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Appendix D Further Simulation Results

Bivariate VAR(4) model. We first consider the bivariate VAR(p0) model

y1,t = ρy1,t−1 + u1,t, (1− 1
2L)p0y2,t = 1

2y1,t−1 + u2,t, (u1,t, u2,t)′ i.i.d.∼ N (0, ( 1 0.3
0.3 1 )) ,

where L is the lag operator, and the parameter ρ indexes the persistence. For p0 = 1, this
model reduces to the one considered by Kilian and Kim (2011, section III); we instead set
p0 = 4 to generate richer dynamics. The parameters of interest are the reduced-form impulse
responses of y2,t with respect to the innovation u1,t.

Table S1 shows that the qualitative conclusions from the AR(1) simulation study in Sec-
tion 2.2 carry over to the present bivariate DGP with p0 = 4. We employ four different
inference methods that use the correct estimation lag length p = p0: non-augmented VAR,
delta method confidence interval (“AR”); lag-augmented VAR (Inoue and Kilian, 2020),
Efron bootstrap interval (“AR-LAb”); local projection with HAR standard errors as in Sec-
tion 2.2, percentile-t bootstrap interval (“LPb”); and our preferred method, lag-augmented
local projection with heteroskedasticity-robust standard errors, percentile-t bootstrap in-
terval (“LP-LAb”). As a fifth method, we consider our preferred procedure with a larger
estimation lag length p = 8 (“LP-LA8

b”). The bootstrap is a wild recursive residual VAR
bootstrap. We set T = 240. The nominal confidence level is 90%.

Consistent with the theory in Section 4, lag-augmented local projection achieves good
coverage in all cases, except at long horizons h ≥ 36 when there is a unit root (ρ = 1). Over-
specifying the lag length to be 8 instead of 4 barely affects the coverage of lag-augmented
local projection confidence intervals and only widens them by 3–5% (see columns 2 and 7).
Non-augmented delta method VAR inference suffers from poor coverage at long horizons
when ρ ≥ 0.95, while lag-augmented VAR confidence intervals can be very wide.
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Table S1: Monte Carlo results: bivariate VAR(4) model

Coverage Median length
h LP-LAb LP-LA8

b LPb AR-LAb AR LP-LAb LP-LA8
b LPb AR-LAb AR

ρ = 0.00
1 0.910 0.906 0.906 0.901 0.902 0.234 0.241 0.245 0.229 0.226
6 0.892 0.892 0.899 0.894 0.895 1.481 1.518 1.517 1.310 1.278
12 0.895 0.889 0.895 0.903 0.901 1.605 1.661 1.627 3.813 0.660
36 0.906 0.901 0.905 0.924 1.000 1.694 1.754 1.709 30.081 0.015
60 0.913 0.912 0.911 0.927 1.000 1.825 1.901 1.832 301.439 0.000

ρ = 0.50
1 0.908 0.906 0.907 0.900 0.900 0.235 0.240 0.244 0.228 0.226
6 0.896 0.890 0.894 0.892 0.889 1.731 1.774 1.776 1.706 1.624
12 0.891 0.880 0.889 0.889 0.897 2.006 2.065 2.037 7.186 1.264
36 0.902 0.897 0.902 0.922 1.000 2.079 2.148 2.101 89.302 0.066
60 0.913 0.909 0.906 0.922 1.000 2.239 2.322 2.262 1517.269 0.001

ρ = 0.95
1 0.904 0.902 0.907 0.895 0.893 0.235 0.241 0.245 0.230 0.227
6 0.891 0.890 0.888 0.887 0.889 2.296 2.361 2.362 2.407 2.136
12 0.890 0.884 0.891 0.902 0.881 4.542 4.665 4.641 16.838 4.014
36 0.830 0.809 0.832 0.933 0.841 6.295 6.421 6.407 1113.555 5.413
60 0.876 0.859 0.872 0.931 0.763 6.146 6.297 6.343 73988.007 3.253

ρ = 1.00
1 0.904 0.897 0.900 0.893 0.890 0.236 0.242 0.245 0.230 0.227
6 0.894 0.892 0.890 0.859 0.874 2.381 2.445 2.472 2.450 2.181
12 0.877 0.873 0.872 0.879 0.828 5.278 5.407 5.364 17.862 4.491
36 0.767 0.760 0.769 0.965 0.775 11.346 11.558 11.509 1311.475 8.200
60 0.659 0.654 0.677 0.961 0.751 12.436 12.355 12.750 95033.410 11.423

Coverage probability and median length of nominal 90% confidence intervals at different horizons. Bivariate
VAR(4) model with ρ ∈ {0, .5, .95, 1}, T = 240. 5,000 Monte Carlo repetitions; 2,000 bootstrap iterations.
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Empirically calibrated VAR(12) models. We additionally consider two empirically
calibrated VAR(12) models with four or five observables. The first DGP broadly follows
Kilian and Kim (2011, section IV) and is given by the empirical least-squares estimate of
a workhorse monetary VAR model estimated on monthly U.S. data for 1984–2018 (T =
419). The four variables in the empirical VAR are the Federal Funds Rate, the Chicago
Fed National Activity Index, CPI inflation, and real commodity price inflation (CRB Raw
Industrials deflated by CPI).1 The second DGP is based on the main specification in Gertler
and Karadi (2015) estimated on their monthly data set for 1990–2012 (T = 270).2 The five
variables are industrial production (log levels), CPI (log levels), the 1-year Treasury rate,
the Excess Bond Premium, and a monetary shock series given by high-frequency changes in
3-month Federal Funds Futures prices around FOMC announcements. For both DGPs, we
simulate data from a Gaussian VAR(12) model with true parameters given by the empirically
estimated coefficients and innovation covariance matrix (but no intercept). The sample sizes
are the same as in the real data, mentioned earlier.

Figure S1 shows that lag-augmented local projection achieves acceptable coverage in
these empirically calibrated DGPs. The figure shows the coverage and median length of
90% confidence intervals for reduced-form impulse responses of selected response variables
with respect to an innovation in the Federal Funds Rate (first DGP) or the monetary shock
series (second DGP). Our preferred lag-augmented local projection procedure (solid black
line) exhibits coverage distortions below 5 percentage points at all horizons for four of the
six impulse response functions shown. The distortions only approach 10 percentage points
for two response variables at long horizons in the second DGP. This second DGP is very
challenging: Four of the eigenvalues of the VAR companion matrix exceed 0.98 in magnitude,
while the sample size (270) is small relative to the number of covariates in each equation (60
plus the intercept). The Inoue and Kilian (2020) procedure (dashed blue line) exhibits near-
uniform coverage in both DGPs, but this comes at the expense of extremely large confidence
interval length at medium and long horizons.

1St. Louis FRED codes: CFNAI, CPIAUCSL, FEDFUNDS. Global Financial Data code: CMCRBIND.
2The data was downloaded from: https://www.aeaweb.org/articles?id=10.1257/mac.20130329
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Monte Carlo results: Kilian-Kim VAR(12) specification
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Monte Carlo results: Gertler-Karadi VAR(12) specification
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Figure S1: Coverage rate and median length of 90% confidence intervals for reduced-form
impulse responses at horizons up to 48 (horizontal axis). Black solid line: lag-augmented
local projection, percentile-t bootstrap interval. Blue dashed line: Inoue and Kilian (2020)
Efron bootstrap interval. 2,000 Monte Carlo repetitions; 2,000 bootstrap iterations.
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Appendix E Additional Proofs

E.1 Notation

Geometric series of the form ∑h−1
`=0 (ρ∗i (A, ε))2` will show up repeatedly in the proofs below.

