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1 Introduction

Modern dynamic macroeconomics studies the propagation of structural shocks (Frisch, 1933;
Ramey, 2016). Central to this impulse-propagation paradigm are impulse response functions
– the dynamic response of a macro aggregate to a structural shock. Following Sims (1980),
Bernanke (1986), and Blanchard &Watson (1986), Structural Vector Autoregression (SVAR)
analysis remains the most popular empirical approach to impulse response estimation. Over
the past decade, however, starting with Jordà (2005), local projections (LPs) have become
an increasingly widespread alternative econometric approach.

How should we choose between SVAR and LP estimators of impulse responses? Unfor-
tunately, so far there exists little theoretical guidance as to which method is preferable in
practice. Conventional wisdom holds that SVARs are more efficient, while LPs are more
robust to model misspecification. Examples of the former statement can be found in the
textbook treatment of Kilian & Lütkepohl (2017, ch. 12.8) and the survey of Ramey (2016,
p. 84), while the latter statement is expressed by Jordà (2005, p. 162), Ramey (2016, p. 83)
and Nakamura & Steinsson (2018, pp. 80–81), among others.1 Kilian & Lütkepohl (2017)
and Stock & Watson (2018, p. 944), however, caution that these remarks are not based on
formal analysis and call for further research. It is also widely believed that LPs invariably
require a measure of a “shock” (perhaps obtained from an auxiliary SVAR model), so that
SVAR estimation is required to implement non-recursive structural identification schemes
such as long-run or sign restrictions.2 Finally, when applied to the same empirical ques-
tion, LP- and VAR-based approaches sometimes give substantively different results (Ramey,
2016). Existing simulation studies provide useful guidance on particular approaches to lo-
cal projections or VARs, but differences in implementation details cause these studies to
reach disparate conclusions (Meier, 2005; Kilian & Kim, 2011; Brugnolini, 2018; Nakamura
& Steinsson, 2018; Choi & Chudik, 2019).

The central result of this paper is that linear local projections and VARs in fact estimate
the exact same impulse responses in population. Specifically, any LP impulse response func-
tion can be obtained through an appropriately ordered recursive VAR, and any (possibly
non-recursive) VAR impulse response function can be obtained through a LP with appropri-
ate control variables. This result applies to all common implementations of local projections

1In the online postscript to her handbook chapter, Ramey corrects the claims and restates the relationship
between LP and VAR estimands following the findings of this paper.

2See the reviews by Ramey (2016) and Kilian & Lütkepohl (2017, ch. 12.8).
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used in the literature (Jordà, 2005, 2009; Ramey, 2016). While the result concerns linear es-
timators, we essentially only require the nonparametric assumption that the data are weakly
stationary and that the lag structures in the two specifications are unrestricted. In par-
ticular, we do not impose restrictions on the linearity or dimensionality of the underlying
data generating process (DGP). Intuitively, a VAR model with sufficiently large lag length
captures all covariance properties of the data. Hence, iterated VAR(∞) forecasts coincide
with direct LP forecasts. Since impulse responses are just forecasts conditional on specific
innovations, LP and VAR impulse response estimands coincide in population. Furthermore,
we prove that if only a fixed number p of lags are included in the LP and VAR, then the
two impulse response estimands still approximately agree out to horizon p (but not further),
again without imposing any parametric assumptions on the data generating process.

The equivalence of VAR and LP estimands has several implications for structural esti-
mation in applied macroeconometrics.

First, LPs and VARs are not conceptually different methods; instead, they are simply
two particular linear projection techniques that share the same estimand but differ in their
finite-sample properties. At short impulse response horizons the two methods are likely to
approximately agree if the same lag length is used for both methods. However, with finite
lag lengths, the two methods may give substantially different results at long horizons.

Second, structural estimation with VARs can equally well be carried out using LPs, and
vice versa. Structural identification – which is a population concept – is logically distinct
from the choice of finite-sample estimation approach. In particular, we show concretely
how various popular “SVAR” identification schemes – including recursive, long-run, and
sign identification – can just as easily be implemented using local projection techniques.
Ultimately, our results show that LP-based structural estimation can succeed if and only if
SVAR estimation can succeed.

Third, valid structural estimation with an instrument (IV, also known as a proxy variable)
can be carried out by ordering the IV first in a recursive VAR à la Kilian (2006) and Ramey
(2011). This is because the LP-IV estimand of Stock & Watson (2018) can equivalently be
obtained from a recursive (i.e., Cholesky) VAR that contains the IV. Importantly, the “in-
ternal instrument” strategy of ordering the IV first in a VAR yields valid impulse response
estimates even if the shock of interest is non-invertible, unlike the well-known “external in-
strument” SVAR-IV approach (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn, 2013).3

3In contemporaneous work, Noh (2018) also includes the IV as an internal instrument in a VAR; our
result offers additional insights by drawing connections to LP-IV and to the general LP/VAR equivalence.
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In particular, this result goes through even if the IV is contaminated with measurement error
that is unrelated to the shock of interest.

Fourth, in population, linear local projections are exactly as “robust to non-linearities” in
the DGP as linear VARs. We show that their common estimand may be formally interpreted
as a best linear approximation to the underlying, perhaps non-linear, impulse responses.

In summary, in addition to clarifying misconceptions in the literature about the relation-
ship between the LP and VAR estimands, our results allow applied researchers to separate
the choice of identification scheme from the choice of estimation approach. Researchers who
prefer the intuitive regression interpretation of the LP impulse response estimator can ap-
ply our methods for imposing “SVAR” identifying restrictions such as short-run, long-run,
and sign restrictions. Researchers who instead prefer the explicit multivariate model of the
VAR estimator can apply our results on how to use instruments/proxies without requiring
invertible shocks, as in LP-IV.

Literature. While the existing literature has pointed out connections between LPs and
VARs, our contributions are to establish a formal equivalence result that does not require
extraneous functional form assumptions and to derive implications for structural identifica-
tion of impulse responses. Jordà (2005, Sec. I.B) and Kilian & Lütkepohl (2017, Ch. 12.8)
show that, under the assumption of a finite-order VAR model, VAR impulse responses can
be estimated consistently through LPs. In contrast, our equivalence result between these two
linear estimation methods does not restrict the data generating process itself to be linear or
finite-dimensional. While Dufour & Renault (1998, Eqn. 3.17) discuss a similar result in the
context of testing for Granger causality, we go further by demonstrating how causal struc-
tural VAR orderings map into particular choices of LP control variables, and vice versa.4

Moreover, to our knowledge, our results on long-run/sign identification, LP-IV, and best
linear approximations have no obvious parallels in the preceding literature.5

In this paper we focus exclusively on identification and point estimation of impulse re-
sponses. Plagborg-Møller & Wolf (2019) provide identification results for variance/historical
decompositions using IVs/proxies. We do not consider questions related to inference, and
instead refer to Jordà (2005), Kilian & Lütkepohl (2017), and Stock & Watson (2018).

4Jordà et al. (2019) informally discuss the connection between control variables and recursive SVARs.
5Kilian & Lütkepohl (2017, Ch. 12.8) present alternative arguments for why it is a mistake to assert that

finite-order LPs are generally more “robust to model misspecification” than finite-order VAR estimators.
They do not appeal to the general equivalence of the LP and VAR estimands, however.

4



Outline. Section 2 presents our core result on the population equivalence of local projec-
tions and VARs in a reduced-form setting. Section 3 traces out the implications for structural
estimation. We illustrate our equivalence results with a practical application to IV-based
identification of monetary policy shocks in Section 4. Section 5 concludes by summariz-
ing the takeaways for empirical practice. Some proofs are relegated to Appendix A, and
supplementary details are presented in the Online Appendix.6

2 Equivalence between local projections and VARs

This section presents our core result: Local projections and VARs estimate the same impulse
response functions in population. First we establish that local projections are equivalent
with recursively identified VARs when the lag structure is unrestricted. Then we extend
the argument to (i) non-recursive identification and (ii) finite lag orders, and we illustrate
the results graphically. Finally, we discuss an in-sample asymptotic equivalence result that
complements the population analysis.

