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Dynamic causal effects in macro

• Key objects in applied macro: structural impulse responses (dynamic causal effects).

θh = E [yt+h | ε1t = 1] − E [yt+h | ε1t = 0], h = 0, 1, 2, . . .

• Not a forecast. Shock ε1t may only explain small fraction of variation.

• Estimation methods: vector autoregressions (VARs) and local projections (LPs).

1 VAR: iterate on dynamic multivariate model. Sims (1980, 21.5k cites)

2 LP: direct regression of future outcome yt+h on current covariates. Jordà (2005, 4.5k cites)
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This talk: LPs or VARs?

• Literature synthesis of core principles guiding the choice between LP and VAR:

1 LP & VAR are two estimation methods, ⊥ to questions of identification.

2 Must navigate a stark bias-variance trade-off:
• LP: low bias, high variance.
• VAR (few lags): potentially high bias, low variance. More lags ⇒ closer to LP.

3 For reliable uncertainty assessments, choose (a) LP or (b) VAR with very many lags.

• Provide recommendations for practical implementation of LP.
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Local projection

• LP: linear regression, separately for each horizon h = 0, 1, 2, . . . :

yt+h = µh + θLP
h xt + γ′

hrt +
∑p

ℓ=1 δ′
h,ℓwt−ℓ + ξh,t .

• yt : outcome, xt : “impulse”, rt : contemporaneous controls, wt = (r ′
t , xt , yt , q′

t)′: all data.

• This is a projection, not a generative model.

• Shock: by FWL theorem, LP estimates impulse response of yt+h with respect to

x̃t = xt − proj(xt | rt , wt−1, . . . , wt−p).

Economically interesting? Requires identifying assumptions.

• E.g., x̃t = narrative shock (Romer x 2) or Taylor rule residual (Christiano, Eichenbaum & Evans).

• Projection: LP uses autocorrelations in the data out to the horizon h of interest.
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Vector autoregression

• VAR: estimate reduced-form multivariate dynamic model

wt = c + A1wt−1 + A2wt−2 + · · · + Apwt−p + ut .

• Orthogonalize ut = Hεt . For now, assume H lower triangular (recursive/Cholesky id’n).

• Structural impulse responses Ψh = ∂wt+h/∂ε′
t from iterative propagation:

Ψ0 = H, Ψ1 = A1Ψ0, Ψ2 = A1Ψ1 + A2Ψ0, . . . Ψh =
∑min{p,h}

ℓ=1 AℓΨh−ℓ,

θVAR
h = ∂yt+h/∂εx ,t = e′

y Ψhex .

• Shock: residual in projection of ux ,t = e′
xut on ur ,t = e′

r ut . Same as LP shock x̃t !

• Projection: VAR matches first p autocovariances of the data, but extrapolates to longer
horizons h > p.
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LP = VAR with very long lag length

p = ∞: same shock, same projection, so same impulse responses
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LP ≈ VAR up to horizon p

p < ∞: same shock so same responses at h = 0,
approx’ly same for 0 < h ≤ p, but then VAR extrapolates
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LPs and VARs share the same estimand

• Have only considered recursive identif’n so far.

• But equivalence extends to more complicated identification schemes.

• External instruments/proxies, long-run restrictions, sign restrictions, . . .

• Intuition: “shock” is still just some (potentially complicated) f’n of autocovariances of the
data. With many lags, both LP and VAR approximate these well in large samples.

• Take-away: LP vs. VAR debate ⊥ questions of identification.

• Only difference is how a finite data set is exploited to estimate the common estimand.
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VAR vs. LP in finite samples

Replication of 4 empirical applications in Ramey (2016), total of 385 impulse responses
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Illustrative simulation

yt = ρyt−1 + εt + αεt−1, εt
i .i .d .∼ N(0, 1)

h = 2, ρ = 0.85, α = 0.1, T = 240
10



Analytics of the bias-variance trade-off

• Consider a structural VAR model contaminated by small MA terms:

wt = A1wt−1 + · · · + Ap0wt−p0 + H (εt + α1εt−1 + α2εt−2 + . . .) .

• Why? Low-order VARs are known to deliver good forecasts, but not literal truth.

• Technically, assume αℓ ∝ std. dev. of VAR estimator.

• In this environment, estimators should control for infinitely many lags. Infeasible.

• Suppose both LP & VAR use p ≥ p0 estimation lags. Then in large samples,

θ̂VAR
h

·∼ N
(
θh + bh(p), τ2

h,VAR(p)
)

, θ̂LP
h

·∼ N
(
θh, τ2

h,LP

)
.

• Benefit and cost of extrapolation: VAR more efficient (τ 2
h,VAR(p) ≤ τ 2

h,LP) but biased.

• h ≤ p − p0: VAR bias bh(p) = 0 and variance coincide with LP.
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How bad can the VAR bias be in theory?

• Both LP & VAR require controlling for the most important predictors/lags. But LP is
robust to omitting moderately important ones, while VAR is not.