Observe that, for any A ∈ A(0, C, ε) and h ∈ N,

1 ≤
h−1∑
`=0

ρ∗i (A, ε)2` ≤ min
{

1
1− ρ∗i (A, ε)2 , h

}
≤ min

{
1

1− ρ∗i (A, ε)
, h

}
= g(ρ∗i (A, ε), h)2.

Recall also the definition of the lag-augmented LP residuals ξ̂1,t(h) = y1,t+h − β̂1(h)′yt −
γ̂1(h)′Xt. We can write

ξ̂1,t(h)− ξ1,t(ρ, h) = (y1,t+h − β̂1(h)′yt − γ̂1(h)′Xt)− (y1,t+h − β1(A, h)′ut − η1(A, h)′Xt)

= −β̂1(h)′ (yt − AXt)︸ ︷︷ ︸
=ut

−(β̂1(h)′A+ γ̂1(h)′︸ ︷︷ ︸
≡η̂1(A,h)′

)Xt + β1(A, h)ut + η1(A, h)Xt

= [β1(A, h)− β̂1(h)]′ut + [η1(A, h)− η̂1(A, h)]′Xt. (S1)

E.2 Proof of Lemma A.2

Define ν̂(hT ) ≡ Σ̂(hT )−1ν, where ν ∈ R\{0} is a user-specified vector. The result follows
from Lemma A.6 if we can show that

∑T−hT
t=1 ξ̂1,t(hT )2(ν̂(hT )′ût(hT ))2 −∑T−hT

t=1 ξ1,t(hT )2(ν̃ ′ut)2

(T − hT )v(AT , hT , ν̃)2
p→

PAT

0,

where we have defined ν̃ ≡ Σ−1ν. Algebra shows that∣∣∣∑T−hT
t=1

[
ξ̂1,t(hT )2(ν̂(hT )′ût(hT ))2 − ξ1,t(AT , hT )2(ν̃ ′ut)2

]∣∣∣
(T − hT )v(AT , hT , ν̃)2

≤
∑T−hT
t=1

∣∣∣ξ̂1,t(hT )2(ν̂(hT )′ût(hT ))2 − ξ1,t(AT , hT )2(ν̃ ′ut)2
∣∣∣

(T − hT )v(AT , hT , ν̃)2

= 1
(T − hT )v(AT , hT , ν̃)2

T−hT∑
t=1

∣∣∣ξ̂1,t(hT )(ν̂(hT )′ût(hT ))− ξ1,t(AT , hT )(ν̃ ′ut)
∣∣∣

×
∣∣∣ξ̂1,t(hT )(ν̂(hT )′ût(hT ))− ξ1,t(AT , hT )(ν̃ ′ut) + 2ξ1,t(AT , hT )(ν̃ ′ut)

∣∣∣
(as (a+ b)(a− b) = a2 − b2)
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≤


∑T−hT
t=1

[
ξ̂1,t(hT )(ν̂(hT )′ût(hT ))− ξ1,t(AT , hT )(ν̃ ′ut)

]2
(T − hT )v(AT , hT , ν̃)2


1/2

×


∑T−hT
t=1

[
ξ̂1,t(hT )(ν̂(hT )′ût(hT ))− ξ1,t(AT , hT )(ν̃ ′ut) + 2ξ1,t(AT , hT )(ν̃ ′ut)

]2
(T − hT )v(AT , hT , ν̃)2


1/2

.

Consider the expression in the last line above. By Loève’s inequality (Davidson, 1994, Thm.
9.28), this expression is bounded above by

2
∑T−hT
t=1

[
ξ̂1,t(hT )(ν̂(hT )′ût(hT ))− ξ1,t(AT , hT )(ν̃ ′ut)

]2
(T − hT )v(AT , hT , ν̃)2 + 8

∑T−hT
t=1 ξ1,t(AT , hT )2(ν̃ ′ut)2

(T − hT )v(AT , hT , ν̃)2


1/2

.

The last fraction above is bounded in probability by Lemma A.6. Thus, it is sufficient to
show that ∑T−hT

t=1

[
ξ̂1,t(hT )(ν̂(hT )′ût(hT ))− ξ1,t(AT , hT )(ν̃ ′ut)

]2
(T − hT )v(AT , hT , ν̃)2

converges in probability to zero. To that end, decompose

ξ̂1,t(hT )(ν̂(hT )′ût(hT ))− ξ1,t(AT , hT )(ν̃ ′ut)

= (ξ̂1,t(hT )− ξ1,t(AT , hT ))(ν̃ ′ut) + (ν̂(hT )′ût(hT )− ν̃ ′uT )ξ1,t(AT , hT )

+ (ξ̂1,t(hT )− ξ1,t(AT , hT ))(ν̂(hT )′ût(hT )− ν̃ ′uT ).

Hence, by another application of Loève’s inequality,

∑T−hT
t=1

[
ξ̂1,t(hT )(ν̂(hT )′ût(hT ))− ξ1,t(AT , hT )(ν̃ ′ut)

]2
(T − hT )v(AT , hT , ν̃)2

≤ 3
∑T−hT
t=1 [ξ̂1,t(hT )− ξ1,t(AT , hT )]2(ν̃ ′ut)2

(T − hT )v(AT , hT , ν̃)2

+ 3
∑T−hT
t=1 [ν̂(hT )′ût(hT )− ν̃ ′ut]2ξ1,t(AT , hT )2

(T − hT )v(AT , hT , ν̃)2

+ 3
∑T−hT
t=1 [ξ̂1,t(hT )− ξ1,t(AT , hT )]2[ν̂(hT )′ût(hT )− ν̃ ′ut]2

(T − hT )v(AT , hT , ν̃)2

≤ 3
∑T−hT

t=1 [ξ̂1,t(hT )− ξ1,t(AT , hT )]4
(T − hT )v(AT , hT , ν̃)4

1/2

×
(
‖ν̃‖4

∑T−hT
t=1 ‖ut‖4

T − hT

)1/2
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+ 3
(∑T−hT

t=1 [ν̂(hT )′ût(hT )− ν̃ ′ut]4
T − hT

)1/2

×
( ∑T−hT

t=1 ξ1,t(AT , hT )4

(T − hT )v(AT , hT , ν̃)4

)1/2

+ 3
∑T−hT

t=1 [ξ̂1,t(hT )− ξt(AT , hT )]4
(T − hT )v(AT , hT , ν̃)4

1/2

×
(∑T−hT

t=1 [ν̂(hT )′ût(hT )− ν̃ ′ut]4
T − hT

)1/2

(by Cauchy-Schwarz)

≡ 3
[
(R̂1)1/2 × (R̂2)1/2

]
+ 3

[
(R̂3)1/2 × (R̂4)1/2

]
+ 3

[
(R̂1)1/2 × (R̂3)1/2

]
.

It follows from Lemma E.1 below that R̂1 tends to zero in probability. R̂2 is bounded in
probability by Assumption 2(i) and a standard application of Markov’s inequality. We show
below that R̂3 tends to zero in probability. Another standard application of Markov’s in-
equality combined with Lemma A.7 implies that R̂4 is also uniformly bounded in probability.
Hence, the entire expression tends to zero in probability, as needed.