Our analysis in this section is “reduced form” in that it does not assume any specific
underlying structural/causal model; we merely manipulate linear projections of stationary
time series. We will discuss implications for causal identification in Section 3.

2.1 Main result

Suppose the researcher observes data wt = (r′t, xt, yt, q′t)′, where rt and qt are, respectively,
nr × 1 and nq × 1 vectors of time series, while xt and yt are scalar time series. We are
interested in the dynamic response of yt after an impulse in xt. The vector time series rt
and qt (which may each be empty) will serve as control variables. Readers who wish to have
a structural interpretation in mind may think of xt as predetermined with respect to yt and
rt as predetermined with respect to {xt, yt}. However, our reduced-form equivalence result
below does not require any such predeterminedness assumptions. The precise roles of the
controls rt and qt will become clear in equations (1) and (3) below.

For now, we only make the following standard nonparametric regularity assumption.7

6Online Appendix and replication files: http://scholar.princeton.edu/mikkelpm/lp_var
7The restriction to non-singular spectral density matrices rules out over-differenced data. We conjecture

that this restriction could be relaxed using the techniques in Almuzara & Marcet (2017).
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Assumption 1. The data {wt} are covariance stationary and purely non-deterministic, with
an everywhere nonsingular spectral density matrix and absolutely summable Wold decompo-
sition coefficients.

In particular, we assume nothing about the underlying causal structure of the economy, as
this section is concerned solely with properties of linear projections.8

As an expositional device, we impose an additional assumption of joint Gaussianity.

Assumption 2. {wt} is a jointly Gaussian vector time series.

The Gaussianity assumption is made purely for notational simplicity, as this allows us to
write conditional expectations instead of linear projections. If we drop the Gaussianity
assumption, all calculations below hold with projections in place of conditional expectations.

We will show that, in population, the following two approaches estimate the same impulse
response function of yt with respect to an innovation in xt.9

1. Local projection. Consider for each h = 0, 1, 2, . . . the linear projection

yt+h = µh + βhxt + γ′hrt +
∞∑
`=1

δ′h,`wt−` + ξh,t, (1)

where ξh,t is the projection residual, and µh, βh, γh, δh,1, δh,2, . . . the projection coefficients.

Definition 1. The LP impulse response function of yt with respect to xt is given by
{βh}h≥0 in equation (1).

Effectively, this defines the LP impulse response estimand at horizon h as

βh = E(yt+h | xt = 1, rt, {wτ}τ<t)− E(yt+h | xt = 0, rt, {wτ}τ<t). (2)

Notice that the projection (1) controls for the contemporaneous value of rt but not of
qt. Notice also that we do not require xt to be a predetermined “shock” variable in
this section, although such additional assumptions may be important for interpreting βh

8Assumption 1 allows the time series to be discrete or censored, though structural interpretation of the
linear impulse response estimand in such cases requires care, cf. the discussion below Proposition 1.

9We write linear projections on the span of infinitely many variables as an infinite sum. This is justified
under Assumption 1, since we can invert the Wold representation to obtain a VAR(∞) representation.
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structurally, as discussed in Section 3 below. Importantly, the formulation (1) is general
enough to cover all common empirical implementations of local projections.10

2. VAR. Consider the multivariate linear “VAR(∞)” projection

wt = c+
∞∑
`=1

A`wt−` + ut, (3)

where ut ≡ wt−E(wt | {wτ}−∞<τ<t) is the projection residual, and c, A1, A2, . . . the pro-
jection coefficients. Let Σu ≡ E(utu′t), and define the Cholesky decomposition Σu = BB′,
where B is lower triangular with positive diagonal entries. Consider the corresponding
recursive SVAR representation

A(L)wt = c+Bηt,

where A(L) ≡ I −∑∞`=1 A`L
` and ηt ≡ B−1ut. Notice that rt is ordered first in the VAR,

while qt is ordered last.11 Define the lag polynomial ∑∞`=0 C`L
` = C(L) ≡ A(L)−1. Noting

that xt and yt are the (nr + 1)-th and (nr + 2)-th elements in wt, we now introduce the
following familiar definition.

Definition 2. The VAR impulse response function of yt with respect to an innovation in
xt is given by {θh}h≥0, where

θh ≡ Cnr+2,•,hB•,nr+1,

and {C`} and B are defined above.

Here Ci,•,h, say, refers to the i-th row of Ch, while B•,j is the j-th column of B.

10This includes: i) estimating reduced-form impulse responses via LP and then rotating them using esti-
mates of the impact impulse response matrix from an auxiliary SVAR as in Jordà (2005, 2009), (ii) projections
on an exogenous shock xt = εj,t (e.g., Ramey, 2016; Nakamura & Steinsson, 2018) (in this case control vari-
ables are often omitted, though they may increase efficiency), and (iii) projections on an endogenous covariate
xt while controlling for confounding variables rt (e.g., Jordà et al., 2013). The fact that options (ii) and
(iii) are covered by (1) is immediate, while Chang & Sakata (2007) show that option (i) is equivalent in
population to directly projecting on the shock xt identified by the auxiliary SVAR as in option (ii).

11The relative ordering of yt and qt in the SVAR representation does not matter for our results, since it
can be verified that the (nr + 1)-th column of B is equivariant with respect to this ordering. Similarly, if xt
is ordered after yt in the SVAR representation, then the equivalence result below still obtains as long as we
additionally control for yt on the right-hand side of (1) (so in particular β0 = 0).
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Note that our definitions of the LP and VAR estimands include infinitely many lags of wt in
the relevant projections; we consider the case of finitely many lags in Section 2.3. Note also
that we take the use of the control variables rt and qt as given in this section, as controls
are common in applied work. We will discuss structural justifications for the use of such
controls in Section 3.

Although LP and VAR approaches are often viewed as conceptually distinct in the liter-
ature, they in fact estimate the same population impulse response function.

Proposition 1. Under Assumptions 1 and 2, the LP and VAR impulse response functions
are equal, up to a constant of proportionality: θh =

√
E(x̃2

t )×βh for all h = 0, 1, 2, . . . , where
x̃t ≡ xt − E(xt | rt, {wτ}−∞<τ<t).

That is, any LP impulse response function can equivalently be obtained as an appropriately
ordered recursive VAR impulse response function. Conversely, any recursive VAR impulse
response function can be obtained through a LP with appropriate control variables. We
comment on non-recursive identification schemes below. The constant of proportionality
in the proposition depends on neither the response horizon h nor on the response variable
yt. The reason for the presence of this constant of proportionality is that the implicit LP
innovation x̃t, after controlling for the other right-hand side variables, does not have variance
1. If we scale the innovation x̃t to have variance 1, or if we consider relative impulse responses
θh/θ0 (as further discussed below), the LP and VAR impulse response functions coincide.

The intuition behind the result is that a VAR(p) model with p → ∞ is sufficiently
flexible to perfectly capture all covariance properties of the data (Lewis & Reinsel, 1985;
Inoue & Kilian, 2002). Thus, iterated forecasts based on the VAR coincide perfectly with
direct forecasts E(wt+h | wt, wt−1, . . . ). Since both recursive VAR and LP impulse responses
are just linear functions of these direct reduced-form forecasts, they coincide. Although the
intuition for this equivalence result is simple, its implications do not appear to have been
generally appreciated in the literature on impulse response estimation, as discussed earlier
in Section 1.

Proof. The proof of the proposition relies only on least-squares projection algebra. First
consider the LP estimand. By the Frisch-Waugh theorem, we have that

βh = Cov(yt+h, x̃t)
E(x̃2

t )
. (4)

For the VAR estimand, note that C(L) = A(L)−1 collects the coefficient matrices in the
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Wold decomposition

wt = χ+ C(L)ut = χ+
∞∑
`=0

C`Bηt, χ ≡ C(1)c.

