practice tend to have low to moderate autocorrelation (Ramey, 2016),
consistent with our assumptions on ρz.
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DGP summary statistics
Percentile min 10 25 50 75 90 max

Data and shocks
trace(long-run var)/trace(var) 0.03 0.27 0.54 1.02 1.98 3.54 23.73
Fraction of VAR coef’s ℓ ≥ 5 0.07 0.14 0.17 0.23 0.29 0.37 0.81
Degree of shock invertibility 0.24 0.30 0.34 0.39 0.44 0.49 0.65
IV first stage F-statistic 7.18 7.91 10.55 21.13 24.20 33.29 33.97

Impulse responses up to h = 20
No. of interior local extrema 0 1 2 2 3 3 5
Horizon of max abs. value 0 0 1 4 8 19 20
Average/(max abs. value) -0.87 -0.67 -0.48 0.01 0.33 0.64 0.89
R2 in regression on quadratic 0.04 0.46 0.70 0.85 0.95 0.98 1.00

Table 1: Quantiles of various population parameters across the DGPs for observed shock and IV
identification. “long-run var”: long-run variance of differenced series. “var”: variance of differenced
series. “Fraction of VAR coef’s ℓ ≥ 5”:

∑1000
ℓ=5 ∥Aw

ℓ ∥/
∑1000

ℓ=1 ∥Aw
ℓ ∥, where Aw

ℓ are the population
VAR(∞) coefficient matrices and ∥ · ∥ is the Frobenius norm. “Degree of shock invertibility”: R2

in a projection of ε1,t on {w̄t−ℓ}∞
ℓ=0. “IV first stage F-statistic”: T × R2/(1 − R2), where T = 200

and R2 is the population R2 in a projection of it on zt, controlling for {wt−ℓ}∞
ℓ=1. “Average/(max

abs. value)”: ( 1
21

∑20
h=0 θh)/ maxh{|θh|}. “R2 in regression on quadratic”: R2 from a regression of

the impulse response function {θh}20
h=0 on a quadratic polynomial in h.

will consider an alternative set of moderately persistent, stationary DGPs in one of our main
robustness checks in Section 5.5.

Second, the DGPs are heterogeneous in terms of how well they can be approximated
by a low-order VAR. Table 1 reports the ratio ∑1000

ℓ=5 ∥Aw
ℓ ∥/∑1000

ℓ=1 ∥Aw
ℓ ∥, which measures the

relative magnitude of the coefficient matrices {Aw
ℓ }ℓ in the VAR(∞) representation for {w̄t}

at or after lag 5 (with ∥ · ∥ here denoting the Frobenius matrix norm). The 10th and 90th
percentiles equal 0.14 and 0.37, respectively. Hence, the analysis in Section 2 suggests that
the bias of low-order VAR procedures will vary substantially across the various DGPs that
we consider in our simulations.

Third, for the IV specifications, we note that our DGPs differ in terms of shock invertibil-
ity and IV strength. The degree of invertibility is defined as the R-squared in a population
projection of the shock of interest on current and lagged macro observables {w̄t−ℓ}∞

ℓ=0.14 The

14Projections on infinite collections of lagged variables are defined as the limit when the lag length tends
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Selected impulse response function estimands

Figure 1: Selected impulse responses of macro observables to monetary and fiscal policy shocks.
Here the impulse response functions are normalized to have a maximum value of 1 or −1.

bias of some SVAR-based external instrument procedures depends on how far below 1 this
measure is, as discussed further in Section 4. The table shows that 90% of the DGPs have
degrees of invertibility below 49%, i.e., substantial non-invertibility.15 This is not surprising:
the DFM (5)–(7) features a realistic amount of idiosyncratic noise vt, making it challenging
to accurately back out the aggregate shock ε1,t from a small number of time series w̄t. The
strength of the IV is by construction borderline weak to moderate, as the population first
stage F-statistic (from a regression of the policy variable it on the IV zt, controlling for lagged
data) is calibrated to vary between approximately 10 and 30, given sample size T = 200.

Finally, the true impulse response estimands exhibit a wide variety of shapes. Table 1
shows that the impulse response functions peak at very different horizons and are typically
not simple monotonically decaying or even hump-shaped functions: the median number of
interior local extrema of the impulse response functions is 2 (a monotonic function would

to ∞, using a diffuse initialization of the Kalman filter.
15Leeper et al. (2013) argue that adding forward-looking variables to a VAR ameliorates the invertibility

problem. However, if we restrict attention to the 1,457 DGPs that contain at least one time series in the
“Asset Price & Sentiment” category (see Supplemental Appendix F.11), the 90th percentile of the degree of
invertibility increases only marginally to 51%.
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have 0; a hump-shaped function would have 1). Many impulse response functions change
sign at some horizon, as evidenced by the average response (across horizons) typically being
much smaller than the maximal response. Finally, the smoothness of the impulse response
functions varies substantially: the R-squared value in a regression of the impulse responses
{θh}20

h=0 on a quadratic polynomial b0 + b1 × h+ b2 × h2 has 10th and 90th percentiles given
by 0.46 and 0.98, respectively. For further illustration, Figure 1 displays the true values of
six impulse response functions, providing a representative picture of the heterogeneity. The
figure illustrates that, while some impulse response functions approximately return to 0 at
long horizons, many do not, and some have the largest response even beyond horizon h = 20.

4 Estimation methods

We now give a brief overview of the different VAR- and LP-based estimation methods that
we consider in the simulation study.16 Though all these methods aim at estimating the same
population impulse responses defined in Section 3.2, they differ in terms of their bias-variance
properties, and in terms of their robustness to non-invertibility. Further implementation
details are relegated to Appendix B. All estimators include an intercept.

