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Dynamic causal effects in macro

¢ Key objects in applied macro: structural impulse responses (dynamic causal effects).
Onh = Elytsn | €16 = 1] — Elytyn | €16 =0], h=0,1,2,...
® Not a forecast. Shock £1; may only explain small fraction of variation.
® Estimation methods: vector autoregressions (VARs) and local projections (LPs).
@ VAR: iterate on dynamic multivariate model. Sims (1980, 21.5k cites)

@® LP: direct regression of future outcome y;,, on current covariates. Jorda (2005, 4.5k cites)



This talk: LPs or VARs?

e Literature synthesis of core principles guiding the choice between LP and VAR:
® LP & VAR are two estimation methods, L to questions of identification.

® Must navigate a stark bias-variance trade-off:
® LP: low bias, high variance.

® VAR (few lags): potentially high bias, low variance. More lags = closer to LP.
© For reliable uncertainty assessments, choose (a) LP or (b) VAR with very many lags.

® Provide recommendations for practical implementation of LP.
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Local projection
® |P: linear regression, separately for each horizon h=10,1,2,...:
Yt+h = n + 9/|§PXt + Yt + 20 g 5;,,th—€ +&he-

® y,: outcome, x;: “impulse”, ry: contemporaneous controls, wy = (r/, xt, yt, q;)": all data.

® This is a projection, not a generative model.
® Shock: by FWL theorem, LP estimates impulse response of y;.p, with respect to

Xe = x¢ — proj(Xe | re, We—1, ..., We—p).
Economically interesting? Requires identifying assumptions.

® E.g., X; = narrative shock (Romer x 2) or Taylor rule residual (Christiano, Eichenbaum & Evans).

® Projection: LP uses autocorrelations in the data out to the horizon h of interest.



Vector autoregression

VAR: estimate reduced-form multivariate dynamic model
we = Cc+Awe_1+Aowr o+ -+ ApWi_p + U
Orthogonalize uy = He;. For now, assume H lower triangular (recursive/Cholesky id'n).
Structural impulse responses Wy, = dw;/0e, from iterative propagation:
Vo=H, V=AY, Vy=AV;+AV, ... V= qu:inl{p’h} AV g,
HXAR = OY4h/0cxt = e)’,\l!hex.
Shock: residual in projection of uy ; = e, u on u,+ = e.u;. Same as LP shock X!

Projection: VAR matches first p autocovariances of the data, but extrapolates to longer
horizons h > p.



LP = VAR with very long lag length

p=0o0
LP(p)
== s VAR(p)

p = oo: same shock, same projection, so same impulse responses
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates

15, p=2
LP(p)
== =VAR(p)
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates

p=4
LP(p)
= = s VAR(p)
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates

p=6
LP(p)
== s VAR(p)
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates
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LP ~ VAR up to horizon p

p < oo: same shock so same responses at h = 0,
approx'ly same for 0 < h < p, but then VAR extrapolates

p=12
LP(p)
= = s VAR(p)
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LPs and VARs share the same estimand

® Have only considered recursive identif'n so far.
® But equivalence extends to more complicated identification schemes.
® External instruments/proxies, long-run restrictions, sign restrictions, . ..

® Intuition: “shock” is still just some (potentially complicated) f'n of autocovariances of the
data. With many lags, both LP and VAR approximate these well in large samples.

® Take-away: LP vs. VAR debate 1 questions of identification.

® Only difference is how a finite data set is exploited to estimate the common estimand.
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[llustrative simulation

i.i.d.
Yt =pyr-1+eEr+agr_1, €t " N(0,1)
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Analytics of the bias-variance trade-off
e Consider a structural VAR model contaminated by small MA terms:
We = Aiwe_1+ -+ ApgWe—py + H (et + 11 + o2+ ...).
® Why? Low-order VARs are known to deliver good forecasts, but not literal truth.

® Technically, assume ay o std. dev. of VAR estimator.

® In this environment, estimators should control for infinitely many lags. Infeasible.

® Suppose both LP & VAR use p > pg estimation lags. Then in large samples,

éXAR ~ N (9h + bh(P)vTﬁ,VAR(P)) ) éiL;P ~N (‘9haTﬁ,LP) .

® Benefit and cost of extrapolation: VAR more efficient (Tﬁ’VAR(,D) < Tﬁ}LP) but biased.

® h<p—po: VAR bias bs(p) = 0 and variance coincide with LP.
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How bad can the VAR bias be in theory?
® Both LP & VAR require controlling for the most important predictors/lags. But LP is
robust to omitting moderately important ones, while VAR is not.