As a result, the VAR impulse responses equal

θh = Cnr+2,•,hB•,nr+1 = Cov(yt+h, ηx,t), (5)

where we partition ηt = (η′r,t, ηx,t, ηy,t, η′q,t)′ the same way as wt = (r′t, xt, yt, q′t)′. By ut = Bηt

and the properties of the Cholesky decomposition, we have12

ηx,t = 1√
E(ũ2

x,t)
× ũx,t, (6)

where we partition ut = (u′r,t, ux,t, uy,t, u′q,t)′ and define13

ũx,t ≡ ux,t − E(ux,t | ur,t) = x̃t. (7)

From (5), (6), and (7) we conclude that

θh = Cov(yt+h, x̃t)√
E(x̃2

t )
,

and the proposition now follows by comparing with (4).

In the special case where xt represents a “shock”, in the sense that E(xt | rt, {wτ}τ<t) = 0,
the LP estimand βh coincides also with the impulse response estimand ϕh from a distributed
lag regression yt = a+∑∞

`=0 ϕ`xt−` + ωt (understood as a linear projection), see Baek & Lee
(2020). Note that in this special case, the LP estimand is unchanged if we drop all control
variables in equation (1). However, the projection coefficient ϕh differs from the LP (and
VAR) estimand if xt correlates with rt or with lags of the data (Alloza et al., 2019).

Proposition 1 implies that linear LPs are exactly as “robust to non-linearities” as linear

12B is lower triangular, so the (nr + 1)-th equation in the system Bηt = ut is Bnr+1,1:nr
ηr,t +

Bnr+1,nr+1ηx,t = ux,t, with obvious notation. Since ηx,t and ηr,t are uncorrelated, we find Bnr+1,nr+1ηx,t =
ux,t − E(ux,t | ηr,t) = ux,t − E(ux,t | ur,t) = ũx,t. Expression (6) then follows from E(η2

x,t) = 1.
13Observe that ux,t − x̃t = E(xt | rt, {wτ}−∞<τ<t)− E(xt | {wτ}−∞<τ<t) = E(ux,t | rt, {wτ}−∞<τ<t) =

E(ux,t | ur,t, {wτ}−∞<τ<t) = E(ux,t | ur,t).
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VAR methods, in population. This is because, while the equivalence result concerns linear
estimation methods, our argument was nonparametric in that it did not rely on functional
form assumptions on the true data generating process, such as linearity or finite dimensional-
ity. In the Online Appendix we prove that the common LP/VAR estimand can be interpreted
as a “best linear approximation” to the true, possibly non-linear, structural/causal impulse
responses. Of course, this best linear approximation may bear little resemblance to the
impulse responses in the underlying non-linear model, which will generally depend on the
history and magnitudes of current and past shocks, unlike the linear impulse responses.14

In conclusion, LPs and VARs should not be thought of as conceptually different methods
– they are simply two particular linear projection techniques with a shared estimand. LPs
and VARs offer two equivalent ways of arriving at the same population parameter (4), or
equivalently (2), up to a scale factor that does not depend on the horizon h.

2.2 Extension: Non-recursive specifications

Our equivalence result extends straightforwardly to the case of non-recursively identified
VARs. Above we restricted attention to recursive identification schemes, as the VAR directly
contains a measure of the impulse xt. In a generic structural VAR identification scheme, the
impulse is some – not necessarily recursive – rotation of reduced-form forecasting residuals.
Thus, let us continue to consider the VAR (3), but now we shall study the propagation of
some rotation of the reduced-form forecasting residuals,

η̄t ≡ b′ut, (8)

where b is a vector of the same dimension as wt. Under Assumptions 1 and 2, we can follow
the same steps as in Section 2.1 to establish that the VAR-implied impulse response at
horizon h of yt with respect to the innovation η̄t equals – up to scale – the coefficient β̄h of
the linear projection

yt+h = µ̄h + β̄h(b′wt) +
∞∑
`=1

δ̄′h,`wt−` + ξ̄h,t, (9)

where the coefficients are least-squares projection coefficients and the last term is the pro-
jection residual. Thus, any recursive or non-recursive SVAR(∞) identification procedure is
equivalent with a local projection (9) on a particular linear combination b′wt of the variables

14See Kilian & Vigfusson (2011) as an example of a model in which the common linear estimand of local
projections and VARs is not the structural object of interest.
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in the VAR (and their lags). For recursive orderings, this reduces to Proposition 1. We
give concrete examples of the mapping from non-recursive VAR to the rotation vector b in
Section 3.2 as well as the Online Appendix.

2.3 Extension: Finite lag length

Whereas our main equivalence result in Section 2.1 relied on infinite lag polynomials, we now
prove an equivalence result that holds when only finitely many lags are used. Specifically,
when p lags of the data are included in the VAR and as controls in the LP, the impulse
response estimands for the two methods agree approximately out to horizon p, but generally
not at higher horizons. Importantly, this result is still entirely nonparametric, in the sense
that we do not impose that the true DGP is a linear or finite-order VAR.

First, we define the finite-order LP and VAR estimands. We continue to impose Assump-
tions 1 and 2. Consider any lag length p and impulse response horizon h.

1. Local projection. The local projection impulse response estimand βh(p) is defined
as the coefficient on xt in a projection as in (1), except that the infinite sum is truncated
at lag p. Again, we interpret all coefficients and residuals as resulting from a least-
squares linear projection.

2. VAR. Consider a linear projection of the data vector wt onto p of its lags (and a
constant), i.e., the projection (3) except with the infinite sum truncated at lag p. Let
A`(p), ` = 1, 2, . . . , p, and Σu(p) denote the corresponding projection coefficients and
residual variance. Define A(L; p) ≡ I −∑p

`=1 A`(p) and the Cholesky decomposition
Σu(p) = B(p)B(p)′. Define also the inverse lag polynomial ∑∞`=0 C`(p)L` = C(L; p) ≡
A(L; p)−1 consisting of the reduced-form impulse responses implied by A(L; p). Then
the VAR impulse response estimand at horizon h is defined as

θh(p) ≡ Cnr+2,•,h(p)B•,nr+1(p),

cf. the definition in Section 2.1 with p =∞.

Note that the VAR(p) model used to define the VAR estimand above is “misspecified,” in
the sense that the reduced-form residuals from the projection of wt on its first p lags are not
white noise in general.

We now state the equivalence result for finite p. The statement of the result is a simple
generalization of Proposition 1, which can be thought of as the case p = ∞. Define the
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projection residual x̃t(p) ≡ xt − E(xt | rt, {wτ}t−p≤τ<t) = xt −
∑p
`=0 %`(p)′wt−` (where the

last nq + 2 elements of %0(p) are zero). Let also the operator Covp(·, ·) denote the covariance
between any variables in the VAR that would hypothetically obtain if the data in fact followed
a VAR(p) model with the parameters (A(L; p),Σu(p)) defined above.

Proposition 2. Impose Assumptions 1 and 2. Let the nonnegative integers h, p satisfy
h ≤ p. Then θh(p) =

√
E(x̃t(p)2)× βh(p) + φh(p), where the remainder is given by φh(p) =

{E(x̃t(p)2)}−1/2∑p
`=p−h+1{Cov(yt+h, wt−`)− Covp(yt+h, wt−`)}%`(p).

Proof. Please see Appendix A.1.

Thus, if long lags of the data do not help to predict the impulse variable xt – i.e., when
%`(p) = 0 for all ` ≥ p−h+1 – then the population LP and VAR impulse response estimands
agree at all horizons h ≤ p, although generally not at horizons h > p. This finding would not
be surprising if the true DGP were assumed to be a finite-order VAR (as in Jordà, 2005, Sec.
I.B, and Kilian & Lütkepohl, 2017, Ch. 12.8), but we allow for general covariance stationary
DGPs. The reason why the result still goes through is that a VAR(p) obtained through
least-squares projections perfectly captures the autocovariances of the data out to lag p (but
not further), and these are precisely what determine the LP estimand.15 For example, if
p = 2, then Covp(yt, xt−2) = Cov(yt, xt−2), but generally Covp(yt, xt−3) 6= Cov(yt, xt−3).