Local projection approaches. The basic idea behind local projections, as proposed
by Jordà (2005), is to estimate the impulse responses separately at each horizon by a direct
regression of the future outcome on current covariates. We consider three such approaches:

1. Least-squares LP. OLS regression of the response variable yt+h on some innovation
variable xt, controlling for p lags of all data series wt. The innovation variable equals
xt = ε1,t for “observed shock” identification. For recursive identification, xt equals
the policy variable it, and we additionally control for the contemporaneous values of
the variables that are ordered before it in the system (Plagborg-Møller & Wolf, 2021).
For IV identification, we set xt = it and instrument for this variable using the IV
zt (this is the LP-IV estimator of Stock & Watson, 2018). Since least-squares LP
does not mechanically impose any functional form on the relationship between impulse
responses at different horizons h, it does not suffer from extrapolation bias. However,
these estimated impulse response functions tend to look jagged in finite samples and
be estimated with high variance at longer horizons.

16To visualize the various estimation methods, Supplemental Appendix E plots the estimated impulse
response functions in a few data sets simulated from a single DGP.
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2. Bias-corrected LP (abbreviated “BC LP”). Herbst & Johannsen (2023) propose a
bias-corrected version of LP, which partially removes the bias that is due to high
persistence in the data. Though this bias is theoretically of order T−1 (where T is
the sample size) and thus asymptotically negligible relative to the standard deviation,
Herbst & Johannsen demonstrate that the bias can be sizable in sample sizes typical
in the applied macroeconometrics literature.

3. Penalized LP (abbreviated “Pen LP”). To lower the variance of least-squares LP at
the expense of potentially increasing the bias, Barnichon & Brownlees (2019) propose
a penalized regression modification of LP. The estimator minimizes the sum of squared
forecast residuals (across both horizons and time) plus a penalty term that encourages
the estimation of smooth impulse responses. This is a type of shrinkage estimation:
the unrestricted least-squares estimate is pushed in the direction of a smooth quadratic
function of the horizon. The degree of shrinkage is chosen by cross-validation.

VAR approaches. Like local projections, a VAR with lag length p flexibly estimates the
impulse responses out to horizon p; however, the VAR extrapolates the responses at longer
horizons h > p using only the sample autocovariances out to lag p. As suggested by the
analysis in Section 2, this tends to generate impulse response estimates with lower variance
but higher bias than LP estimates at intermediate and long horizons. We consider four such
VAR-based approaches:

1. Least-squares VAR. Standard VAR impulse response estimates based on equation-
by-equation OLS estimates of the reduced-form coefficients.

2. Bias-corrected VAR (abbreviated “BC VAR”). As above, but follows Kilian (1998)
in using the formula in Pope (1990) to analytically correct the order-T−1 bias of the
reduced-form coefficients caused by persistent data.17

3. Bayesian VAR (abbreviated “BVAR”). As above, but where the reduced-form co-
efficients are estimated from a Bayesian VAR with automatic prior selection as in
Giannone et al. (2015). We report the posterior means of the impulse responses calcu-
lated from 100 draws. The prior specification follows the popular Minnesota prior, but
with modifications that allow for cointegration. The prior variance hyper-parameters

17Kilian & Lütkepohl (2017, Chapter 12.3) argue that this analytical bias correction yields similar results
to more computationally intensive bootstrap bias correction methods.
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(and thus the degree of shrinkage) are chosen in a data-dependent way by maximizing
the marginal likelihood.

4. VAR model averaging (abbreviated “VAR Avg”). Hansen (2016) develops a data-
driven method for averaging across the impulse response estimates produced by several
different VAR specifications. We construct a weighted average of 40 different speci-
fications, each of which is estimated by OLS: univariate AR(1) to AR(20) models,
and multivariate VAR(1) to VAR(20) models. The weights are chosen to minimize an
empirical estimate of the final impulse response estimator’s MSE.

The VAR model averaging estimator effectively includes LP among the list of candidate
estimators (as in the related approach of Miranda-Agrippino & Ricco, 2021). This is
because the candidate VAR(20) model gives results similar to LP with several lagged
controls, at all horizons considered in our study (Plagborg-Møller & Wolf, 2021).

Observed shock identification is carried out by simply ordering the shock first in the recursive
VAR. Recursive identification is implemented as usual in the VAR literature. We consider
two different approaches to IV estimation:

i) Internal instruments. Proceed as if the IV were equal to the true shock of interest,
i.e., order the IV first in the VAR and compute responses to the first orthogonalized
innovation (Ramey, 2011). Plagborg-Møller & Wolf (2021) prove that this approach
consistently estimates the normalized structural impulse responses (10) even if the IV is
contaminated with measurement error as in (9), and even if the shock is non-invertible.

ii) SVAR-IV (also known as proxy-SVAR). Exclude the IV from the reduced-form VAR,
and estimate the structural shock by projecting the IV on the reduced-form VAR inno-
vations (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn, 2013; Gertler & Karadi,
2015). This estimator is consistent if the shock of interest is invertible, but not otherwise
(Forni et al., 2019; Plagborg-Møller & Wolf, 2022; Miranda-Agrippino & Ricco, 2023).
We shall see that the SVAR-IV estimator tends to exhibit lower dispersion than the
“internal instruments” estimator due to the smaller dimension of the VAR system.

We implement the “internal instruments” approach using all four types of VAR estimation
techniques described earlier. For brevity, we only consider the least-squares version of the
“external instrument” SVAR-IV estimator.
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Lag length selection. As a baseline, the LP and VAR estimators use p = 4 lags for
estimation (except of course VAR model averaging, which uses many different lag lengths).
In our DGPs, the Akaike Information Criterion almost always selects very short lag lengths
p̂AIC , as we discuss further in Section 5.6 below. Thus, for all intents and purposes, our
results may be interpreted as having been generated by the lag length selection rule p =
max{p̂AIC , 4}. Our reading of applied practice is that researchers typically include at least
4 lags in quarterly data. Results for p = 8 are discussed in Section 5.5.

