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It has recently come to our attention that the high-level Assumption 3 on p. 1805 of Mon-
tiel Olea and Plagborg-Møller (2021) (henceforth “MOPM”) is more restrictive than in-
tended. As stated, the assumption allows for any VAR(1) process, both stationary and
nonstationary, as well as VAR(p) processes with roots bounded away from the nonstationary
part of the parameter space. However, several nonstationary VAR(p) models with p > 1 are
ruled out.

In this note, we therefore propose a modification of Assumption 3 that can be verified
for a wide range of VAR(p) models whose autoregressive parameters are contained in the
parameter space defined on p. 1804 in MOPM. Our modified assumption is similar to
Assumption 3 in the recent paper by Xu (2022), who applies the appropriate “Dickey-Fuller”
transformation to the regressors.

If our modified Assumption 3 replaces the one in MOPM, all theoretical conclusions in
our paper go through as originally stated. All econometric procedures, simulation results,
efficiency calculations, and verbal discussions in our original paper are unaffected by the
modification of Assumption 3.

Modified assumption

We first state and discuss the modified assumption, and then we indicate the corresponding
minor changes to the proofs.

Our modification simply amounts to redefining the np × np matrix G(A, h, ϵ) introduced
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on p. 1805 in MOPM. In place of the old definition, consider

G(A, h, ϵ) =



In 0n×n 0n×n 0n×n . . . 0n×n

In − diag(ρ̃(A, ϵ)) 0n×n 0n×n . . . 0n×n

0n×n In − diag(ρ̃(A, ϵ)) 0n×n . . . 0n×n

. . . . . .
0n×n . . . . . . 0n×n In − diag(ρ̃(A, ϵ))



−1

×

diag(g(ρ∗
1(A, ϵ), h), . . . , g(ρ∗

n(A, ϵ), h)) 0n×n(p−1)

0n(p−1)×n In(p−1)

 ,

where both matrices above are np × np, and we define ρ̃(A, ϵ) ≡ (ρ̃1(A, ϵ), . . . , ρ̃n(A, ϵ))′

and ρ̃i(A, ϵ) ≡ sign(ρi(A)) max{|ρi(A)|, ϵ} for i = 1, . . . , n.1 Here and in the following we
use several objects defined on p. 1805 in MOPM; in particular, g(ρ, h)2 ≡ min{ 1

1−|ρ| , h},
ρ∗

i (A, ϵ) ≡ max{|ρi(A)|, 1 − ϵ/2}, and ρi(A) is the i-th potentially near-unity root for any
VAR coefficients A contained in the parameter space A(a, C, ϵ) defined on p. 1804 in MOPM.

Assumption 3 (modified). For any C > 0 and ϵ ∈ (0, 1),

lim
K→∞

lim
T →∞

inf
A∈A(0,C,ϵ)

PA

(
λmin

(
G(A, T, ϵ)−1

[
1
T

T∑
t=1

XtX
′
t

]
G(A, T, ϵ)−1′

)
≥ 1/K

)
= 1.

This modified assumption is identical to the old one, except for the definition of the
matrix G(A, T, ϵ). Define the quasi-differenced process ỹt(A, ϵ) ≡ (ỹ1,t(A, ϵ), . . . , ỹn,t(A, ϵ))′

by ỹi,t(A, ϵ) ≡ yi,t − ρ̃i(A, ϵ)yi,t−1 for all i and t. Our modified Assumption 3 then requires
the sample second moment matrix of the scaled and transformed np-dimensional process

G(A, T, ϵ)−1Xt =
(

y1,t−1

g(ρ∗
1(A, ϵ), T ) , . . . ,

yn,t−1

g(ρ∗
n(A, ϵ), T ) , ỹt−1(A, ϵ)′, . . . , ỹt−p+1(A, ϵ)′

)′

to be asymptotically uniformly nonsingular. Note that if p = 1, then only the first n

elements appear in the above vector. It is standard to verify the asymptotic nonsingularity
of this sample second moment matrix for stationary VAR(p) parameter sequences A = AT ,
as well as for parameter sequences that have a single local-to-unity or unit root per series
yi,t, i = 1, . . . , n, as assumed in the parameter space in Definition 1 of MOPM (p. 1804).2

1Since |ρ̃i(A, ϵ)| ≥ ϵ, the first matrix in the above display is nonsingular.
2Note that g(ρ∗

i (AT , ϵ), T )−1 ∝ T −1/2 for local-to-unity or unit root sequences ρi(AT ).
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See for example Hamilton (1994, pp. 551–552) for the unit root case and Stock (1994, pp.
2754–2755) for the local-to-unity case. Verifying uniform nonsingularity requires additional
steps, as in Appendix C of MOPM.

Modified proofs

The only propositions or lemmas in MOPM (and the Supplemental Material) that rely on the
specific definition of the matrix G(A, h, ϵ) are Proposition 1 and Lemmas A.3, A.5, E.1, and
E.2.3 The proofs of these results go through unchanged, except that we must additionally
show that the following three statements hold for any j ∈ {1, . . . , n} and r ∈ {1, . . . , p − 1},
under the assumptions of Lemma A.3 in MOPM:

i) 1
(T −hT )1/2

∑T −hT
t=1 utỹj,t−r(AT , ϵ) = OPAT

(1).

ii) 1
(T −hT )v(AT ,hT ,w)

∑T −hT
t=1 ξ1,t(AT , hT )ỹj,t−r(AT , ϵ) = oPAT

(1).

iii) 1
T −hT

∑T −hT
t=1 (ỹj,t−r(AT , ϵ))4 = OPAT

(1).