Proposition 2 implies that LP and VAR impulse response estimands will agree approx-
imately at short horizons for a wide range of empirically relevant DGPs. If, as in many
applications, xt is a direct measure of a “shock” and thus uncorrelated with rt and all past
data, then necessarily φh(p) = 0 and so the LP/VAR equivalence holds exactly out to horizon
h. More generally, the LP estimand projects yt+h onto x̃t(p); thus, the projection depends
on the first p + h autocovariances of the data. The estimated VAR(p) generally does not
precisely capture the autocovariances of the data at lags p+ 1, . . . , p+ h, and so the LP and
VAR may not agree exactly. However, as we illustrate in Section 2.4, empirically relevant
DGPs often have %`(p) ≈ 0 for long lags `, since it is typically only the first few lags of the
data wt that contribute substantially to forecasting xt. But then φh(p) ≈ 0 for h � p, so
the LP/VAR equivalence holds approximately at short horizons (in particular, φ0(p) = 0).

In conclusion, even if we use “too short” a lag length p, the LP and VAR impulse response
estimands only disagree materially at horizons longer than p. This is a comforting fact in
applications where the questions of interest revolve around short-horizon impulse responses.

15Baek & Lee (2020) prove a similar result for the related but distinct setting of single-equation Autore-
gressive Distributed Lag models with a white noise exogenous regressor.
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Illustration: Population equivalence of VAR and LP estimands
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Figure 1: LP and VAR impulse response estimands in the structural model of Smets & Wouters
(2007). Left panel: response of output to a government spending innovation. Right panel: response
of output to a negative interest rate innovation. The horizontal line marks the horizon p after which
the finite-lag-length LP(p) and VAR(p) estimands diverge.

2.4 Graphical illustration

In this section we graphically illustrate our previous theoretical results in the context of a
particular data generating process: the structural macro model of Smets & Wouters (2007).
We abstract from sampling uncertainty and throughout assume that the econometrician
actually observes an infinite amount of data.16 Since this section is merely intended to
illustrate the properties of different projections, we do not comment on the relation of the
projection estimands to true structural model-implied impulse responses. We formally discuss
structural identification in Section 3.

The left panel of Figure 1 shows LP and VAR impulse response estimands of the response
of output to an innovation in government spending. We assume the model’s government
spending innovation is directly observed by the econometrician, who additionally controls
for lags of output and the fiscal spending innovation itself. This experiment is therefore

16We use the Dynare replication of Smets & Wouters (2007) kindly provided by Johannes Pfeifer. The code
is available at: https://sites.google.com/site/pfeiferecon/dynare. We truncate the model-implied
vector moving average representation at a large horizon (H = 350), and then invert to obtain a VAR(∞).
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similar in spirit to that of Ramey (2011). As ensured by Proposition 1, the LP(∞) and
VAR(∞) estimands – i.e., with infinitely many lags as controls – agree at all horizons. Since
by assumption the “impulse” variable xt is a direct measure of the government spending
innovation, we have x̃t(p) = xt. Thus, any LP(p) estimand for finite p also agrees with
the LP(∞) limit at all horizons. Finally, we observe that the impulse responses implied
by a VAR(4) exactly agree with the true population projections up until horizon h = 4, as
predicted by Proposition 2.

The right panel of Figure 1 shows LP and VAR impulse response estimands for the
response of output to an innovation in the nominal interest rate. Here the model’s innovation
is not directly observed by the econometrician, only the interest rate. The LP specifications
control for the contemporaneous value of output and inflation as well as lags of output,
inflation, and the nominal interest rate; as discussed, this set of control variables is equivalent
to ordering the interest rate last in the VAR. Thus, the experiment emulates the familiar
monetary policy shock identification analysis of Christiano et al. (2005), although we, at
least for the purposes of this section, interpret the projections purely in a reduced-form
way. Again, the LP(∞) and VAR(∞) estimands agree at all horizons. Now, however, the
“impulse” x̃t(p) upon which the LP(p) and VAR(p) methods project depends on the lag
length p, so these estimands differ from the LP(∞)/VAR(∞) estimands. Furthermore, the
LP(p) and VAR(p) estimands also differ from each other, as the remainder term φh(p) in
Proposition 2 is not exactly zero. Nevertheless, because distant lags of wt do not contribute
substantially to forecasting xt in this DGP, all impulse response estimands are nearly identical
until the truncation horizon p = 4, consistent with the discussion in Section 2.3.

2.5 Sample equivalence

In addition to being identical conceptually and in population, we show in the Online Appendix
that the difference between the local projection and VAR impulse response estimators con-
verges to zero asymptotically in sample when large lag lengths are used in the regression
specifications. Formally, let β̂h(p) and θ̂h(p) denote the least-squares estimators of the LP
and VAR specifications (1)–(3) if we include p lags of the data in the VAR and on the
right-hand side of the local projection. Under standard nonparametric regularity conditions
(Lewis & Reinsel, 1985), the sample analogue of the population equivalence result in Sec-
tion 2.1 holds: There exists a constant of proportionality κ̂ such that, at any fixed horizon
h, the distance |θ̂h(p) − κ̂β̂h(p)| tends to zero in probability asymptotically, provided that
the lag length p tends to infinity with the sample size at an appropriate rate. We relegate
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the details of this result to the Online Appendix.
Combining Proposition 1 and the logic in Newey (1994), we conjecture that the least-

squares local projection and VAR impulse response estimators β̂h(p) and θ̂h(p) are equally
asymptotically efficient (at a fixed horizon h) under weak regularity conditions, provided that
the lag length p tends to infinity at an appropriate rate with the sample size. In finite samples,
and with finite lag lengths, the two estimation methods are likely to agree approximately at
short horizons due to Proposition 2, but the choice between the procedures at long horizons
requires navigating a bias-variance trade-off.17 Much more research is warranted on the
optimal way to resolve the bias-variance trade-off in practice.18

3 Structural identification of impulse responses

We now show that our result on the population equivalence of LP and VAR impulse response
functions has important implications for structural identification. The problem of structural
identification is a population concept and thus logically distinct from the choice of finite-
sample dimension reduction technique. We apply our equivalence result to show that popular
“SVAR” identification schemes – including short-run restrictions, long-run restrictions, and
sign restrictions – can equivalently be carried out using LPs. Conversely, invertibility-robust
structural estimation with an external instrument (proxy) is also possible using VARs, not
just LPs.

3.1 Structural model

To discuss structural identification, we impose a linear but otherwise general semiparametric
Structural Vector Moving Average (SVMA) model. This model does not restrict the linear
transmission mechanism of shocks to observed variables (see the Online Appendix for a dis-
cussion of non-linear models). SVMA models have been analyzed by Stock & Watson (2018),
Plagborg-Møller & Wolf (2019), and many others. The class of SVMA models encompasses

17A VAR with p lags extrapolates its long-run responses from the first p sample autocovariances, which
are estimated more precisely than the long-lag sample autocovariances used by the local projection estima-
tor. Hence, the VAR impulse response estimates at long horizons typically have lower variance than local
projections, but potentially higher asymptotic bias if the lag length is misspecified (though this depends on
the magnitude of the misspecification, see Schorfheide, 2005, and Kilian & Kim, 2011).

18The forecasting literature offers extensive guidance on the choice between direct forecasts (analogous to
LP) and iterated forecasts (analogous to VAR) (Schorfheide, 2005; Chevillon, 2007; Marcellino et al., 2006;
Pesaran et al., 2011; McElroy, 2015).
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all discrete-time, linearized DSGE models as well as all stationary SVAR models.

Assumption 3. The data {wt} are driven by an nε-dimensional vector εt = (ε1,t, . . . , εnε,t)′

of exogenous structural shocks,

wt = µ+ Θ(L)εt, Θ(L) ≡
∞∑
`=0

Θ`L
`, (10)

where µ ∈ Rnw×1, Θ` ∈ Rnw×nε, and L is the lag operator. {Θ`}` is assumed to be absolutely
summable, and Θ(x) has full row rank for all complex scalars x on the unit circle. For
notational simplicity, we further assume normality of the shocks:

εt
i.i.d.∼ N(0, Inε). (11)

Under these assumptions wt is a nonsingular, strictly stationary jointly Gaussian time series,
consistent with Assumptions 1 and 2 in Section 2. The (i, j) element Θi,j,` of the nw × nε
moving average coefficient matrix Θ` is the impulse response of variable i to shock j at
horizon `.