To finish the proof, we prove the claim that R̂3 tends to zero in probability. Note that

R̂3 ≤ ‖ν̂(hT )‖4
∑T−hT
t=1 ‖ût(hT )− ut‖4

T − hT
+ ‖ν̂(hT )− ν̃‖4

∑T−hT
t=1 ‖ut‖4

T − hT
.

Since ‖ν̂(hT ) − ν̃‖ ≤ ‖Σ̂(hT )−1 − Σ−1‖ × ‖ν‖, it follows from Lemma A.5(ii), Lemma E.2
below, Assumption 2(i), and an application of Markov’s inequality that the above display
tends to zero in probability.

Lemma E.1 (Negligibility of estimation error in ξ̂1,t(h)). Let the conditions of Lemma A.2
hold. Let w ∈ Rn\{0}. Then

∑T−hT
t=1 [ξ̂1,t(hT )− ξ1,t(AT , hT )]4

(T − hT )v(AT , hT , w)4
p→

PAT

0.

Proof. Recall equation (S1):

ξ̂1,t(h)− ξ1,t(A, h) = [β1(A, h)− β̂1(h)]′ut + [η1(A, h)− η̂1(A, h)]′Xt.

By Loève’s inequality (Davidson, 1994, Thm. 9.28),

∑T−hT
t=1 [ξ̂1,t(h)− ξ1,t(ρ, h)]4
(T − hT )v(AT , hT , w)4

≤ 8‖β̂1(h)− β1(AT , hT )‖4

v(AT , hT , w)4

∑T−hT
t=1 ‖ut‖4

T − hT
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+ 8‖G(AT , T − hT , ε)[η̂1(AT , hT )− η1(AT , hT )]‖4

v(AT , hT , w)4

∑T−hT
t=1 ‖G(AT , T − hT , ε)−1Xt‖4

T − hT
.

By Assumption 2(i) and Markov’s inequality, we have (T − hT )−1∑T−hT
t=1 ‖ut‖4 = OPAT

(1).
Lemma A.3(i) then implies that the first term on the right-hand side in the above display
tends to zero in probability. Similarly, the second term on the right-hand side of the above
display tends to zero in probability by Lemma E.3 below, Lemma A.3(ii), and Markov’s
inequality.

Lemma E.2 (Negligibility of estimation error in ût(h)). Let the conditions of Lemma A.2
hold. Then ∑T−hT

t=1 ‖ût(hT )− ut‖4

T − hT
p→

PAT

0.

Proof. Since ût(hT )− ut = [A− Â(hT )]Xt, we have

∑T−hT
t=1 ‖ût(hT )− ut‖4

T − hT
≤ ‖G(AT , T − hT , ε)(Â(hT )−AT )‖4

∑T−hT
t=1 ‖G(AT , T − hT , ε)−1Xt‖4

T − hT
.

Lemma A.3(iii) shows that the first factor after the inequality is oPAT
(1). Lemma E.3 below

and Markov’s inequality show that the second factor is OPAT
(1).

Lemma E.3 (Moment bound for y4
i,t). Let Assumption 1 and Assumption 2(i) hold. Then,

for all T ∈ N, A ∈ A(0, C, ε), and i = 1, . . . , n,

max
1≤t≤T

E(y4
i,t) ≤

6C1(E(‖ut‖4))3

δ2λmin(Σ)2 × g(ρ∗i (A, ε), T )4

where the expectations are taken with respect to the measure PA, and C1 is the constant
defined in Lemma E.4 below.

Proof. We have defined

ξi,t(A, h) ≡
h∑
`=1

βi(A, `)′ut+`.

Since we have set the initial conditions y0 = . . . = y−p+1 = 0, we have

yi,t =
t∑

`=1
βi(A, `)′u` = ξi,0(A, t).
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Consider any w ∈ Rn such that ‖w‖ = 1. Then Lemma A.7 gives

max
1≤t≤T

E(y4
i,t) = max

1≤t≤T
E[ξi,0(A, t)4]

≤ 6E(‖u0‖4)
δ2λmin(Σ)2 × max

1≤t≤T
v(A, t, w)4.

Lemmas E.4 and E.5 below then imply that

max
1≤t≤T

E(y4
i,t) ≤

6E(‖u0‖4)
δ2λmin(Σ)2 × (E[‖u0‖4])2‖w‖4 × max

1≤t≤T

(
t−1∑
`=0
‖βi(A, `)‖2

)2

= 6(E(‖u0‖4))3

δ2λmin(Σ)2 ×
(
T−1∑
`=0
‖βi(A, `)‖2

)2

≤ 6(E(‖u0‖4))3

δ2λmin(Σ)2 ×
(
T−1∑
`=0

C1ρ
∗
i (A, ε)2`

)2

≤ 6C2
1(E(‖u0‖4))3

δ2λmin(Σ)2 × g(ρ∗i (A, ε), T )4.

Lemma E.4. Let A(L) be a lag polynomial such that A = (A1, . . . , Ap) ∈ A(0, C, ε) for
constants C > 0 and 0 < ε < 1. Then, for any i = 1, . . . , n, the following statements hold.

i) ‖βi(A, h)‖ ≤ C1ρ
∗
i (A, ε)h, where C1 ≡ 1 + 2C × 1−ε

ε
.

ii) ‖βi(A, h + m)‖ ≤ ρ∗i (A, ε)m × C2
∑p−1
b=0 ‖βi(A, h − b)‖, where C2 ≡ 1 + 4C̃

(
1−ε
ε

)
, and

C̃ ≡ C (1 + C(p− 1)).

Proof. Since A is in the parameter space A(0, C, ε) in Definition 1,

βi(A, h) = ρiβi(A, h− 1) + βi(B, h). (S2)

Thus, applying the equation above recursively,

βi(A, h+m) = ρmi βi(A, h) +
m∑
`=1

ρm−`i βi(B, h+ `).

We now use the above equation to prove each of the two statements of the lemma.

Part (i). We have

‖βi(A, h)‖ ≤ |ρi|h‖βi(A, 0)‖+
h∑
`=1
|ρi|h−`‖βi(B, `)‖

9



≤ |ρi|h +
h∑
`=1
|ρi|h−`C(1− ε)`

(where we have used Lemma E.7 below and β(A, 0) = In)

≤ max{|ρi|, 1− ε/2}h +
h∑
`=1

max{|ρi|, 1− ε/2}h−`C(1− ε)`

= ρ∗i (A, ε)h
1 + C

h∑
`=1

(
1− ε

max{|ρi|, 1− ε/2}

)`
≤ ρ∗i (A, ε)h

1 + C
∞∑
`=1

(
1− ε

1− ε/2

)`
= ρ∗i (A, ε)h

(
1 + C

(
1− ε
ε/2

))
.

Part (ii). To establish the remaining inequality, note that

‖βi(A, h+m)‖

≤ |ρi|m‖βi(A, h)‖+
m∑
`=1
|ρi|m−`‖βi(B, h+ `)‖

≤ |ρi|m‖βi(A, h)‖+
m∑
`=1
|ρi|m−`

C̃(1− ε)`
p−2∑
b=0
‖βi(B, h− b)‖


(by Lemma E.7(ii) below)

≤ max{|ρi|, 1− ε/2}m

×

‖βi(A, h)‖+ C̃

 m∑
`=1

(
1− ε

max{|ρi|, 1− ε/2}

)`p−2∑
b=0
‖βi(B, h− b)‖


≤ ρ∗i (A, ε)m ×

‖βi(A, h)‖+ 2C̃
(1− ε

ε

)p−2∑
b=0
‖βi(A, h− b)‖+ ‖βi(A, h− b− 1)‖


(where we have used equation (S2))

≤ ρ∗i (A, ε)m ×
(

1 + 4C̃
(1− ε

ε

)) p−1∑
b=0
‖βi(A, h− b)‖.