5 Results

This section presents our simulation results. We summarize the results through four lessons,
presented in separate subsections. The first three lessons focus on observed shock identifi-
cation. The fourth lesson is concerned with IV identification. We show in Section 5.5 that
these conclusions are qualitatively robust to several alterations of our baseline simulation
specification (including less persistent DGPs and recursive identification). Finally, in Sec-
tion 5.6, we justify our focus on the average performance of estimators across DGPs, by
arguing that there is limited scope for selecting among estimators in a data-dependent way.

Throughout this section we present results for our 6,000 monetary and fiscal policy shock
DGPs considered jointly rather than separately. For each DGP, we simulate time series of
length T = 200 quarters and approximate the population bias and variance of the estimators
by averaging across 5,000 Monte Carlo simulations. The main results (excluding robustness
checks) take about one week to produce in Matlab on a research computing cluster with 300
parallel cores.

5.1 There is a clear bias-variance trade-off between LP and VAR

Our first takeaway is that researchers invariably face a bias-variance trade-off: because most
of our DGPs are not well approximated by finite-order VAR models, least-squares LPs tend
to have lower bias, while least-squares VAR estimators tend to have lower variance, consistent
with the simple analytical example provided in Section 2. Strictly speaking, these statements
are only exactly true for the bias-corrected versions of the estimators (Herbst & Johannsen,
2023; Pope, 1990; Kilian, 1998), as the high persistence of our DGPs imparts a sizable finite-
sample bias in the estimators at intermediate and long horizons, particularly for LPs. This
bias correction, however, is not a free lunch, as it increases variance.
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Observed shock: Bias of estimators

Figure 2: Median (across DGPs) of absolute bias |E(θ̂h − θh)| of the different estimation proce-
dures, relative to

√
1
21

∑20
h=0 θ2

h.

Observed shock: Standard deviation of estimators

Figure 3: Median (across DGPs) of standard deviation
√

Var(θ̂h) of the different estimation
procedures, relative to

√
1
21

∑20
h=0 θ2

h.



Figures 2 and 3 depict the bias-variance trade-off at various horizons. These figures
show the median (across our 6,000 DGPs) of the absolute bias |E(θ̂h − θh)| or the standard
deviation

√
Var(θ̂h), respectively, as a function of the horizon. The different lines correspond

to different estimators θ̂h, with least-squares LP and VAR being the thick lines. Before
taking the median, we cancel out the units of the response variables by dividing the bias and
standard deviation by

√
1
21

∑20
h=0 θ

2
h, i.e., the root mean squared value of the true impulse

response function out to horizon 20. Note that the scale of the vertical axis differs between
the bias and standard deviation plots.

The figures show that least-squares LP and VAR estimators have similar bias and vari-
ance at horizons h ≤ p = 4, but not at longer horizons h > p. The median biases then
generally increase with the horizon, with the bias of VAR exceeding that of LP, except at
long horizons.18 While the median standard deviation of LP is increasing in the horizon,
that of VAR instead displays a hump-shaped pattern. At long horizons, the median standard
deviation of LP is about double that of VAR. These observations are broadly consistent with
the asymptotic results in Section 2, Schorfheide (2005), and Plagborg-Møller & Wolf (2021).

Our results also show that the bias correction procedure of Herbst & Johannsen (2023) is
critical to achieving uniformly low bias for the LP approach. Though the asymptotic bias of
LP is zero when the shock is observed, as discussed in Section 2, the high persistence of our
DGPs implies that the small-sample bias of least-squares LP is non-negligible at intermediate
and long horizons, especially the latter. The bias-corrected version of LP proposed by Herbst
& Johannsen (thin line with small dots in the figures) eliminates about a third of the bias
at all horizons. In comparison with the LP case, bias correction is not as critical for VAR
estimation, though the bias-corrected VAR estimator (dashed line) does have a somewhat
lower bias than the least-squares VAR estimator at long horizons. After bias correction, LP
has lower (median) bias than VAR at all horizons, as predicted by asymptotic theory. We
further show in Section 5.5 below that such bias correction is not nearly as important in less
persistent, stationary DGPs.

Bias correction is not a free lunch, however, as it is associated with a substantial increase
in variance. Figure 3 shows that the bias-corrected LP and VAR estimators have uniformly
higher median standard deviation than the uncorrected estimators. In fact, bias-corrected
LP has not only the uniformly lowest median bias among the methods we consider, it also has
the uniformly highest standard deviation. Figures 4 and 5 show head-to-head comparisons

18Kilian & Kim (2011) find in simulations that LP does not have lower bias than VAR estimators, but
they consider a different variant of LP that uses an auxiliary VAR to identify the structural shocks.
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24Observed shock: Least-squares LP vs. Bias-Corrected LP

Figure 4: Fraction of DGPs for which the least-squares LP estimator has a lower loss than bias-
corrected LP. The darker the region, the higher the fraction of DGPs for which least-squares LP
is preferred. Horizontal axis: impulse response horizon h. Vertical axis: weight ω on squared bias
in the loss function (4). The loss function is normalized by the scale of the true impulse response
function, as in Figures 2 and 3. The impact horizon h = 0 is omitted due to numerical equivalence
between the estimators.