The researcher is interested in the propagation of the structural shock ε1,t to the observed
macro aggregate yt. Since yt is the (nr + 2)-th element in wt, the parameters of interest
are Θnr+2,1,h, h = 0, 1, 2, . . . . In line with applied work, we also consider relative impulse
responses Θnr+2,1,h/Θnr+1,1,0. This may be interpreted as the response in yt+h caused by a
shock ε1,t of a magnitude that raises xt by one unit on impact.

3.2 Implementing “SVAR” identification using LPs

In this subsection we show that LP methods are as applicable as VAR methods when im-
plementing common identification schemes. Our main result in Section 2.1 implies that
LP-based causal estimation can succeed if and only if SVAR-based estimation can succeed.
We will exhibit several concrete and easily implementable examples of this equivalence.

Identification under invertibility. Standard SVAR analysis assumes (partial) in-
vertibility – that is, the ability to recover the structural shock of interest, ε1,t, as a function
of only current and past macro aggregates:

ε1,t ∈ span ({wτ}−∞<τ≤t) . (12)
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A given SVAR identification scheme then identifies as the candidate structural shock a
particular linear combination of the Wold forecast errors:

ε̃1,t ≡ b′ut, (13)

where the chosen identification scheme gives the vector b as a function of the reduced-form
VAR parameters (A(L),Σu), or equivalently the Wold decomposition parameters (C(L),Σu).
Under invertibility, there must exist a vector b such that ε̃1,t = ε1,t, so SVAR identification
can in principle succeed (Fernández-Villaverde et al., 2007; Wolf, 2019).

We now illustrate through three examples that common SVAR identification schemes are
equally as simple to implement using LP methods. We first consider a standard recursive
scheme covered by our benchmark analysis in Section 2.1. The second and third examples
involve long-run and sign restrictions and require the general equivalence result of Section 2.2.

Example 1 (Recursive identification). Christiano et al. (2005) identify monetary policy
shocks through a recursive ordering. They assume that their observed data {wt} follow
an invertible SVMA model, i.e. the condition (12) holds for all shocks in the system (10).
They then additionally impose a temporal ordering on the set of variables wt: Output,
consumption, investment, wages, productivity, and the price deflator do not respond within
the period to changes in the policy rate (Federal Funds Rate), which itself in turn does
not react within the period to changes in profits and money growth. In the notation of
Section 2.1, the assumed ordering corresponds to the Federal Funds Rate as the impulse
variable xt, real and price variables as the controls rt, and financial variables collected in the
vector qt. Thus, for the purposes of structural interpretation, it is now explicitly assumed
that xt and rt are predetermined with respect to yt. Christiano et al. implement their
structural analysis through the recursive VAR (3). By our main result, they could have
equivalently estimated the LP regression (1) and collected the regression coefficients {βh}h≥0.
The population estimand would have been the same.

Example 2 (Long-run identification). Blanchard & Quah (1989) identify the effects of
demand and supply shocks using long-run restrictions in a bivariate system. Let gdpt and
unr t denote log real GDP (in levels) and the unemployment rate, respectively. Then ∆gdpt ≡
gdpt−gdpt−1 is log GDP growth. Blanchard & Quah impose that wt ≡ (∆gdpt, unr t)′ follows
the SVMA model in Assumption 3 with nε = 2 shocks, where the first shock is a supply
shock, the second shock a demand shock, and both shocks are invertible, cf. (12). They then
additionally impose the identifying restriction that the long-run effect of the demand shock
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on the level of output is zero, i.e., ∑∞`=0 Θ1,2,` = 0.
While Blanchard & Quah impose their long-run restriction on an SVAR model to estimate

impulse responses, the extended equivalence result in Section 2.2 implies that the same
restriction can be equivalently implemented using an LP approach. To see how, consider,
for a large horizon H, the “long difference” projection

gdpt+H − gdpt−1 = µ̃H + β̃′Hwt +
∞∑
`=1

δ̃′H,`wt−` + ξ̃H,t. (14)

Intuitively, this projection uncovers the linear combination of the data that best explains
long-run movements in GDP. By assumption, such explanatory power can only come from
the supply shock. Thus, to estimate impulse responses with respect to the supply shock, we
can run the local projection (9) with b = β̃H and with yt given by the response variable of
interest (either ∆gdpt or unr t). Indeed, we show formally in Appendix A.2 that, as H →∞,
this procedure correctly identifies the impulse responses Θi,1,h with respect to the supply
shock, up to a constant scale factor. In this way, relative impulse responses Θi,1,h/Θ1,1,0

are correctly identified.19 To estimate relative impulse responses Θi,2,h/Θ1,2,0 to the demand
shock, the researcher can choose any vector b̃ such that b̃′b = 0, and then implement the
local projection (9) with b̃ in lieu of b.

In finite samples, the mean squared error performance of the proposed procedure relative
to the conventional SVAR(p) approach of Blanchard & Quah (1989) will depend on the
tuning parameters H and p, and on whether the low-frequency properties of the data are well
approximated by a low-order VAR model.20 For researchers who prioritize bias over variance,
the LP approach to long-run restrictions has the advantage that it does not extrapolate long-
run impulse responses from short-run autocorrelations, as a finite-order VAR does.

Example 3 (Sign identification). Uhlig (2005) and Rubio-Ramírez et al. (2010) consider
set-identification via sign restrictions on impulse responses. For concreteness, suppose we
are interested in the impulse response of real GDP growth yt to a monetary shock ε1,t at
horizon h. As before, assume that the full set of observed data {wt} follows an SVMA system
(10) where all shocks are invertible. As a very simple example of sign restrictions, we may
impose the identifying restriction that the scalar variable rt (say, the nominal interest rate)
responds positively to a monetary shock at all horizons s = 0, 1, . . . , H̄.

19Absolute impulse responses can be identified by rescaling the identified shock so it has variance 1.
20Christiano et al. (2006) and Mertens (2012) make the related point that SVAR-based long-run identifica-

tion could employ nonparametric estimators of the long-run variance matrix instead of the VAR estimator.
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The traditional SVAR approach to sign identification proceeds as follows. By invertibility,
the monetary shock ε1,t is related to the Wold forecast errors ut through ε1,t = b′ut, where
b ∈ Rnw is an unknown vector. If we knew b, the structural impulse responses of any
variable wi,t to ε1,t could be obtained as the linear combination b of the reduced-form impulse
responses of wi,t from a VAR in wt. To impose the sign restrictions, we search over all possible
vectors b such that (i) the rt impulse responses are positive at all horizons s = 0, 1, . . . , H̄
and (ii) the impact impulse response of rt is normalized to 1 (other normalizations are also
possible). Once we have determined the set of possible b’s, we can then use the VAR to
compute the corresponding set of possible impulse responses of yt with respect to b′ut.

By the logic in Section 2.2, we can alternatively impose sign restrictions using an LP
approach. We simply estimate the reduced-form impulse responses using LPs instead of a
VAR. Consider the coefficient vector β̌h obtained from the projection

yt+h = µ̌h + β̌′hwt +
∞∑
`=1

δ̌′h,`wt−` + ξ̌h,t.

The above LP yields the reduced-form impulse responses β̌h of yt to the Wold forecast errors
ut. Exactly as in the VAR approach, we now seek the linear combination b′β̌h that equals
the structural impulse response to the monetary shock ε1,t = b′ut. To find the set of b’s
consistent with the sign restrictions, the natural analogue of the VAR approach is as follows.
For each horizon s = 0, 1, . . . , H̄, store the coefficient vector β̈s from the projection

rt+s = µ̈s + β̈′swt +
∞∑
`=1

δ̈′s,`wt−` + ξ̈s,t.

The coefficients β̈s measure the reduced-form impulse responses of rt to ut, so sign restrictions
on the structural impulse responses of rt amount to linear inequality restrictions on these
coefficients. Consequently, the largest possible response of yt+h to a monetary shock that
raises rt by one unit on impact can be obtained as the solution to the linear program21

sup
b∈Rnw

b′β̌h subject to b′β̈0 = 1,

b′β̈s ≥ 0, s = 1, . . . , H̄.