® Theoretical bound on bias: letting M denote the fraction of the variance of the MA
residual that's due to lagged terms,

(P < /T x Mx {21p — uanlp)
and there exist MA coefficients that attain the bound.
® Example: if T =100, M = 1%, 7hvar(p)/Thp = 0.5, then bias can be 1.73 x SE.
® No free lunch for VARs: if precision gain is large, then so is the potential bias.

® VAR only robust if we use so many lags that VAR = LP.

12



The bias-variance trade-off in practice

Conduct large-scale simulation study. Extends Li, Plagborg-Mgller & Wolf (2024)

DGP: extension of Stock-Watson dynamic factor model fitted to 207 macro series.
® Both stationary and non-stationary versions.

® To be useful for applied work, an econometric procedure should at least work well here.
Construct 100s of specifications:

® Randomly draw subsets of 5 salient macro series from the DFM. Outcome y; chosen at
random from this list.

® Additionally, econometrician observes a monetary/fiscal shock (in paper: recursive identif'n).

Simulate data with T = 240, then estimate LPs, VARs, and several variants.

13
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Simulation evidence: bias and standard deviation
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MSE loss: (B)VAR preferred over LP on average

Conventional way to trade off bias and variance: MSE = bias? + variance
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Bias-variance trade-off: recap

Take-away: bias-variance trade-off is stark in practice.

Robustness of LP to dynamic misspecification comes at significant variance cost.
Under MSE loss, VAR is preferred over LP in the average simulation DGP.

® Shrinkage (penalized LP or BVAR) often preferred over OLS.

But MSE only evaluates the accuracy of the point estimate. This is not worth much
without an accompanying uncertainty assessment.

16
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Uncertainty assessments: bias is costly

Conventional to summarize uncertainty using

confidence interval.
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Simulation evidence: confidence interval coverage
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Simulation evidence: confidence interval coverage
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Simulation evidence: confidence interval coverage
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Summary of take-aways

® Choice of VAR vs. LP L identification.

@® Stark bias-variance trade-off.
® LP robust to dynamic misspecification (low bias), but comes at significant variance cost.
® MSE loss: VAR (or BVAR) preferred for the avg DGP.
® Here “VAR" = conventional number of lags (e.g., AIC/BIC).

® Only LP (or VAR with very many lags) yield uncertainty assessments that are reliable

across a wide range of DGPs.

® Comparison extends beyond VARs: no procedure can be more efficient than LP without
sacrificing robustness. P-M & Wolf (2021); Xu (2023)

19



Practical recommendations

® To analyze what—and how much—the data can say about causal effects, use
either (a) LPs or (b) VARs with very many lags (=~ LP).

® VARs with conventional lag lengths remain useful for forecasting.
® Guidelines for implementing LP (details in paper):

@ Control for all var's and lags that are strong predictors of either outcome or impulse. OK to
omit weak predictors. Can use information criteria as guide.

@® Analytical bias correction. Herbst & Johannsen (2024)
© Heteroskedasticity-robust SE (no need for Newey-West).

@ For persistent data, report bootstrap Cl.

20
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Encompassing model

¢ Dynamic Factor Model (DFM): Stock & Watson (2016)
fe = ®(L)fi—1 + He,
Xt = /\ft =+ vt
Vie =Ti(L)Vie—1 + Ziit
® f,: six latent factors, evolve as VECM or VAR, driven by six aggregate shocks ¢;.
® X,: 207 quarterly macro time series, spanning various categories.
® v;,: idiosyncratic noise, evolves as AR(4), independent across i.

® Parameters estimated from quarterly U.S. data. Li, Plagborg-Mgller & Wolf (2024)

® New: ARCH processes for the innovations {e¢,&; ¢ }.
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Specifications and estimands

® Draw subsets of 5 variables. DFM implies these follow VAR(o0).

® Restrict attention to 17 salient series.

® Spec'n always contains at least one real activity and one price series, 4+ policy instrument
(either fed funds rate or gov't spending).

® Select response variable y; at random (not policy instrument).
® Estimands for two structural identification schemes:

@ Observed shock €7 ¢: estimand 6, = gya—t;f h=0,1,2,...,20. H= g&ff
impact response of policy instrument wrt. €y ;.

chosen to maximize

7
t

® Recursive: fiscal shock ordered first, monetary shock ordered last.
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Additional simulation results: bias and standard deviation

Stationary DGPs:
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Additional simulation results: bias and standard deviation

Non-stationary DGPs:
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Additional simulation results: bias and standard deviation

Recursive identification:
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Additional simulation results:

censored coverage
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