Lemma E.5 (Bounds on v(A, h, w)). Let Assumption 1 and Assumption 2(i) hold. Then
for any i = 1, . . . , n and for any matrix of autoregressive parameters A, and any h ∈ N

δ × λmin(Σ) ≤ 1
‖a‖2

vi(A, h, w)2∑h−1
`=0 ‖βi(A, `)‖

2 ≤ E
(
‖ut‖4

)
,
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where vi(A, h, w) ≡ E[ξi,t(A, h)2(w′ut)2]

Proof. Algebra shows

v(A, h, w)2 = E[ξi,t(A, h)2(w′ut)2]

= E
[
(βi(A, h− 1)′ut+1 + . . .+ βi(A, 0)′ut+h)2u2

t

]
= E

[(
h∑
`=1

h∑
m=1

(
βi(A, h− `)′ut+`u′t+mβi(A, h−m)

))
(w′ut)2

]
.

Assumption 1 implies that the last expression above equals

h∑
`=1

E
(
(βi(A, h− `)′ut+`)2 (w′ut)2

)
. (S3)

An application of Cauchy-Schwarz gives the upper bound

v(A, h, w)2 ≤
h∑
`=1

E
(
(βi(A, h− `)′ut+`)4)1/2

E
(
(w′ut)4)1/2

.

≤
h∑
`=1
‖βi(A, h− `)‖2 E

(
‖ut+`‖4

)1/2
‖w‖2 E

(
‖ut‖4

)1/2

= E
(
‖ut‖4

)
‖w‖2

(
h−1∑
`=0
‖βi(A, `)‖2

)
,

where the last line follows from stationarity.
For the lower bound, re-write expression (S3) as

‖w‖2
h∑
`=1
‖βi(A, h− `)‖2 E

(
(ω′1ut+`)

2 (ω′2ut)2
)
.

where ω1, ω2 are vectors of unit norm.
By Assumption 2(i),

E
(
(ω′1ut+`)

2 (ω′2ut)2
)

= E
[
E
(

(ω′1ut+`)
2
∣∣∣ {us}s<t+`)(ω′2ut)2

]
≥ δE[(ω′2ut)2]

= δω′2E[utu′t]ω2

≥ δλmin(Σ).
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This gives the lower bound

v(A, h, w)2 ≥ ‖w‖2 δλmin(Σ)
h−1∑
`=0
‖βi(A, `)‖2 ,

which concludes the proof.

Lemma E.6. Partition the identity matrix Inp of dimension np × np into p column blocks
of size n:

Inp = (J ′1, . . . , J ′p).

Let A(L) be a lag polynomial of order p with autoregressive coefficients A = (A1, . . . , Ap).
Then, for any h,m = 0, 1, . . . ,

βi(A, h+m)′ = βi(A, h)′ (J1AmJ ′1)

+
p∑
j=2

p−j∑
k=0

βi(A, h− 1− k)′Aj+k

(Jj−1Am−1J ′1
)
,

where we define βi(A, `) = 0 for ` < 0.

Proof. Define β(A, `) ≡ (β1(A, `), . . . , βn(A, `))′. Then

β(A, h+m) ≡ J1Ah+mJ ′1

= J1AhAmJ ′1

= J1AhInpI
′
npAmJ ′1

= J1Ah[J ′1, . . . , J ′p]


J1
...
Jp

AmJ ′1

=
(
J1AhJ ′1

)
(J1AmJ ′1) +

p∑
j=2

J1AhJ ′jJjAmJ ′1

= β(A, h)β(A,m) +
p∑
j=2

J1AhJ ′jJjAmJ ′1.

The definition of the companion matrix implies

JjA = Jj−1, j = 2, . . . , p,

12



and
AJ ′j = J ′1Aj + J ′j+1, j = 1, . . . , p− 1, AJ ′p = J ′1Ap.

Therefore, for j ≤ p,

J1AhJ ′j =
p−j∑
k=0

β(A, h− 1− k)Aj+k.

Thus, we have shown that

β(A, h+m) = β(A, h)β(A,m)

+
p∑
j=2

p−j∑
k=0

β(A, h− 1− k)Aj+k

(Jj−1Am−1J ′1
) .

The lemma follows by selecting the i-th equation of the above system of equations.

Lemma E.7. Let B(L) be a lag polynomial of order p − 1 satisfying ‖B`‖ ≤ C(1 − ε)` for
every ` = 1, 2, . . . . Then the following two statements hold.

i) Define the n×n matrix β(B, `) ≡ (β1(B, `), . . . , βn(B, `))′. Then ‖β(B, `)‖ ≤ C(1− ε)`

for all ` ≥ 0.

ii) ‖βi(B, h + m)‖ ≤ C̃ × (1 − ε)m × ∑p−2
`=0 ‖βi(B, h − `)‖ for all h,m ≥ 0, where C̃ ≡

C (1 + C(p− 1)).

Proof. Let the selector matrix Jj be defined as in Lemma E.6. Part (i) follows immediately
from the fact

β(B, `) = J1BmJ ′1

and the assumed bound on ‖Bm‖.
We now turn to part (ii). Lemma E.6 implies

‖βi(B, h+m)‖ ≤ ‖βi(B, h)‖ × ‖J1BmJ ′1‖

+
p−1∑
j=2

p−1−j∑
k=0
‖βi(B, h− 1− k)‖ × ‖Bj+k‖

 ‖Jj−1Bm−1J ′1‖


≤ ‖βi(B, h)‖ C(1− ε)m

+
p−1∑
j=2

p−1−j∑
k=0
‖βi(B, h− 1− k)‖ × ‖Bj+k‖

C(1− ε)m−1


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(since ‖J1BmJ ′1‖ ≤ C(1− ε)m and ‖Jj−1Bm−1J ′1‖ ≤ C(1− ε)m−1 )

≤ C(1− ε)m
‖βi(B, h)‖+

p−1∑
j=2

p−1−j∑
k=0
‖βi(B, h− 1− k)‖ × C


(since ‖Bj+k‖ = ‖J1BJ ′j+k‖ ≤ ‖B‖)

≤ C(1− ε)m
‖βi(B, h)‖+ C(p− 2)

p−3∑
k=0
‖βi(B, h− 1− k)‖


≤ (1− ε)mC (1 + C(p− 2))

p−2∑
`=0
‖βi(B, h− `)‖

 ,
≤ (1− ε)mC (1 + C(p− 1))

p−2∑
`=0
‖βi(B, h− `)‖

 .
The last step merely ensures that the constant is positive for all p ≥ 1. Note that, in the
case p = 1, the sum in the last expression is zero.

E.3 Proof of Lemma A.3

We first prove the statements (i)–(ii), and then turn to statement (iii). For brevity, denote
GT ≡ G(AT , T − hT , ε).