21To consider impulse responses to a one-standard-deviation monetary shock, replace the equality con-
straint in the linear program by the constraint b′Var(ut)−1b = 1. The resulting linear-quadratic program
with inequality constraints is similar to those in Gafarov et al. (2018) and Giacomini & Kitagawa (2020).
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To compute the smallest possible impulse response, replace the supremum with an infimum.22

In population, this LP-based procedure recovers exactly the same identified set as analogous
sign restrictions in an SVAR.

In the Online Appendix we show how to perform local projection identification with a
completely general system of sign, zero, and magnitude restrictions on multiple variables,
shocks, and horizons, as in the SVAR frameworks of Rubio-Ramírez et al. (2010) and Kilian
& Murphy (2012). There we also argue that narrative restrictions as in Antolín-Díaz &
Rubio-Ramírez (2018) and Ludvigson et al. (2020b) can be exploited in a local projection
framework, by recasting those restrictions in the instrumental variable framework analyzed
in Section 3.3 below.

Our examples demonstrate that invertibility-based identification need not be thought
of as “SVAR identification,” contrary to standard practice in textbooks and parts of the
literature. As a matter of identification (i.e., in population), the two methods succeed or fail
together. Ideally, researchers ought to decide on the identification scheme separately from
how they decide on the finite-sample dimension reduction technique. The former choice
should be based on economic theory. The latter choice should be based on the researcher’s
preferences over bias and variance as well as on features of the DGP.

Beyond invertibility. If the invertibility assumption (12) is violated, then identifi-
cation strategies that erroneously assume invertibility – independent of whether they are
implemented using VARs or LPs – will not measure the true impulse responses.23 Instead,
these methods will measure the impulse responses to a white noise disturbance that is a
linear combination of current and lagged true structural shocks:

ε̃1,t = ϑ(L)εt. (15)

The properties of the lag polynomial ϑ(L) are characterized in detail in Fernández-Villaverde
et al. (2007) and Wolf (2019). Combining (10) and (15), we see that, in general, both LP
and VAR impulse response estimands are linear combinations of contemporaneous and lagged

22We focus on computing the bounds of the identified set. An alternative approach is to sample from the
identified set, as is commonly done in the Bayesian SVAR literature (Rubio-Ramírez et al., 2010).

23Several recent papers have demonstrated how to perform valid semi-structural identification without
assuming invertibility, cf. the references in Plagborg-Møller & Wolf (2019). Often such methods rely on LP
or VAR techniques to compute relevant linear projections, without interpreting the VAR disturbances (i.e.,
Wold innovations) as linear combinations of the contemporaneous true shocks.
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true impulse responses. Thus, projection on a given identified impulse ε̃1,t correctly identifies
impulse response functions (up to scale) if and only if ε̃1,t affects the response variable yt only
through the contemporaneous true structural shock ε1,t. Trivially, this is the case if ε̃1,t is a
function only of ε1,t (the invertible case); less obviously, the same is also true if ε̃1,t is only
contaminated by shocks that do not directly affect the response variable yt.24 Instrumental
variable identification, discussed next, is the leading example of this second case.

3.3 Identification and estimation with instruments

Instruments (also known as proxy variables) are popular in semi-structural analysis. We here
use our main result in Section 2 to show that the influential Local Projection Instrumental
Variable estimation procedure is equivalent to estimating a VAR with the instrument ordered
first. This is true irrespective of the underlying structural model.

An instrumental variable (IV) is defined as an observed variable zt that is contempora-
neously correlated only with the shock of interest ε1,t, but not with other shocks that affect
the macro aggregate yt of interest (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn,
2013).25 More precisely, given Assumption 3, the IV exclusion restrictions are that

Cov(zt, εj,s | {zτ , wτ}−∞<τ<t) 6= 0 if and only if both j = 1 and t = s. (16)

Stock & Watson (2018, p. 926) refer to this assumption as “LP-IV⊥,” and it is routinely
made in theoretical and applied work, as reviewed by Ramey (2016) and Stock & Watson
(2018). The assumption requires that, once we control for all lagged data, the instrument is
not contaminated by other structural shocks or by lags of the shock of interest.

Without loss of generality, we can use projection notation to phrase the IV exclusion
restrictions (16) as follows.

Assumption 4.

zt = cz +
∞∑
`=1

(Ψ`zt−` + Λ`wt−`) + αε1,t + vt, (17)

where α 6= 0, cz,Ψ` ∈ R, Λ` ∈ R1×nw , vt i.i.d.∼ N(0, σ2
v), and vt is independent of εt at all

24In particular, this means that neither invertibility nor recoverability (as defined in Plagborg-Møller &
Wolf, 2019) are necessary for successful semi-structural inference on impulse response functions.

25We focus on the case of a single IV. If multiple IVs for the same shock are available, Plagborg-Møller &
Wolf (2019) show that (i) the model is testable, and (ii) all the identifying power of the IVs is preserved by
collapsing them to a certain (single) linear combination.
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leads and lags. The lag polynomial 1 −∑∞`=1 Ψ`L
` is assumed to have all roots outside the

unit circle, and {Λ`}` is absolutely summable.

Crucially, the assumption allows the IV to be contaminated by the independent measurement
error vt. In some applications, we may know by construction of the IV that the lag coefficients
Ψ` and Λ` are all zero (so zt satisfies assumption “LP-IV” of Stock & Watson, 2018, p. 924,
without controls); obviously, such additional information will not present any difficulties for
any of the arguments that follow.

LP-IV. The Local Projection Instrumental Variable (LP-IV) approach estimates the im-
pulse responses to the first shock using a two-stage least squares version of LP. Loosely,
Mertens (2015), Jordà et al. (2015, 2019), Leduc & Wilson (2017), Ramey & Zubairy (2018),
and Stock & Watson (2018) propose to estimate the LP equation (1) using zt as an IV for xt.
To describe the two-stage least-squares estimand in detail, define Wt ≡ (zt, w′t)′ and consider
the “reduced-form” IV projection

yt+h = µRF ,h + βRF ,hzt +
∞∑
`=1

δ′RF ,h,`Wt−` + ξRF ,h,t (18)

for any h ≥ 0. Consider also the “first-stage” IV projection26

xt = µFS + βFSzt +
∞∑
`=1

δ′FS ,`Wt−` + ξFS ,t. (19)

Notice that the first stage does not depend on the horizon h. As in standard cross-sectional
two-stage least-squares estimation, the LP-IV estimand is then given by the ratio βLPIV ,h ≡
βRF ,h/βFS of reduced-form to first-stage coefficients (e.g., Angrist & Pischke, 2009, p. 122).27

Stock & Watson (2018) show that, under Assumptions 3 and 4, the LP-IV estimand
βLPIV ,h correctly identifies the relative impulse response Θnr+2,1,h/Θnr+1,1,0. Importantly,
this holds whether or not the shock of interest ε1,t is invertible in the sense of equation (12).

We now use our main result from Section 2.1 to show that the LP-IV impulse responses
can equivalently be estimated from a recursive VAR that orders the IV first. As in Section 2,
this result imposes no functional form assumptions on the underlying structural model and
does not yet impose any exclusion restrictions on the IV zt (although such assumptions are

26As always, the coefficients and residuals in (18)–(19) should be interpreted as linear projections.
27In the over-identified case with multiple IVs, the IV estimand can no longer be written as this simple

ratio; we focus on a single IV as in most of the applied literature.
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of course required to interpret the estimand causally, as discussed below).

Corollary 1. Let Assumptions 1 and 2 hold for the expanded data vector Wt ≡ (zt, w′t)′ in
place of wt. Assume also that βFS 6= 0, cf. (19). Consider a recursively ordered SVAR(∞)
in the variables (zt, w′t)′, where the instrument is ordered first (the ordering of the other
variables does not matter). Let θ̃y,h be the SVAR-implied impulse response at horizon h of
yt with respect to the first shock. Let θ̃x,0 be the SVAR-implied impact impulse response of
xt with respect to the first shock.

Then θ̃y,h/θ̃x,0 = βLPIV ,h.