• Theoretical bound on bias: letting M denote the fraction of the variance of the MA
residual that’s due to lagged terms,

|bh(p)| ≤
√

T × M ×
{

τ2
h,LP − τ2

h,VAR(p)
}

,

and there exist MA coefficients that attain the bound.

• Example: if T = 100, M = 1%, τh,VAR(p)/τh,LP = 0.5, then bias can be 1.73 × SE.

• No free lunch for VARs: if precision gain is large, then so is the potential bias.

• VAR only robust if we use so many lags that VAR = LP.
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The bias-variance trade-off in practice

• Conduct large-scale simulation study. Extends Li, Plagborg-Møller & Wolf (2024)

• DGP: extension of Stock-Watson dynamic factor model fitted to 207 macro series.

• Both stationary and non-stationary versions.

• To be useful for applied work, an econometric procedure should at least work well here.

• Construct 100s of specifications:

• Randomly draw subsets of 5 salient macro series from the DFM. Outcome yt chosen at
random from this list.

• Additionally, econometrician observes a monetary/fiscal shock (in paper: recursive identif’n).

• Simulate data with T = 240, then estimate LPs, VARs, and several variants.
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Simulation evidence: bias and standard deviation

Bias Standard deviation

average across 200 stationary and 200 non-stationary DGPs
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MSE loss: (B)VAR preferred over LP on average

Conventional way to trade off bias and variance: MSE = bias2 + variance

MSE for stationary DGPs MSE for non-stationary DGPs
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Bias-variance trade-off: recap

• Take-away: bias-variance trade-off is stark in practice.

• Robustness of LP to dynamic misspecification comes at significant variance cost.

• Under MSE loss, VAR is preferred over LP in the average simulation DGP.

• Shrinkage (penalized LP or BVAR) often preferred over OLS.

• But MSE only evaluates the accuracy of the point estimate. This is not worth much
without an accompanying uncertainty assessment.
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Uncertainty assessments: bias is costly

• Conventional to summarize uncertainty using
confidence interval.

• Want coverage probability close to (say) 90%
regardless of true DGP (not just for avg DGP!).

• Challenge for VARs: bias is really costly for
coverage. CI has correct width, but off-center.

• Remember: easy to get worst-case bias
≈ 1.73 × SE.
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Simulation evidence: confidence interval coverage

Fraction of DGPs with coverage ≥ 80% (target coverage 90%)
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Summary of take-aways

1 Choice of VAR vs. LP ⊥ identification.

2 Stark bias-variance trade-off.

• LP robust to dynamic misspecification (low bias), but comes at significant variance cost.

• MSE loss: VAR (or BVAR) preferred for the avg DGP.

• Here “VAR” = conventional number of lags (e.g., AIC/BIC).

3 Only LP (or VAR with very many lags) yield uncertainty assessments that are reliable
across a wide range of DGPs.

• Comparison extends beyond VARs: no procedure can be more efficient than LP without
sacrificing robustness. P-M & Wolf (2021); Xu (2023)
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Practical recommendations

• To analyze what—and how much—the data can say about causal effects, use
either (a) LPs or (b) VARs with very many lags (≈ LP).

• VARs with conventional lag lengths remain useful for forecasting.

• Guidelines for implementing LP (details in paper):

1 Control for all var’s and lags that are strong predictors of either outcome or impulse. OK to
omit weak predictors. Can use information criteria as guide.

2 Analytical bias correction. Herbst & Johannsen (2024)

3 Heteroskedasticity-robust SE (no need for Newey-West).

4 For persistent data, report bootstrap CI.
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Appendix
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Encompassing model

• Dynamic Factor Model (DFM): Stock & Watson (2016)

ft = Φ(L)ft−1 + Hεt

Xt = Λft + vt

vi ,t = Γi(L)vi ,t−1 + Ξiξi ,t

• ft : six latent factors, evolve as VECM or VAR, driven by six aggregate shocks εt .

• Xt : 207 quarterly macro time series, spanning various categories.

• vi,t : idiosyncratic noise, evolves as AR(4), independent across i .

• Parameters estimated from quarterly U.S. data. Li, Plagborg-Møller & Wolf (2024)

• New: ARCH processes for the innovations {εt , ξi ,t}.
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Specifications and estimands

• Draw subsets of 5 variables. DFM implies these follow VAR(∞).

• Restrict attention to 17 salient series.

• Spec’n always contains at least one real activity and one price series, + policy instrument
(either fed funds rate or gov’t spending).

• Select response variable yt at random (not policy instrument).

• Estimands for two structural identification schemes:

1 Observed shock ε1,t : estimand θh = ∂yt+h
∂ε1,t

, h = 0, 1, 2, . . . , 20. H = ∂ft
∂ε′

t
chosen to maximize

impact response of policy instrument wrt. ε1,t .

2 Recursive: fiscal shock ordered first, monetary shock ordered last.
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Additional simulation results: bias and standard deviation

Stationary DGPs:

Bias Standard deviation
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Additional simulation results: bias and standard deviation

Non-stationary DGPs:

Bias Standard deviation
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Additional simulation results: bias and standard deviation

Recursive identification:

Bias Standard deviation
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Additional simulation results: confidence interval coverage
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