Observed shock: Least-squares VAR vs. Bias-Corrected VAR

Figure 5: Fraction of DGPs for which the least-squares VAR estimator has a lower loss than the
bias-corrected VAR estimator. The darker the region, the higher the fraction of DGPs for which
least-squares VAR is preferred. See caption for Figure 4. The impact horizon h = 0 is omitted due
to numerical equivalence between the estimators.



of the least-squares and bias-corrected estimators for the LP and VAR cases, respectively.
The figures show the fraction of DGPs for which the least-squares estimator achieves a lower
loss (4) than the bias-corrected estimator, as a function of the horizon h and the weight ω
attached to squared bias in the loss function; to interpret the figures, recall that ω = 0.5
corresponds to MSE loss, while ω = 1 corresponds to an exclusive focus on bias at the expense
of variance. The darker the plot, the more often is the least-squares estimator preferred over
the bias-corrected one. Evidently, one has to attach a very high weight ω to bias in the loss
function to prefer the bias-corrected estimator in more than 60% of DGPs; furthermore, a
researcher with MSE loss would usually prefer the uncorrected estimators.

5.2 Bias-corrected LP is the best estimator if and only if the re-
searcher overwhelmingly prioritizes bias

Our second takeaway is that bias-corrected LP is the single best estimator in our choice
set if and only if the researcher’s loss function overwhelmingly prioritizes bias. In contrast,
uncorrected LP is never the best option if the goal is to minimize average loss across our
DGPs. Under MSE loss, penalized LP typically outperforms the other LP procedures as it
has substantially lower variance, though at the expense of a moderate increase in bias.

Figure 6 shows the optimal estimation method as a function of the horizon h and the bias
weight ω. The colors and patterns indicate the estimation method that minimizes the average
loss (4) across DGPs, after normalizing the loss to cancel out units as in Figures 2 and 3. In
this subsection we focus on the top part of Figure 6, i.e., where the weight ω on bias in the
loss function is high. Bias-corrected LP emerges as the best estimator at most horizons in
this case, as is to be expected given its excellent bias properties in Figure 2; nevertheless, the
figure shows that the optimality of bias-corrected LP is predicated on ω exceeding roughly
0.9, or even higher at some horizons, corresponding to an overwhelming focus on minimizing
bias rather than variance. In contrast, uncorrected least-squares LP is essentially dominated:
it has greater bias than bias-corrected LP (notably at longer horizons), yet materially higher
variance than least-squares VAR or other shrinkage methods, and so no part of Figure 6 is
orange with diagonal lines. We discuss the rest of Figure 6 in the next subsection.

Figures 7 and 8 compare bias-corrected LP to bias-corrected VAR and to penalized
LP, respectively. The former figure shows that bias-corrected LP is only preferred to bias-
corrected VAR in at least 60% of DGPs when ω ≥ 0.9. In the latter figure, we see that the
smoothing of impulse responses across horizons that the penalized LP estimator performs
is usually attractive whenever ω ≤ 0.9, except at very short and very long horizons. By
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Observed shock: Optimal estimation method

Figure 6: Method that minimizes the average (across DGPs) loss function (4). Horizontal axis:
impulse response horizon. Vertical axis: weight on squared bias in loss function. The loss function
is normalized by the scale of the impulse response function, as in Figures 2 and 3. At h = 0, VAR
and LP are numerically identical; we break the tie in favor of VAR.

“betting on smoothness”, penalized LP achieves a substantial variance reduction relative to
the un-penalized LP procedures, at the expense of a moderate increase in bias, see Figures 2
and 3. In fact, there is a region of Figure 6 with intermediate horizons and moderately high
weight on bias where penalized LP (green with diagonal cross-hatching) is the single best
estimator. These findings underscore our conclusion that, across the majority of the DGPs,
the use of bias-corrected LP can only be justified by committing to a nearly exclusive focus
on minimizing bias, with little regard for precision.

5.3 VARs are attractive if there is some concern for precision

Our third takeaway is that VAR estimators are attractive to researchers who place at least
moderate weight on variance in their loss function. But the choice of VAR method depends
on the horizon: Bayesian VARs perform well at short horizons, least-squares VARs at inter-
mediate horizons, and at long horizons the two are comparable. VAR model averaging, on
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27Observed shock: Bias-corrected LP vs. Bias-corrected VAR

Figure 7: Fraction of DGPs for which the bias-corrected LP estimator has a lower loss than bias-
corrected VAR. The darker the region, the higher the fraction of DGPs for which bias-corrected LP
is preferred. Horizontal axis: impulse response horizon h. Vertical axis: weight ω on squared bias
in the loss function (4). The loss function is normalized by the scale of the true impulse response
function, as in Figures 2 and 3. The impact horizon h = 0 is omitted due to numerical equivalence
between the estimators.

Observed shock: Bias-corrected LP vs. Penalized LP

Figure 8: Fraction of DGPs for which the bias-corrected LP estimator has a lower loss than the
penalized LP estimator. The darker the region, the higher the fraction of DGPs for which bias-
corrected LP is preferred. See caption for Figure 4.



Observed shock: Least-squares VAR vs. Bayesian VAR

Figure 9: Fraction of DGPs for which the least-squares VAR estimator has a lower loss than the
BVAR estimator. The darker the region, the higher the fraction of DGPs for which least-squares
VAR is preferred. See caption for Figure 4.

the other hand, performs poorly regardless of bias-variance preferences.
Returning to Figure 6, we see that for bias weights ω below 0.9, the optimal estimation

method is almost always either least-squares VAR (purple areas) or BVAR (solid-dotted
blue). The key attractive property of BVAR is that it has the lowest (median) standard
deviation at all horizons among the methods we consider, as seen in Figure 3, though it also
has high bias relative to least-squares VAR at intermediate horizons, as shown in Figure 2.
The relatively high bias at intermediate horizons is possibly due to the fact that its prior
specification, which is conventional in the literature, is motivated by one-step-ahead and
long-run forecasting properties, as opposed to medium-run properties.19