Proof. Let z̃t ≡ αε1,t + vt and a ≡
√
E(z̃2

t ) =
√
α2 + σ2

v . Proposition 1 states that θ̃y,h =
a× βRF ,h for all h, and θ̃x,0 = a× βFS . The claim follows.

This essentially reduced-form result implies that, if we additionally impose the structural
Assumptions 3 and 4, valid identification of relative structural impulse responses can equiva-
lently be achieved through LP-IV or through an “internal instrument” recursive SVAR with
the IV ordered first.28 Importantly, under Assumptions 3 and 4, these equivalent estimation
strategies are valid even when the shock of interest ε1,t is not invertible (Stock & Watson,
2018). Intuitively, although adding the IV zt to the VAR does not render the shock ε1,t in-
vertible, the only reason that the shock may be non-invertible with respect to the expanded
information set {zτ , wτ}−∞<τ≤t is the presence of the measurement error vt in the IV equa-
tion (17).29 But this independent measurement error merely leads to attenuation bias in the
estimated impulse responses, and the bias (in percentage terms) is the same at all response
horizons and for all response variables. Thus, it does not contaminate estimation of relative
impulse responses.

IV identification is therefore an example of a setting where SVAR analysis works even
though invertibility fails (including the partial invertibility notion of Forni et al., 2019, and
Miranda-Agrippino & Ricco, 2019). The “internal instrument” recursive SVAR(∞) pro-
cedure estimates the right relative impulse responses despite the fact that no invertible
structural VAR model generally exists under our assumptions. Our result implies that it

28Plagborg-Møller & Wolf (2019) show that point identification of absolute impulse responses – and thus
variance decompositions – can be achieved under a further recoverability assumption that is mathematically
and substantively weaker than assuming invertibility.

29Note that, even though Assumption 4 allows zt to be correlated with lags of wt, non-invertibility of ε1,t
is entirely consistent with Theorem 1 of Stock & Watson (2018). That theorem states that if the shock is
non-invertible, then it is possible to construct an example of an IV žt satisfying E(žtεj,t) = 0 for all j 6= 1
and E(žtεj,t−` | {wτ}τ<t) 6= 0 for some j and ` ≥ 1 (so žt does not satisfy Assumption 4).
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is valid to include an externally identified shock in an SVAR even if the shock is measured
with (independent) error, as long as the noisily measured shock is ordered first.30

SVAR-IV. Unlike the non-invertibility-robust procedure of ordering the IV first in a VAR,
the popular SVAR-IV (also known as proxy-SVAR) procedure (Stock, 2008; Stock & Watson,
2012; Mertens & Ravn, 2013) is only valid under invertibility. This procedure uses an SVAR
to identify the shock of interest as

ε̃1,t ≡
1√

Var(z̃†t )
× z̃†t ,

where z̃†t is computed as a linear combination of the reduced-form residuals ut from a VAR
in wt alone (i.e., excluding the IV from the VAR):

z̃†t ≡ E(z̃t | ut) = E(z̃t | {wτ}−∞<τ≤t).

If Assumptions 3 and 4 and the invertibility condition (12) hold, then SVAR-IV is valid. In
fact, in this case SVAR-IV removes any attenuation bias, thus correctly identifying absolute
(not just relative) impulse responses.31 However, in the general non-invertible case, SVAR-
IV mis-identifies the shock as ε̃1,t 6= ε1,t.32 Plagborg-Møller & Wolf (2019, Appendix B.4)
characterize the bias of SVAR-IV under non-invertibility and show that the invertibility
assumption can be tested using the IV.

Summary. The relative impulse responses obtained from the LP-IV procedure of Stock
& Watson (2018) are nonparametrically identical to the relative impulse responses from a
recursive SVAR with the IV ordered first (an “internal instrument” approach). Assuming
an SVMA model and the IV exclusion restrictions, these procedures correctly identify rel-
ative structural impulse responses, irrespective of the invertibility of the shock of interest.
This allows researchers to exploit VAR estimation techniques while relying on the same

30Romer & Romer (2004) and Barakchian & Crowe (2013) include an externally identified monetary shock
in an SVAR, but they order it last, which assumes additional exclusion restrictions. Kilian (2006), Ramey
(2011), Miranda-Agrippino (2017), and Jarociński & Karadi (2020), among others, mention the strategy of
ordering an IV first in an SVAR, but these papers do not consider the non-invertible case.

31Consistent with our analytical results, Carriero et al. (2015) observe in a calibrated simulation study that,
under invertibility, SVAR-IV correctly identifies absolute impulse response functions, while direct projections
on the IV suffer from attenuation bias.

32The VARX approach of Paul (2019) is equivalent with SVAR-IV under Assumptions 1 and 2.

24



invertibility-robust identifying restrictions as the popular two-stage least squares implemen-
tation of LP-IV. In contrast, the SVAR-IV procedure of Stock & Watson (2012) and Mertens
& Ravn (2013) (an “external instrument” approach) requires invertibility.33

4 Empirical application

We finally illustrate our theoretical equivalence results by empirically estimating the dynamic
response of corporate bond spreads to a monetary policy shock. We adopt the specification
of Gertler & Karadi (2015), who, using high-frequency financial data, obtain an external
instrument for monetary policy shocks.34 Because of possible non-invertibility (Ramey, 2016;
Plagborg-Møller & Wolf, 2019), we do not consider the external SVAR-IV estimator, but
instead implement direct projections on the IV through (i) local projections and (ii) an
“internal instrument” recursive VAR, following the logic of Corollary 1. In both cases, our
vector of macro control variables exactly follows Gertler & Karadi (2015); it includes output
growth (log growth rate of industrial production), inflation (log growth rate of CPI inflation),
the 1-year government bond rate, and the Excess Bond Premium of Gilchrist & Zakrajšek
(2012) as a measure of the non-default-related corporate bond spread. The data is monthly
and spans January 1990 to June 2012.35

Figure 2 shows that LP-IV and “internal instrument” VAR impulse response estimates
agree at short horizons, but diverge at longer horizons, consistent with Proposition 2. The
figure shows point estimates of the response of the Excess Bond Premium to the monetary
policy shock, for different projection techniques and different lag lengths. For all specifica-
tions, the Excess Bond Premium initially increases after a contractionary monetary policy
shock, consistent with the results in Gertler & Karadi (2015). The left panel shows results for
LP(4) and VAR(4) estimates. Up until horizon h = 4, the estimated impulse responses are
closely aligned. At longer horizons, the iterated VAR structure enforces a smooth return to
0, while direct local projections give more erratic impulse responses. The right panel shows

33SVAR-IV does have one advantage over LP-IV (and thus also over the “internal instruments” VAR
approach): Provided the shock is invertible, SVAR-IV does not require zt to only be correlated with lagged
shocks through observed lagged variables as in Assumption 4, cf. Stock & Watson (2018, sec. 2.1).

34The external IV zt is constructed from changes in 3-month-ahead futures prices written on the Federal
Funds Rate, where the changes are measured over short time windows around Federal Open Market Com-
mittee monetary policy announcement times. See Gertler & Karadi (2015) for details on the construction of
the IV and a discussion of the exclusion restriction.

35The data were retrieved from: https://www.aeaweb.org/articles?id=10.1257/mac.20130329
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Response of bond spread to monetary shock: VAR and LP estimates
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Figure 2: Estimated impulse response function of the Excess Bond Premium to a monetary policy
shock, normalized to increase the 1-year bond rate by 100 basis points on impact. Left panel: lag
length p = 4. Right panel: p = 12. The horizontal line marks the horizon p after which the VAR(p)
and LP(p) estimates may diverge substantially.

an analogous picture for LP(12) and VAR(12) estimates: The estimated impulse responses
agree closely until horizon h = 12, but they diverge at longer horizons.

These results provide an empirical illustration of our earlier claim that LP and VAR
estimates are closely tied together at short horizons.36 The results further illustrate that the
larger the lag length used for estimation (in both the LP and VAR specifications), the more
impulse response horizons will exhibit agreement between LP and VAR estimates, consistent
with Section 2.3. As this exercise is merely meant to illustrate our theoretical results, we
refrain from conducting statistical tests of the validity of the different regression models.