Parts (i)–(ii). Recall the definition η̂1(A, h) ≡ A′β̂1(h) + γ̂1(h) in equation (S1). Since
the OLS coefficients (β̂1(h)′, η̂1(A, h)′)′ are a non-singular linear transformation of the OLS
coefficients (β̂1(h)′, γ̂1(h)′)′, the former vector equals the OLS coefficients in a regression of
y1,t+h on (u′t, X ′t)′, due to the relationship ut = yt − AXt. By the representation

y1,t+h = β1(A, h)′ut + η1(A, h)′Xt + ξ1,t(A, h)

in equation (19), we can therefore write
 1

v(AT ,hT ,w) [β̂1(hT )− β1(AT , hT )]
1

v(AT ,hT ,w)GT [η̂(AT , hT )− η(AT , hT )]


=
 1

T−hT

∑T−hT
t=1 utu

′
t

1
T−h

∑T−hT
t=1 utX

′
tG
−1
T

1
T−hT

∑T−hT
t=1 G−1

T Xtu
′
t

1
T−hT

∑T−hT
t=1 G−1

T XtX
′
tG
−1
T

−1

(S4)

×

 1
(T−hT )v(AT ,hT ,w)

∑T−hT
t=1 utξ1,t(AT , hT )

1
(T−hT )v(AT ,hT ,w)

∑T−hT
t=1 G−1

T Xtξ1,t(AT , hT )


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≡ M̂−1

m̂1

m̂2

 .
We must prove that the above display tends to zero in probability. m̂1 tends to zero in prob-
ability by Lemma A.1 and the fact that Lemma E.5 implies that v(AT , hT , w)/v(AT , hT , w̃)
is uniformly bounded from below and from above for any w̃ ∈ Rn\{0}. m̂2 also tends to zero
in probability by Lemma A.4. Hence, it just remains to show that the n(p + 1) × n(p + 1)
symmetric positive semidefinite matrix M̂−1 is bounded in probability. It suffices to show
that 1/λmin(M̂) is uniformly asymptotically tight. Consider the 2× 2 block partition of M̂
in (S4). The off-diagonal blocks of M̂ tend to zero in probability by Lemma E.8 below.
Moreover, the upper left block of M̂ tends in probability to the positive definite matrix Σ by
Lemma A.5(i) and Assumption 2. Thus, the tightness of 1/λmin(M̂) follows from Assump-
tion 3, which pertains to the lower right block of M̂ . This concludes the proof of the first
two statements.

Part (iii). Write

(T − hT )1/2[Â(hT )− AT ]G(AT , T − hT , ε)

=
 1

(T − hT )1/2

T−hT∑
t=1

utX
′
tG
−1
T

×
 1
T − hT

T−hT∑
t=1

G−1
T XtX

′
tG
−1
T

−1

.

The first factor on the right-hand side above is OPAT
(1) by Lemma E.8 below, while the

second factor is also OPAT
(1) by the same argument as in parts (i)–(ii) above.

Lemma E.8 (OLS denominator). Let Assumption 1 and Assumption 2(i) hold. Let there be
given a sequence {AT} in A(0, C, ε) and a sequence {hT} of nonnegative integers satisfying
T − hT →∞. Then for any i, j = 1, . . . , n and r = 1, . . . , p,

∑T−hT
t=1 ui,tyj,t−r

(T − hT )1/2g(ρ∗j(A, ε), T − hT ) = OPAT
(1).

Proof. Write gj,T ≡ g(ρ∗j(A, ε), T −hT ) for brevity. Note that {ui,tyj,t−r}t is a martingale dif-
ference array with respect to the natural filtration F̃t = σ(ut, ut−1, . . . ) under Assumption 1.
Thus, the sequence is serially uncorrelated, implying that

E

(∑T−hT
t=1 ui,tyj,t−r

(T − hT )1/2gj,T

)2 = 1
(T − hT )g2

j,T

T−hT∑
t=1

E[u2
i,ty

2
j,t−r]
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≤ 1
g2
j,T

× [E(u4
i,t)]1/2 × max

1≤t≤T−hT

E(y4
j,t−1)1/2

= [E(u4
i,t)]1/2 ×

(
max1≤t≤T−hT

E(y4
j,t−1)

g4
j,T

)1/2

≤
√

6C1(E(‖ut‖4))2

δλmin(Σ) ,

where the last inequality uses Lemma E.3. The lemma follows from Markov’s inequality.

E.4 Proof of Lemma A.4

We will show that

E

( ∑T−hT
t=1 ξi,t(AT , hT )yj,t−r

(T − hT )v(AT , hT , w)g(ρ∗j(AT , ε), T − hT )

)2→ 0.

To that end, observe that if t ≥ s+ hT , then

E[ξi,t(AT , hT )yj,t−rξi,s(ρT , hT )yj,s−r]

= E [E(ξi,t(AT , hT ) | ut, ut−1, . . . )yj,t−rξs(AT , hT )yj,s−r]

= 0,

by Assumption 1. By symmetry, the far left-hand side above equals 0 also if s ≥ t + hT .
Thus,

E

( ∑T−hT
t=1 ξi,t(AT , hT )yj,t−r

(T − hT )v(AT , hT , w)g(ρ∗j(AT , ε), T − hT )

)2
≤

T−hT∑
t=1

T−hT∑
s=1

1(|s− t| < hT ) |E[ξi,t(AT , hT )yj,t−rξi,s(AT , hT )yj,s−r]|
(T − hT )2v(AT , hT , w)2g(ρ∗j(AT , ε), T − hT )2 . (S5)

We now bound the summands on the right-hand side above. Consider first the case s ∈
(t− hT , t] (we will handle the case t ∈ (s− hT , s] by symmetry). Since the initial conditions
for the VAR are zero, we have

yj,t−r = ξj,0(AT , t− r).
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Thus,

E[ξi,t(AT , hT )yj,t−rξi,s(AT , hT )yj,s−r]

= E[ξi,t(AT , hT )ξj,0(AT , t− r)ξi,s(AT , hT )ξ0,j(AT , t− r)]

=
hT∑
`1=1

hT∑
`2=1

t−1∑
m1=r

s−1∑
m2=r

E
[

(βi(AT , hT − `1)′ut+`1) (βj(AT ,m1 − r)′ut−m1)

× (βi(AT , hT − `2)′us+`2)(βj(AT ,m2 − r)′us−m2)
]
.

Consider any summand above defined by its indices (`1, `2,m1,m2). Since t+ `1 > max{t−
m1, s−m2}, Assumption 1 implies that the summand can only be nonzero if s+ `2 = t+ `1,
which requires `1 ≤ hT + s− t. Moreover, when s+ `2 = t+ `1, we also need t−m1 = s−m2

for the summand to be nonzero, which in turn requires m1 ≥ t− s+ 1. Thus,

|E[ξi,t(AT , hT )yj,t−rξi,s(AT , hT )yj,s−r]|

≤
hT +s−t∑
`1=1

t−r∑
m1=t−s+r

E [|(βi(AT , hT − `1)′ut+`1)(βi(AT , hT − `1 − (t− s))′ut+`1)

× (βj(AT ,m1 − r)′um1−r)(βj(AT ,m1 − r − (t− s))′um1−r)|]

=
hT +s−t∑
`1=1

t−r∑
m1=t−s+r

‖βi(AT , hT − `1)‖ × ‖βi(AT , hT − `1 − (t− s))‖ × ‖βj(AT ,m1 − r)‖

× ‖βj(AT ,m1 − r − (t− s))‖ × E
[
‖ut+`1‖2 × ‖um1−r‖2

]
(by Cauchy-Schwarz)

≤ C2
1E(‖u0‖4)

hT +s−t∑
`1=1

t−r∑
m1=t−s+r

‖βi(AT , hT − `1)‖ × ‖βi(AT , hT − `1 − (t− s))‖

× ρ∗j(AT , ε)2(m1−r)−(t−s)