Figure 9 shows that the head-to-head performance of least-squares VAR vs. Bayesian
VAR depends on the horizon. At short horizons h ≤ 4, BVAR is preferred in the majority
of DGPs, and indeed it is the overall best estimator for most loss functions that place non-
trivial weight on variance (see Figure 6). However, at intermediate horizons h ∈ [5, 12],
least-squares VAR is preferred over BVAR in the clear majority of DGPs for most loss

19Moreover, the Giannone et al. (2015) approach of choosing the prior hyper-parameters to maximize the
marginal likelihood implicitly targets one-step-ahead forecasts (see Equation 5 in their paper).
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functions, and the former estimator is the overall preferred method for loss functions with
ω ≤ 0.8. At long horizons h ≥ 13, the two VAR methods are comparable and outperform
all other methods, unless the weight on bias in the loss function is high.

Finally, we remark that bias-corrected VAR and VAR model averaging are rarely, if ever,
optimal. Bias-corrected VAR (yellow with horizontal lines in Figure 6) can be rationalized
at short horizons if the concern for bias is high, but the difference compared to least-squares
VAR is small at these horizons, as discussed in Section 5.2. VAR model averaging performs
poorly regardless of loss function and horizon, as it has substantial bias as well as a high
standard deviation relative to other VAR-based estimators (see Figures 2 and 3). Closer
inspection reveals that the high standard deviation is a consequence of a very fat-tailed
sampling distribution, with a non-negligible probability of erratic estimates.20

5.4 SVAR-IV is heavily biased, but has relatively low dispersion

Our last takeaway is concerned with IV/proxy identification. Among the invertibility-robust
“internal instruments” estimators, the bias-variance trade-off is very similar to that already
discussed above for the case of an observed shock. The alternative “external instruments”
SVAR-IV procedure, however, contributes starkly to the trade-off: it can be severely biased
due to its lack of robustness to non-invertibility, but at the same time it also has substantially
lower dispersion than the “internal instruments” procedures.

Since first and second moments of IV estimators may not exist theoretically (Sawa, 1972),
we in this subsection report median bias (i.e., in each DGP, the median of the estimation
error) instead of (mean) bias, and the interquartile range instead of the standard deviation.21

We refer to the latter as “dispersion.”
Figures 10 and 11 show the median bias and interquartile range of the various IV estima-

tors. If we ignore the dotted line representing SVAR-IV, these figures are qualitatively similar
to those presented in Section 5.1. However, SVAR-IV stands out by exhibiting especially
high median bias and especially low interquartile range at all horizons. This is consistent
with the existing theoretical work referenced in Section 4: unlike the “internal instruments”
procedures, SVAR-IV is asymptotically biased when the shock is not invertible, and we saw
in Section 3.4 that the degree of invertibility is generally low in our DGPs.22 On the other

20We use Hansen’s (2016) code off the shelf. It would be interesting to investigate whether the procedure
could be modified to avoid erratic estimates, perhaps by regularizing the averaging weights.

21For completeness, (mean) bias and standard deviation are reported in Supplemental Appendix F.1.
22Consistent with theory, we furthermore find that the median bias of SVAR-IV is particularly large
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30IV: Median bias of estimators

Figure 10: Median (across DGPs) of absolute median bias of the different estimation procedures,
relative to

√
1
21

∑20
h=0 θ2

h. The first seven estimators listed in the figure legend include the proxy/IV
directly in the observed data vector, see Section 4.

IV: Interquartile range of estimators

Figure 11: Median (across DGPs) of interquartile range of the different estimation procedures,
relative to

√
1
21

∑20
h=0 θ2

h. See caption for Figure 10.



hand, the SVAR-IV procedure has fewer parameters to estimate (as it excludes the IV zt

from the reduced-form VAR regression), causing a reduction in dispersion relative to the
other procedures. Though we view the high median bias of SVAR-IV across our DGPs as
worrying, its low dispersion is intriguing and may in some cases trump the bias concerns.

5.5 Robustness

This section argues that our main conclusions in Sections 5.1 to 5.4 are robust to several
alterations of our baseline simulation specification. We pay particular attention to an exercise
that replaces our non-stationary encompassing DFM with a stationary version. Various other
robustness checks are listed subsequently, with details relegated to Supplemental Appendix F.

Stationary DGPs. While the majority of applied papers estimate VARs and LPs with
a mix of non-stationary and stationary variables in levels (e.g., Ramey, 2016), in some cases
researchers transform all their data to stationarity prior to the analysis. To cover such
applications, we have repeated our analysis using the stationary estimated DFM of Stock
& Watson (2016) as our encompassing model. We construct impulse response estimands as
before and compare the performance of the same estimation methods, except that the BVAR
estimator uses a prior that shrinks towards white noise rather than random walks. Details
on the implementation and results are presented in Supplemental Appendix F.2.

Our headline qualitative conclusions go through in the stationary DGPs. We observe
the same bias-variance trade-off as in our main analysis, with LPs achieving lower bias than
VARs at the cost of elevated variance. As a result, except for researchers that exclusively
prioritize bias, least-squares VARs or some kind of shrinkage—in the form of Bayesian VARs
or penalized LPs—are preferred. The two most notable differences from our baseline analysis
are that (i) penalized LP outperforms BVAR for MSE loss at very short horizons, and (ii)
due to the moderate persistence of the stationary DGPs, bias correction has less bite, and
uncorrected least-squares LP has near-zero bias at all horizons.

Other robustness checks. The following modifications to our baseline simulation spec-
ification all leave our main conclusions qualitatively unchanged.