5 Conclusion

We demonstrated a general equivalence of the local projection and VAR impulse response
function estimands. Although these estimation methods are linear, the equivalence between

36In unreported results, we confirm this finding for the impulse response functions of output growth,
inflation, and the 1-year government bond rate. Ludvigson et al. (2020a), referencing our paper, reach a
similar conclusion in a different empirical study.
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them obtains nonparametrically, in the sense that we do not require linearity or other func-
tional form assumptions on the data generating process. This result, which applies to all
common implementations of local projections in the applied literature, has several implica-
tions for empirical practice:

1. VAR and local projection estimators of impulse responses should not be regarded as
conceptually distinct methods – in population, they estimate the same thing, as long
as we control flexibly for lagged data.

2. Local projections with p lags as controls and VAR(p) estimators agree approximately
at impulse response horizons h ≤ p. Hence, VARs that control for a large number of
lags, as recommended by Kilian & Lütkepohl (2017), will tend to agree at short and
medium-long horizons with local projections that also control for a rich set of lags.
However, at long horizons the methods may disagree substantially.

3. Structural identification is logically distinct from the dimension reduction choices that
must be made for estimation purposes. It may be counterproductive to follow stan-
dard practice in assuming an SVAR model whenever the discussion turns to structural
identification, as this conflates the population identification analysis and the dimension
reduction technique of using a VAR estimator.

4. Any structural estimation method that works for SVARs can be implemented with local
projections, and vice versa. For example, if a paper already relies on local projections
for parts of the analysis, then an additional sign restriction identification exercise, say,
can also be implemented in a local projection fashion.

5. If an instrument/proxy for the shock of interest is available, structural impulse re-
sponses can be consistently estimated by ordering the instrument first in a recursive
VAR (an “internal instrument” approach), even if the shock of interest is non-invertible.
In contrast, the popular SVAR-IV estimator (an “external instrument” approach) is
only consistent under invertibility.

6. Linear local projections and linear VARs will continue to estimate the same impulse
responses even when the true data generating process is non-linear.

7. Although this paper has focused solely on population properties of estimators, the pop-
ulation equivalence result implies that no single estimation method should be expected
to dominate in terms of mean squared error across every possible data generating
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process. In finite samples, and with finite lag lengths, researchers must navigate a
bias-variance trade-off at long horizons. Much more research is warranted on this key
issue for applied research.

We conclude that each of the following common assertions is, in fact, mistaken: (i) VAR
impulse response estimators are generally more efficient than local projection estimators;
(ii) local projections are generally more robust to misspecification than VARs; (iii) SVAR
analysis is required when implementing non-recursive, non-IV identification schemes; (iv)
simple SVAR methods cannot be used when the structural shock of interest is noninvertible.

Our work points to several promising areas for future research. First, it would be useful
to adapt the results in the present paper to non-linear estimators, such as regressions with
interactions or polynomial terms. Second, future research could consider data with unit roots
or cointegration. Third, we only discussed the population properties of IV estimators, and
thus ignored weak IV issues. Fourth, it would be interesting to generalize our LP-IV equiv-
alence result to settings with multiple instruments/proxies. Finally, we have deliberately
avoided questions related to estimation and inference.

A Appendix

A.1 Equivalence result with finite lag length

We here prove Proposition 2 from Section 2.3. We proceed mostly as in the proof of Propo-
sition 1. As a first step, the Frisch-Waugh theorem implies that

βh(p) = Cov(yt+h, x̃t(p))
E(x̃t(p)2) . (20)

We remind the reader of the notation Covp(·, ·), which denotes covariances of the data {wt}
as implied by the (counterfactual) stationary “fitted” SVAR(p) model

A(L; p)wt = B(p)η̄t, η̄t ∼WN (0, I), (21)

i.e., where η̄t is truly white noise (unlike the residuals from the VAR(p) projection on the
actual data). For example Covp(yt, xt−1) denotes the covariance of yt and xt−1 that would
obtain if wt = (r′t, xt, yt, q′t)′ were generated by the model (21) with parameters A(L; p) and
B(p) obtained from the projection on the actual data, as defined in Section 2.3. We similarly
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define any covariances that involve η̄t. Note that stationarity of the VAR model (21) follows
from Brockwell & Davis (1991, Remark 2, pp. 424–425).

It follows from the argument in Brockwell & Davis (1991, p. 240) that Covp(wt, wt−h) =
Cov(wt, wt−h) for all h ≤ p (see also Brockwell & Davis, 1991, Remark 2, pp. 424–425 for the
multivariate generalization of the key step in the argument). In words, the autocovariances
implied by the “fitted” SVAR(p) model (21) agree with the autocovariances of the actual
data out to lag p, although generally not after lag p.

Under the counterfactual model (21), we have the moving average representation wt =
C(L; p)B(p)η̄t, and thus

θh(p) = Cnr+2,•,h(p)B•,nr+1(p) = Covp(yt+h, η̄x,t), (22)

where η̄x,t is the (nr + 1)-th element of η̄t. Since B(p) is lower triangular by definition, it is
straight-forward to show from (21) that

Bnr+1,nr+1(p)η̄x,t = xt−Ep(xt | rt, {wτ}t−p≤τ<t) = xt−E(xt | rt, {wτ}t−p≤τ<t) = x̃t(p), (23)

where Ep(· | ·) denotes linear projection under the inner product Covp(·, ·), the second
equality follows from the above-mentioned equivalence of Covp(·, ·) and Cov(·, ·) out to lag
p, and the last equality follows by definition. Since Covp(η̄x,t, η̄x,t) = 1, equation (23) implies

Bnr+1,nr+1(p)2 = Covp(x̃t(p), x̃t(p)) = E(x̃t(p)2),

where the last equality again uses the equivalence of Covp(·, ·) and Cov(·, ·) out to lag p.
Putting together (22), (23), and the above equation, we have shown that

θh(p) = 1√
E(x̃t(p)2)

× Covp(yt+h, x̃t(p)).

If we compare with the expression (20), the desired conclusion follows from

Covp(yt+h, x̃t(p))− Cov(yt+h, x̃t(p)) =
p∑
`=0
{Cov(yt+h, wt−`)− Covp(yt+h, wt−`)}︸ ︷︷ ︸

=0 when (t+h)−(t−`)≤p

%`(p),

where we have used the notation for the projection coefficients %`(p) defined immediately
above Proposition 2, and we have again appealed to the equivalence of Covp(·, ·) with the
covariance function of the actual data.
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A.2 Long-run identification using local projections

Here we show that the LP-based long-run identification approach in Example 2 is valid.
Define the Wold innovations ut ≡ wt − E(wt | {wτ}−∞<τ<t) and Wold decomposition

wt = χ+ C(L)ut, C(L) ≡ I2 +
∞∑
`=1

C`L
`. (24)

Since both structural shocks are assumed to be invertible, there exists a 2×2 matrix B such
that εt = But. Comparing (10) and (24), we then have Θ(1)B = C(1). Let e1 ≡ (1, 0)′.
Note that the Blanchard & Quah assumption e′1Θ(1) = (Θ1,1(1), 0) implies

e′1C(1) = e′1Θ(1)B = Θ1,1(1)e′1B,

and therefore
e′1C(1)ut = Θ1,1(1)× e′1But = Θ1,1(1)× ε1,t.

By the result in Section 2.2, the claim in Example 2 follows if we show that

lim
H→∞

β̃′H = e′1C(1). (25)

Define Σu ≡ Var(ut). Applying the Frisch-Waugh theorem to the projection (14), and using
w1,t = ∆gdpt, we find

β̃′H = Cov(gdpt+H − gdpt−1, ut)Σ−1
u = Cov

(
H∑
`=0

w1,t+`, ut

)
Σ−1
u =

H∑
`=0

Cov(w1,t+`, ut)Σ−1
u .

(26)
On the other hand, the Wold decomposition (24) implies (recall that ut is white noise)

∞∑
`=0

Cov(wt+`, ut)Σ−1
u =

∞∑
`=0

C` = C(1). (27)

Comparing (26) and (27), we get the desired result (25).
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