(since ‖βj(AT , h)‖ ≤ C1ρ
∗
j(AT , ε)h for any j, h by Lemma E.4)

≤ C2
1 × E(‖u0‖4)× ρ∗j(AT , ε)(t−s)

hT +s−t∑
`1=1

‖βi(AT , hT − `1)‖ × ‖βi(AT , hT − `1 − (t− s))‖


×

 t−r∑
m1=t−s+r

ρ∗j(AT , ε)2[m1−r−(t−s)]


≤ E(‖u0‖4)× ρ∗j(A, ε)(t−s)

hT +s−t∑
`1=1

Bp
i (AT , hT − `1 − (t− s))ρ∗i (A, ε)(t−s)


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×

 t−r∑
m1=t−s+r

ρ∗j(AT , ε)2[m1−r−(t−s)]


(using Lemma E.4 and the definition of Bp

i (AT , hT − `1 − (t− s)) in Lemma E.9 below)

= E(‖u0‖4)× ρ∗j(AT , ε)(t−s)ρ∗i (AT , ε)(t−s)

hT−1−(t−s)∑
`=0

Bp
i (AT , `)

(s−2r∑
m=0

ρ∗j(AT , ε)2m
)

≤ E(‖u0‖4)× ρ∗j(AT , ε)(t−s)ρ∗i (AT , ε)(t−s)

hT−1∑
`=0

Bp
i (AT , `)

T−hT∑
m=0

ρ∗j(A, ε)2m


≤ E(‖u0‖4)× ρ∗j(AT , ε)(t−s)ρ∗i (AT , ε)(t−s)

hT−1∑
`=0

Bp
i (AT , `)

 g(ρ∗j(AT , ε), T − hT )2

≤ E(‖u0‖4)× ρ∗j(AT , ε)(t−s)ρ∗i (AT , ε)(t−s)

× C2p

hT−1∑
`=0
‖βi(AT , `)‖2

 g(ρ∗j(AT , ε), T − hT )2

(by Lemma E.9 below).

We have derived the bound in the above display under the assumption s ∈ (t − hT , t], but
by symmetry, it also applies when t ∈ (s− hT , s] if we replace (t− s) with |t− s|. Inserting
into (S5), we get

E

( ∑T−hT
t=1 ξi,t(AT , hT )yj,t−r

(T − hT )v(AT , hT , w)g(ρ∗j(AT , ε), T − hT )

)2
≤ C2p×

E(‖u0‖4)
(T − hT )2

×
∑hT−1
`=0 ‖βi(AT , `)‖2

v(AT , hT , w)2

T−hT∑
t=1

T−hT∑
s=1

1(|s− t| < hT )
(
ρ∗j(AT , ε)ρ∗i (AT , ε)

)|t−s|
≤ C2p

‖w‖2 × δ × λmin(Σ) ×
E(‖u0‖4)
(T − hT )2 ×

T−hT∑
t=1

T−hT∑
s=1

1(|s− t| < hT )
(
ρ∗j(AT , ε)ρ∗i (AT , ε)

)|t−s|
(where we have used the lower bound of Lemma E.5)

= C2p

‖w‖2 × δ × λmin(Σ) ×
E(‖u0‖4)
(T − hT ) ×

∑
|m|<hT

(
1− |m|

T − hT

)(
ρ∗j(AT , ε)ρ∗i (AT , ε)

)|m|

≤ C2p

‖w‖2 × δ × λmin(Σ) ×
E(‖u0‖4)
(T − hT ) ×

hT−1∑
m=0

(
ρ∗j(AT )ρ∗i (AT , ε)

)m
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≤ C2p

‖w‖2 × δ × λmin(Σ) ×
E(‖u0‖4)
(T − hT ) ×

hT−1∑
m=0

ρ∗j(AT , ε)2m

1/2hT−1∑
m=0

ρ∗i (AT , ε)2m

1/2

(by Cauchy-Schwarz)

≤ C2p× E(‖u0‖4)
‖w‖2 × δ × λmin(Σ) ×

(
g(ρ∗i (AT , ε), T − hT )

T − hT

)1/2 (g(ρ∗j(AT , ε), T − hT )
T − hT

)1/2

→ 0.

Lemma E.9. Consider any lag polynomial A(L) of order p with autoregressive coefficients
A = (A1, . . . , Ap). Then for any h = 1, 2, . . . ,

∑h−1
`=0 B

p
i (A, `)∑h−1

`=0 ‖βi(A, `)‖
2 ≤ C2p,

where

Bp
i (A, `) ≡ C2

p−1∑
b=0

(‖βi(A, `)‖ × ‖βi(A, `− b)‖) ,

and we define βi(A, `) = 0 whenever ` < 0. Here C2 is the constant defined in Lemma E.4.

Proof. Changing the order of summation, we have

h−1∑
`=0

p−1∑
b=0
‖βi(A, `)‖ × ‖βi(A, `− b)‖


=

p−1∑
b=0

(
h−1∑
`=0
‖βi(A, `)‖ × ‖βi(A, `− b)‖

)

≤
p−1∑
b=0

(
h−1∑
`=0
‖βi(A, `)‖2

)1/2

×
(
h−1∑
`=0
‖βi(A, `− b)‖2

)1/2

≤
p−1∑
b=0

(
h−1∑
`=0
‖βi(A, `)‖2

)

(since ‖βi(A, `− b)‖ = 0 for `− b < 0)

= p

(
h−1∑
`=0
‖βi(A, `)‖2

)
.

Therefore,
h−1∑
`=0

Bp
i (A, `) ≤ C2p

(
h−1∑
`=0
‖βi(A, `)‖2

)
.
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E.5 Proof of Lemma A.5

We consider each statement separately.

Part (i). Since E(utu′t) = Σ by definition, this statement follows from a standard ap-
plication of Chebyshev’s inequality, exploiting the summability of the autocovariances of
{ut ⊗ ut}, cf. Assumption 2(ii). See for example Davidson (1994, Thm. 19.2).

Part (ii). Using ût(h)− ut = (A− Â(h))Xt, we get
∥∥∥∥∥∥Σ̂(hT )− 1

T − hT

T−hT∑
t=1

utu
′
t

∥∥∥∥∥∥
≤ 1
T − hT

T−hT∑
t=1
‖ût(hT )ût(hT )′ − utu′t‖

≤ 1
T − hT

T−hT∑
t=1
‖ût(hT )− ut‖2 + 2

T − hT

T−hT∑
t=1
‖(ût(hT )− ut)u′t‖

≤ ‖G(AT , T − hT , ε)(Â(hT )− AT )‖2 × 1
T − hT

T−hT∑
t=1
‖G(AT , T − hT , ε)−1Xt‖2

+ 2× ‖G(AT , T − hT , ε)(Â(hT )− AT )‖ × 1
T − hT

T−hT∑
t=1
‖G(AT , T − hT , ε)−1Xtu

′
t‖.

Lemma E.3, Lemma A.3(iii), Lemma E.8, and an application of Markov’s inequality imply
that the last expression above is

oPAT
(1)×OPAT

(1) + 2× oPAT
(1)× oPAT

(1) = oPAT
(1).

E.6 Proof of Lemma A.6

We would like to show ς̂
p→

PAT

1, where

ς̂ ≡ 1
T − hT

T−hT∑
t=1

ξi,t(AT , hT )2(w′ut)2

v(AT , hT , w)2 .