Note that if |ρj(AT )| ≥ ϵ, then by Definition 1 in MOPM (p. 1804), ỹj,t(AT , ϵ) = yj,t −
ρj(AT )yj,t−1 can be viewed as a component of a VAR(p − 1) process with coefficients ÃT

contained in the uniformly stationary parameter space A(1, ϵ, C). The proof of Lemma E.8 in
MOPM (Supplemental Material pp. 14–15) then immediately implies that the expression on
the left-hand side of (i) has uniformly bounded second moment (simply substitute ỹj,t(AT , ϵ)
for yj,t in the proof). If on the other hand |ρj(AT )| ≤ ϵ, then 1

(T −hT )1/2
∑T −hT

t=1 utỹj,t−r(AT , ϵ) =
1

(T −hT )1/2
∑T −hT

t=1 utyj,t−r ±ϵ 1
(T −hT )1/2

∑T −hT
t=1 utyj,t−r−1, and the proof of Lemma E.8 in MOPM

shows that both these terms have uniformly bounded second moments. Statement (i) above
follows.

Similarly, statement (iii) above follows directly from Markov’s inequality and Lemma E.3
in MOPM (Supplemental Material p. 8). Again, in the case |ρj(AT )| ≤ ϵ, we use convexity
to derive the bound (ỹj,t−r(AT , ϵ))4 ≤ 8(y4

j,t−r +ϵ4y4
j,t−r−1) and treat the two terms separately.

Finally, to show statement (ii) above, it suffices by Chebyshev’s inequality to show that
the variance of the left-hand side is uniformly o(1). For the case, |ρj(AT )| ≤ ϵ we can write

1
(T −hT )v(AT ,hT ,w)

∑T −hT
t=1 ξ1,t(AT , hT )ỹj,t−r(AT , ϵ) = 1

(T −hT )v(AT ,hT ,w)
∑T −hT

t=1 ξ1,t(AT , hT )yj,t−r ±
ϵ 1

(T −hT )v(AT ,hT ,w)
∑T −hT

t=1 ξ1,t(AT , hT )yj,t−r−1 and directly apply the proof of Lemma A.4 in

3See specifically the proof steps on p. 1812 and Supplemental Material pp. 7–8, 13–14, and 19. Note
that certain expressions involving G(A, h, ϵ) should be transposed, as should be clear from context.
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MOPM (Supplemental Material pp. 15–18) to the two terms separately. For the case
|ρj(AT )| ≥ ϵ, the variance of the left-hand side in (ii) is given by

1
(T − hT )2

T −hT∑
t=1

T −hT∑
s=1

E[ξ1,t(AT , hT )ỹj,t−r(AT , ϵ)ξ1,s(AT , hT )ỹj,s−r(AT , ϵ)]
v(AT , hT , w)2 .

We now argue that the summands in the double sum are bounded by a constant times
(1 − ϵ)|t−s|, which yields the desired conclusion. Consider the case t ≥ s (the case t < s

follows by symmetry). As argued above, we can write ỹj,t(AT , ϵ) = ∑t
ℓ=1 βj(ÃT , t − ℓ)′uℓ,

where ∥βj(ÃT , ℓ)∥ ≤ C(1 − ϵ)ℓ (recall that initial conditions are zero). Assumption 1 in
MOPM (p. 1793) implies

E[ỹj,s−r(AT , ϵ)ỹj,t−r(AT , ϵ) | us+1, us+2, . . . ]

= E
[
ỹj,s−r(AT , ϵ)

s∑
ℓ=1

βj(ÃT , t − r − ℓ)′uℓ

∣∣∣∣ us+1, us+2, . . .
]
,

where we define βj(ÃT , ℓ) = 0n×1 for all ℓ < 0. Thus,

|E[ξ1,t(AT , hT )ỹj,t−r(AT , ϵ)ξ1,s(AT , hT )ỹj,s−r(AT , ϵ)]|

= |E [ξ1,t(AT , hT )ξ1,s(AT , hT )E{ỹj,t−r(AT , ϵ)ỹj,s−r(AT , ϵ) | us+1, us+2, . . . }]|

=
∣∣∣∣∣E
[
ξ1,t(AT , hT )ξ1,s(AT , hT )ỹj,s−r(AT , ϵ)

s∑
ℓ=1

βj(ÃT , t − r − ℓ)′uℓ

]∣∣∣∣∣
≤

s∑
ℓ=1

∥βj(ÃT , t − r − ℓ)∥E [|ξ1,t(AT , hT )ξ1,s(AT , hT )ỹj,s−r(AT , ϵ)| ∥uℓ∥]

≤
s∑

ℓ=1
∥βj(ÃT , t − r − ℓ)∥ × max

τ1,τ2,τ3≤T

(
E[ξ1,τ1(AT , hT )4]2 × E[ỹj,τ2(AT , ϵ)4] × E[∥uτ3∥4]

)1/4
.

Using Assumption 2, Lemma A.7, and Lemma E.3 in MOPM (pp. 1805 and 1815, and
Supplemental Material p. 8), we therefore have

|E[ξ1,t(AT , hT )ỹj,t−r(AT , ϵ)ξ1,s(AT , hT )ỹj,s−r(AT , ϵ)]|
v(AT , hT , w)2 ≤ constant ×

(
s∑

ℓ=1
∥βj(ÃT , t − r − ℓ)∥

)

≤ constant ×
(

s∑
ℓ=1

(1 − ϵ)t−r−ℓ

)
≤ constant × (1 − ϵ)t−s,

where the constants do not depend on j, r, s, t, hT , or AT .
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