• Recursive identification: To complement the earlier results with observed shocks

relative to other estimation methods in the subset of DGPs with the smallest degree of invertibility. See
Supplemental Appendix F.1.
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and proxy identification, we also consider recursive (Cholesky) identification schemes.
We sidestep the controversial issue of whether recursive identification is an econom-
ically valid identification strategy by taking as the parameter of interest the shared
large-sample limit of the recursive LP/VAR estimators (as the lag length tends to
infinity). Details on the definition and empirical implementation are provided in Sup-
plemental Appendix D. Simulation results for recursively identified shocks are similar
to those for observed shock identification when the weight ω on (squared) bias in the
loss function exceeds 0.8. However, when ω ≤ 0.8, BVAR is more attractive than in our
baseline analysis. This is because recursive (i.e., Cholesky) identification relies heavily
on estimation of the reduced-form innovation variance-covariance matrix. Uniquely
among the estimation procedures we consider, BVAR imposes useful shrinkage on this
matrix through the prior. See Supplemental Appendix F.3.

• Salient observables: Our results remain essentially unchanged if we restrict attention
to a subset of 17 oft-used, salient macroeconomic time series out of the 207 ones in
the full Stock & Watson (2016) data set. We consider the exhaustive list of all 1,581
five-variable DGPs that can be formed from these 17 series, subject to the selection
rules in Section 3.3. See Supplemental Appendix F.4.

• Near-worst-case performance: Whereas our baseline results pertain to the median
performance of estimators across DGPs, some researchers may instead prefer to focus
on ensuring acceptable performance for particularly challenging DGPs. To this end,
Supplemental Appendix F.5 reports the 90th percentiles of the bias and standard de-
viation across DGPs. Interestingly, adopting this “near-worst-case” perspective does
not alter much the relative magnitudes of bias and standard deviation across estima-
tion procedures. Hence, none of the estimation procedures seem to have a particular
advantage in ensuring robustness to challenging environments, over and above their
performance in typical DGPs.

• Monetary vs. fiscal shocks: If we consider the monetary shock DGPs separately
from the fiscal shock DGPs, then the bias-variance trade-off is almost identical to that
when we consider the DGPs jointly. See Supplemental Appendix F.6.

• Larger lag length: If the lag length p is set to 8 instead of 4, then LP and VAR
are approximately equivalent out to horizon 8, as predicted by asymptotic theory.
BVAR is relatively more attractive than in the p = 4 case, as the prior reduces the
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effective dimensionality of the otherwise high-dimensional VAR system. Beyond that
our conclusions on the overall nature of the bias-variance trade-off are unaffected. See
Supplemental Appendix F.7.

• Smaller sample size: Halving the sample size to T = 100 quarters tends to increase
the estimator standard deviations more than the biases, so shrinkage techniques look
even more desirable than in our baseline, including in particular BVAR. Conversely,
for bias-corrected LP to be optimal, bias needs to be prioritized even more heavily.
See Supplemental Appendix F.8.

• Larger sample size and lag length: We set sample size T = 720 and lag length
p = 12, a configuration reminiscent of monthly data. However, we caution that the set-
up does not faithfully represent actual monthly data sets, since our DFM parameters
remain fixed at the quarterly calibration described in Section 3. As expected, least-
squares LP and VAR have approximately equivalent properties out to horizon 12,
while the trade-off between estimators at longer horizons is qualitatively similar to our
baseline. At horizons below 12, shrinkage via BVAR or penalized LP is even more
attractive than in our baseline, unless the bias weight in the loss function is high. See
Supplemental Appendix F.9.

• More observables: If we increase the number of observed macro variables per DGP
from 5 to 7, our conclusions are not affected. The only notable quantitative change is
that, for IV identification, SVAR-IV has slightly smaller bias relative to the internal
instruments procedures, due to the mechanical increase in the degree of invertibility.
See Supplemental Appendix F.10.

• Variable categories: We find little evidence that the biases or standard deviations
of individual impulse response estimators depend systematically on which categories
of time series are included in the DGP (e.g., how many real activity or price series are
used). See Supplemental Appendix F.11.

5.6 Discussion: can we select the estimator based on the data?

It is natural to ask whether, instead of selecting estimators based on average performance
across DGPs, the choice of estimator can be guided by the data at hand in each given DGP.
We now show that this appears to be difficult, as conventional model selection or evaluation
criteria are unable to detect even substantial mis-specification of the VAR(4) model in the
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vast majority of our DGPs. These findings are consistent with the previously documented
poor performance of the VAR model averaging estimator. For simplicity, we focus here on
observed shock identification.

First, the Akaike Information Criterion tends to select very short lag lengths p̂AIC in
our DGPs, as already mentioned earlier. The 90th percentile of p̂AIC (across simulations)
does not exceed 2 in any of our 6,000 DGPs, and it in fact equals 2 in only 68.3% of those
DGPs. This frequently used model selection tool therefore essentially never indicates that
the VAR(4) specification is mis-specified.

Second, the Lagrange Multiplier test of residual serial correlation has low power in most
of our DGPs. We carry out this test by regressing the sample VAR residuals on their first
lags, controlling for four lags of the observed variables, and employing the likelihood ratio
test defined in Johansen (1995). Using a 10% significance level for the test, only around 8% of
the DGPs exhibit a rejection probability above 25%, and none of the DGPs have a rejection
probability above 50%. Hence, this conventional specification test of the VAR(4) model is
under-powered, despite the fact that many of our DGPs are in fact not well approximated
by a VAR(4) model in population, as shown in Section 3.4.

It is of course possible that other model selection criteria or specification tests will work
better. However, at a minimum, the performance of the VAR model averaging estimator
discussed in Section 5.3 and the evidence presented in this subsection together suggest that
it is not straightforward to develop effective data-dependent estimator selection rules for use
on conventional macroeconomic time series data.