Note that the summands could be serially correlated under our assumptions. We establish
the desired convergence in probability by showing that the variance of ς̂ tends to 0 (since its
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mean is 1). Observe that

Var(ς̂) = 1
(T − hT )2v(AT , hT , w)4

T−hT∑
t=1

T−hT∑
s=1

Cov
(
ξi,t(AT , hT )2(w′ut)2, ξi,s(AT , hT )2(w′us)2

)
= 1

(T − hT )v(AT , hT , w)4

×
∑

|m|<T−hT

(
1− |m|

T − hT

)
Cov

(
ξi,0(AT , hT )2(w′u0)2, ξi,m(AT , hT )2(w′um)2

)

≤ 2
(T − hT )v(AT , hT , w)4

T−hT∑
m=0
|ΓT (m)|, (S6)

where we define

ΓT (m) ≡ Cov
(
ξi,0(AT , hT )2(w′ui,0)2, ξi,m(AT , hT )2(w′um)2

)
, m = 0, 1, 2, . . .

By expanding the squares ξ0(ρ, h)2 and ξm(ρ, h)2, we obtain

ΓT (m) =
hT∑
`1=1

hT∑
`2=1

hT∑
`3=1

hT∑
`4=1

Cov
(

(βi(AT , hT − `1)′u`1)(βi(AT , hT − `2)′u`2)(w′u0)2,

(βi(AT , hT − `3)′um+`3)(βi(AT , hT − `4)′um+`4)(w′um)2
)
.

Consider any summand on the right-hand side above defined by indices (`1, `2, `3, `4). If
`1 = `2, then Assumption 1 implies that the covariance in the summand equals zero whenever
`3 6= `4, since in this case at most one of the subscripts m+ `3 or m+ `4 can equal `1 (= `2).
Thus, if `1 = `2, then the summand can only be nonzero when `3 = `4. If instead `1 6= `2, then
Assumption 1 implies that the summand can only be nonzero when {`1, `2} = {m+`3,m+`4},
which in turn requires that m < hT . Putting these facts together, we obtain

|ΓT (m)|

≤
hT∑
`1=1

hT∑
`3=1

∣∣∣Cov
(
(βi(AT , hT − `1)′um+`1)2(w′um)2, (βi(AT , hT − `3)′u`3)2(w′u0)2

)∣∣∣ (S7)

+ 1(m < hT )2
hT∑
`1=1

∑
`2 6=`1

∣∣∣Cov
(
(βi(AT , hT − `1)′u`1)(βi(AT , hT − `2)′u`2)(w′um)2,

(βi(AT , hT − (`1 −m))′u`1)(βi(AT , hT − (`2 −m))′u`2)(w′u0)2
)∣∣∣ . (S8)

21



Let Γ̃1,T (m) and Γ̃2,T (m) denote expressions (S7) and (S8), respectively. We will now bound∑T−hT
m=0 Γ̃1,T (m) and ∑T−hT

m=0 Γ̃2,T (m), so that we can ultimately insert these bounds into (S6).

Bound on ∑T−hT
m=0 Γ̃1,T (m). We first bound the term in expression (S7). To do this, we

define the unit-norm vectors

ωAT ,hT ,` ≡ βi(AT , hT − `)/‖βi(AT , hT − `)‖, ωw ≡ w/‖w‖.

By Lemma E.4, the term
∣∣∣Cov

(
(βi(AT , hT − `1)′um+`1)2(w′um)2, (βi(AT , hT − `3)′u`3)2(w′u0)2

)∣∣∣
is bounded above by

‖w‖4C4
1ρ
∗
i (AT , ε)2(hT−`1)+2(hT−`3)

∣∣∣Cov
(
(ω′AT ,hT ,`1

um+`1)2(ω′wum)2, (ω′AT ,hT ,`3
u`3)2(ω′wu0)2

)∣∣∣ .
Since AT ∈ A(0, ε, C), we have ρ∗i (AT , ε) ≤ 1, so

T−hT∑
m=0

Γ̃1,T (m)

≤ ‖w‖4C4
1

T−hT∑
m=0

hT∑
`1=1

hT∑
`3=1

ρ∗i (AT , ε)2(hT−`3)

×
∣∣∣Cov

(
(ω′AT ,hT ,`1

um+`1)2(ω′wum)2, (ω′AT ,hT ,`3
u`3)2(ω′wu0)2

)∣∣∣
≤ ‖w‖4C4

1

hT∑
b1=1

ρ∗i (AT , ε)2(hT−b1)

×

 ∞∑
b2=−∞

∞∑
b3=−∞

sup
‖ωj‖=1

∣∣∣Cov
(
(ω1
′ub1)2(ω′2u0)2, (ω′3ub3+b2)2(ω′4ub3)2

)∣∣∣
 . (S9)

Consider the double sum in large parentheses above. If we expand the various squares of the
form (ω′jut)2, then the double sum can be bounded above by at most 4n2 terms of the form

∞∑
b2=−∞

∞∑
b3=−∞

|Cov (ũj1,b1ũj2,0, ũj3,b3+b2ũj4,b3)| , (S10)

where ũt = (ũ1,t, . . . , ũn2,t)′ ≡ ut⊗ut, and j1, j2, j3, j4 ∈ {1, 2, . . . , n2} are summation indices.
By Assumption 2(ii), the process {ũt} has absolutely summable cumulants up to order four.
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We can therefore show there exists a constant K ∈ (0,∞) such that the large parenthesis
(S9) is bounded above by K.3 Consequently,

T−hT∑
m=0

Γ̃1,T (m) ≤ ‖w‖4C4
1K

hT∑
b1=1

ρ∗i (AT , ε)2(hT−b1) = ‖w‖4C4
1K

hT−1∑
`=0

ρ∗i (AT , ε)2`.

Bound on ∑T−hT
m=0 Γ̃2,T (m). Expression (S8) can be bounded above by

1(m < hT )2
hT∑
`1=1

∑
`2 6=`1

E
[
|βi(AT , hT − `1)′u`1 | × |βi(AT , hT − `2)′u`2| × (w′um)2

|βi(AT , hT − (`1 −m))′u`1| × |βi(AT , hT − (`2 −m))′u`2| × (w′u0)2
]
.

Applying Cauchy-Schwarz, we get the upper bound

1(m < hT )2
hT∑
`1=1

∑
`2 6=`1

(
‖w‖4 × ‖βi(AT , hT − `1)‖ × ‖βi(AT , hT − `2)‖

× ‖βi(AT , hT − (`1 −m))‖ × ‖βi(AT , hT − (`2 −m))‖

× E
[
‖u`1‖2 × ‖u`2‖2 × ‖um‖2 × ‖u0‖2

] )
.

3According to Brillinger (2001, Thm. 2.3.2),

Cov (ũj1,b1 ũj2,0, ũj3,b2 ũj4,b3) = Cov (ũj2,0, ũj3,b2) Cov (ũj1,b1 , ũj4,b3) + Cov (ũj2,0, ũj4,b3) Cov (ũj1,b1 , ũj3,b2)
+ Cum (ũj2,0, ũj1,b1 , ũj3,b2 , ũj4,b3) ,

where “Cum” denotes the joint fourth-order cumulant. Thus, the expression (S10) is bounded above by( ∞∑
b2=−∞

|Cov (ũj2,0, ũj3,b2)|
)( ∞∑

b3=−∞
|Cov (ũj1,b1 , ũj4,b3)|

)

+
( ∞∑

b2=−∞
|Cov (ũj1,b1 , ũj3,b2)|

)( ∞∑
b3=−∞

|Cov (ũj2,0, ũj4,b3)|
)

+
∞∑

b1=−∞

∞∑
b2=−∞

∞∑
b3=−∞

|Cum(ũj2,0, ũj1,b1 , ũj3,b2 , ũj4,b3)| .