6 Conclusion and directions for future research

We conducted a large-scale simulation study of the performance of LP and VAR structural
impulse response estimators, as well as several variants of these methods. We drew the
following four main conclusions.

1. As predicted by theory, there is a non-trivial bias-variance trade-off between least-squares
LP and VAR estimators (after bias correction). Empirically relevant DGPs are unlikely to
admit exact finite-order VAR representations, and so mis-specification of VAR estimators
is indeed a valid concern, as discussed by Ramey (2016) and Nakamura & Steinsson
(2018), among others. Nevertheless, the slope of the trade-off is steep, with the lower bias
of LP coming at the cost of substantially higher variance.
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2. Bias-corrected LP is the preferred estimator if and only if the researcher overwhelmingly
prioritizes minimizing bias, with little regard to precision. Researchers who use LP should
acknowledge their focus on bias, and they should apply the Herbst & Johannsen (2023)
bias correction procedure when the data are persistent.

3. For researchers that attach at least moderate weight to variance in their loss function
(such as under the conventional MSE criterion), VAR methods are attractive. Specifi-
cally, Bayesian VARs perform well at short horizons, least-squares VARs at intermediate
horizons, and the two methods are comparable at long horizons. The fact that no single
VAR method dominates at all horizons means that researchers must take a stand not only
on their preferences for bias and variance, but also on their primary horizons of interest,
or alternatively ensure that their findings are supported by multiple procedures.

4. In the case of IV identification, the popular SVAR-IV (or proxy-SVAR) procedure can
be severely biased, but it has substantially lower dispersion at all horizons than “internal
instruments” procedures such as LP-IV or internal-IV VARs. The high (median) bias of
SVAR-IV is due to its lack of robustness to non-invertibility, which is a pervasive and
realistic feature of our DGPs.

These conclusions inevitably depend on the choice of encompassing model and the specific
implementation of the impulse response estimators. Our paper first and foremost has aimed
to bring the bias-variance trade-off in impulse response estimation to the attention of applied
researchers. Our particular quantification of this trade-off has sought to capture the wide
range of applied settings faced by macroeconomists, by fitting a dynamic factor model with
rich short-run and long-run dynamics to the well-known Stock & Watson (2016) data set.
Our online code repository (see Footnote 4) facilitates experimentation with alternative
encompassing models or estimation procedures.

Our findings point to several potential areas for future research. First, we conjecture that
the bias-variance trade-off may differ quantitatively in panel data settings, to the extent that
the availability of a large cross section reduces the sampling variance of the estimators for a
given time dimension, thus potentially making LP relatively more attractive than in the pure
time series case. Second, our analysis has focused on the average performance of estimators
across DGPs because we find that conventional model selection or evaluation tools are unable
to detect substantial mis-specification of low-order VARs in our simulations; nevertheless,
we view data-dependent estimator selection as an area ripe for further investigation. Third,
it may be worth investigating whether the performance of the Bayesian VAR procedure at
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intermediate horizons can be improved by developing alternative prior specifications that are
specifically aimed at structural impulse response estimation rather than forecasting, unlike
the priors used in much of the literature. Fourth, for the case of IV/proxy identification,
an interesting question is whether it is possible to develop alternative invertibility-robust
estimation procedures that capture some of the variance improvement enjoyed by the non-
robust SVAR-IV estimator. Fifth, we leave exploration of other structural shock identifi-
cation schemes—such as sign restrictions, long-run restrictions, and non-recursive short-run
restrictions—to future work. Sixth, while our simulations were calibrated to quarterly data,
it would be illuminating to see whether our conclusions apply also to monthly calibrations.
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Appendix A Details on DGP definitions

A.1 Shock definition

Our definition of the structural shock of interest, ε1,t, ensures that it has the largest possible
contemporaneous effect on nominal interest rates (for monetary shocks) and government
spending (for fiscal shocks). Letting ηt ≡ Hεt, Ση ≡ Var(ηt), and ι∗ denote the index of the
policy instrument it in the vector Xt, the shock is thus defined through the solution of the
following problem:

max
H

Λι∗,•He1 s.t. HH ′ = Ση,

where e1 selects the first column of H. The solution equals H•,1 = ΣηΛ′
ι∗,•(Λι∗,•ΣηΛ′

ι∗,•)−1/2.23

A.2 IV process calibration

We calibrate the innovation noise σ2
ν in the IV equation to target population IV first-stage

F-statistics between 10 and 30 when T = 200, consistent with borderline weak to moderately
strong identification, as in the majority of applied work. This yields σν ∈ {1.1, 1.5, 2.3}. We
draw ρz and σν uniformly at random from their two sets.

Appendix B Details on estimation procedures

Least-squares LP. The least-squares LP estimator of the impulse response at horizon
h is based on the coefficient β̂h in the h-step-ahead OLS regression

yt+h = µ̂h + β̂hxt + ζ̂hqt +
p∑

ℓ=1
φ̂h,ℓwt−ℓ + residualt,h, (B.1)

that is, we regress on the variable xt, with controls given by the vector qt as well as p lags of
all of the data wt. The estimands of Section 3.2 can now be estimated as follows:

1. Observed shock. We set xt equal to the observed shock ε1,t and omit the contempo-
raneous controls qt (we still control for lagged data).24

23The remaining columns in H are chosen arbitrarily to satisfy the variance-covariance constraint; these
columns only matter for the simulation results through the implications for reduced-form dynamics.