The third term above is finite by Assumption 2(ii), since ũt ≡ ut⊗ut has absolutely summable cumulants up
to order 4. Consider the first term above (the second term is handled similarly). The stationarity of ũt implies
that this term equals

(∑∞
b2=−∞ |Cov (ũj2,0, ũj3,b2)|

) (∑∞
`=−∞ |Cov (ũj1,0, ũj4,`)|

)
. By Assumption 2(ii), the

autocovariances of {ũt} are absolutely summable. This implies the above display is bounded. Thus, we have
shown that there exists a constant K(j1, j2, j3, j4) (which only depends on the fixed data generating process
for {ut}) that bounds the expression (S10). Picking the largest constant over all summation indices gives
the desired result.
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Another application of the Cauchy-Schwarz inequality gives

E
[
‖u`1‖2 × ‖u`2‖2 × ‖um‖2 × ‖u0‖2

]
≤ E[ ‖u8

t‖ ].

Thus,

T−hT∑
m=0

Γ̃2,T (m)

≤ 2× E[ ‖u8
t‖ ]× ‖w‖4 ×

hT−1∑
m=0

hT∑
`1=1

hT∑
`2=1

(‖βi(AT , hT − `1)‖ × ‖βi(AT , hT − `2)‖

× ‖βi(AT , hT − (`1 −m))‖ × ‖βi(AT , hT − (`2 −m))‖) .

The bound in Lemma E.4 implies that

‖βi(AT , hT − `1)‖ × ‖βi(AT , hT − (`1 −m))‖

is less than or equal to

C2

p−1∑
b=0
‖βi(AT , hT − `1)‖ × ‖βi(AT , hT − `1 − b)‖︸ ︷︷ ︸

≡Bp
i (AT ,hT−`1)

×ρ∗i (AT , ε)m, (S11)

for a positive constant C2 that depends on p and ε. Thus,

T−hT∑
m=0

Γ̃2,T (m)

≤ 2× E[ ‖u8
t‖ ]× ‖w‖4 ×

hT−1∑
m=0

hT∑
`1=1

hT∑
`2=1

(
Bp
i (AT , hT − `1)×Bp

i (AT , hT − `2)× ρ∗i (AT , ε)2m
)

= 2× E[ ‖u8
t‖ ]× ‖w‖4

hT−1∑
`=0

ρ∗i (AT , ε)2`

hT−1∑
`=0

Bp
i (AT , `)

2

. (S12)

Conclusion of proof. Putting together (S6), (S7), (S8), and (S12), we get

Var(ς̂) ≤ 2‖w‖4

(T − hT )v(AT , hT , w)4

C4
1K

hT−1∑
`=0

ρ∗i (AT , ε)2`
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+ 2× E[ ‖u8
t‖ ]×

hT−1∑
`=0

ρ∗i (AT , ε)2`

hT−1∑
`=0

Bp
i (AT , `)

2


≤

 2C4
1K ×

∑hT−1
`=0 ρ∗i (AT , ε)2`

(T − hT )
(∑hT−1

`=0 ‖βi(A, `)‖
2
)2
δ2λmin(Σ)2

+ 2× E[ ‖u8
t‖ ]×∑hT−1

`=0 ρ∗i (AT , ε)2`

(T − hT )δ2λmin(Σ)2 ×

(∑hT−1
`=0 Bp

i (AT , `)
)2

(∑hT−1
`=0 ‖βi(A, `)‖

2
)2


(by the lower bound for v(AT , hT , w)2 derived in Lemma E.5)

≤
2
{(
C4

1K ×
∑hT−1
`=0 ρ∗i (AT , ε)2`

)
+
(
2× E[ ‖u8

t‖ ]× C2p×
∑hT−1
`=0 ρ∗i (AT , ε)2`

)}
(T − hT )δ2λmin(Σ)2

(where we have used ∑h−1
`=0 ‖βi(A, `)‖

2 ≥ ‖βi(A, 0)‖ = 1 and Lemma E.9)

= (2× C4
1K) + (4× E[ ‖u8

t‖ ]× C2p)
δ2λmin(Σ)2 ×

∑hT−1
`=0 ρ∗i (AT , ε)2`

T − hT
.

The final expression above tends to zero as T →∞, since

∑hT−1
`=0 ρ∗i (AT , ε)2`

T − hT
≤ g(ρ∗i (AT , ε), hT )2

T − hT
→ 0.

Thus, Var(ς̂)→ 0.

E.7 Proof of Lemma A.7

We prove only the first statement of the lemma, as the proof is completely analogous for the
second part. Define the unit-norm vectors

ωA,h,` ≡ βi(A, h− `)/‖βi(A, h− `)‖, ωw ≡ w/‖w‖.

In a slight abuse notation, throughout the proof of this lemma we will sometimes write
βi(h− `) instead of βi(A, h− `). Expanding the four-fold product ξi,t(A, h)4, we obtain

E[ξi,t(A, h)4(a′ut)4]

=
h∑

`1=1

h∑
`2=1

h∑
`3=1

h∑
`4=1
‖βi(h− `1)‖ × ‖βi(h− `2)‖ × ‖βi(h− `3)‖ × ‖βi(h− `4)‖

× E
[
(ω′A,h,`1ut+`1)× (ω′A,h,`2ut+`2)× (ω′A,h,`3ut+`3)× (ω′A,h,`4ut+`4)× (w′ut)4

]
. (S13)
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By Assumption 1, the summands above equal zero if one of the indices `j is different from
the three other indices. Hence, the only possibly nonzero summands are those for which the
four indices appear in two pairs, e.g., `1 = `3 and `2 = `4. The typical nonzero summand
can thus be written in the form

‖βi(h− `)‖2‖βi(h−m)‖2E
[
(ω′A,h,`ut+`)2 × (ω′A,h,mut+m)2 × (w′ut)4

]
where `,m ∈ {1, . . . , h}. For given ` and m, this specific type of summand is obtained
precisely when either (i) `1 = `2 = ` and `3 = `4 = m, or (ii) `1 = `3 = ` and `2 = `4 = m,
or (iii) `1 = `4 = ` and `2 = `3 = m, or (iv) `1 = `2 = m and `3 = `4 = `, or (v) `1 = `3 = m

and `2 = `4 = `, or (vi) `1 = `4 = m and `2 = `3 = `. That is, there are six summands in
(S13) of this form. Thus,

E[ξi,t(A, h)4(w′ut)4] = 6
h∑
`=1

h∑
m=1

(
‖βi(h− `)‖2‖βi(h−m)‖2

× E
[
(ω′A,h,`ut+`)2 × (ω′A,h,mut+m)2 × (w′ut)4

])
≤ 6‖w‖4E(‖ut‖8)

h∑
`=1

h∑
m=1
‖βi(h− `)‖2‖βi(h−m)‖2

(by applying Cauchy-Schwarz twice)

= 6‖w‖4E(‖ut‖8)
(
h−1∑
`=0
‖βi(A, h− `)‖2

)2

.

It follows from Lemma E.5 that

E
[(
v(A, h, w)−1ξt(A, h)ut

)4
]
≤ 6E(‖ut‖8)
δ2λmin(Σ)2 .
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