24The lags are not needed for consistency in this case, but they often improve efficiency.
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2. IV. We estimate a Two-Stage Least Squares (2SLS) version of (B.1), setting xt equal
to the policy variable it, and instrumenting for this variable with the IV zt. We omit
qt in this specification (but still include lagged controls). This is numerically the same
as doing a LP of yt+h on zt (with lagged controls), and dividing this coefficient by the
LP coefficient in a regression of it on zt (with lagged controls), see Stock & Watson
(2018) and Plagborg-Møller & Wolf (2021).

3. Recursive identification. xt = it is the policy variable, while qt are the variables
ordered before it in the identification scheme (Plagborg-Møller & Wolf, 2021).

Bias-corrected LP. We implement the bias-corrected LP estimator of Herbst & Jo-
hannsen (2023), using their approximate analytical bias formula for LP with controls and
with population autocovariances substituted with sample analogues.25 Following their recom-
mendation, we implement an iterative bias correction, where the impulse response estimate
at horizon h is bias-corrected using the previously corrected impulse response estimates at
horizons 1, 2, . . . , h− 1.

Penalized LP. The Barnichon & Brownlees (2019) estimator lowers the variance of LP
by exploiting a prior belief in smoothness of the impulse response function across horizons.
Following their preferred implementation, we model the impulse response function using B-
spline basis functions. The jaggedness penalty function penalizes deviations from a quadratic
function of the horizon h. We penalize impulse responses up to horizon 20. The penalty
parameter is selected in a data-dependent way using 5-fold cross-validation. We do not
penalize the coefficients on the control variables in the LP. When reporting relative impulse
responses (10), we divide by the least-squares LP estimate of the impact response of the
policy variable it to the structural shock.

Least-squares VAR. The least-squares VAR coefficient estimates are obtained through
equation-by-equation OLS regressions. We perform a Cholesky decomposition of the forecast
error variance-covariance matrix and compute impulse response functions with respect to the
orthogonalized shocks. The estimands of Section 3.2 can now be estimated as follows:

25Herbst & Johannsen’s analytical derivations assume stationarity, but we will apply the formula regardless.
This is similar to how analytical bias correction is typically carried out in VAR contexts (Kilian, 1998), as
Pope (1990) also assumes stationarity.
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1. Observed shock. The shock ε1,t is ordered first in wt, and we compute responses to
the first innovation.

2. IV. We initially consider an “internal instruments” approach as in Ramey (2011).
That is, we include the IV zt in the data vector wt, order the IV first, and compute
responses with respect to the first innovation (Plagborg-Møller & Wolf, 2021). The
relative impulse response (10) is obtained by dividing by the impact response of the
policy variable it.

3. Recursive identification. The ordering of variables in wt equals the ordering of
the desired population impulse response estimand (cf. Section 3.2), and we compute
responses to the innovation of the policy instrument it.

In contrast to the above internal instruments approach, the SVAR-IV (or “proxy-SVAR”)
estimator of Stock (2008) is obtained by computing the reduced-form impulse responses Ψ̂h

(h = 0, 1, . . . ) corresponding to a VAR in w̄t (i.e., excluding zt), and then reporting relative
impulse responses (10) corresponding to the absolute structural impulse responses Ψ̂hγ̂,
where γ̂ is the sample covariance vector of the reduced-form VAR residuals ût and the IV zt.

Bias-corrected VAR. We follow Kilian (1998) and consider a modification of the stan-
dard least-squares VAR estimator that applies the Pope (1990) analytical bias correction
to the reduced-form VAR coefficient matrices. We use Kilian’s procedure for ensuring the
largest eigenvalue of the bias-corrected VAR companion matrix does not exceed 1.

Bayesian VAR. Our BVAR implementation follows the default prior recommendations
of Giannone et al. (2015), as implemented in their replication code. The prior is therefore
a Minnesota prior, extended with the “sum-of-coefficients” and “dummy-initial-observation”
priors to improve long-run forecasts. The degrees of shrinkage provided by each of the
three prior components are governed by three prior hyper-parameters, which are selected by
maximizing the marginal likelihood.26 To save on computation time, we do not optimize the
hyper-parameter-vector ψ (in their notation), i.e., the diagonal of the scale matrix in the
Wishart prior on the innovation variance matrix; instead, these hyper-parameters are fixed
at the residual variance estimates from preliminary AR(1) regressions.

26Note that we do not use Giannone et al.’s computationally intensive hierarchical Bayesian procedure
but instead select hyper-parameters to maximize the marginal likelihood. In doing this, we substitute their
custom optimization routine with the built-in Matlab function fminunc.
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VAR model averaging. Hansen (2016) proposes a data-dependent procedure for aver-
aging across impulse responses estimates produced by a collection of different AR and VAR
models with different lag lengths. Let δ̂h(r) denote the un-normalized, least-squares recursive
impulse response estimate at some horizon h for model r = 1, . . . , R. We estimate δ̂h(r) from
R = 40 candidate models: first, univariate AR models for yt with lag lengths from p = 1 up
to p = 20; and second, VAR models in wt with lag lengths from p = 1 up to p = 20. As in
Hansen (2016), the variance-covariance matrix of innovations Σ and thus the impact effect δ0

are fixed across candidate models and treated as known without error.27 The VAR model av-
eraging estimator is given by ∑R

r=1 ω̂rδ̂h(r), where the weights {ω̂r}R
r=1 are chosen to minimize

the data-dependent approximated MSE estimate M̂(ω1, . . . , ωR) ≈ E[T (∑R
r=1 ωrδ̂h(r)−δh)2],

subject to the constraints that all weights are nonnegative and ∑R
r=1 ωr = 1. Details of the

MSE estimate are given in Hansen (2016, Section 6).28 We run this optimization for the
weights separately at each impulse response horizon. Relative impulse responses (10) are
computed by dividing the absolute impulse response by the least-squares VAR(4) impact
impulse response estimate of it with respect to the identified shock.
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