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This talk

• Selective summary (manifesto?) of recent research about estimation/inference for

θh ≡ E [yt+h | xt = 1] − E [yt+h | xt = 0], h = 0, 1, 2, . . .

• Comparison of semi-structural estimation procedures:

• Local projections (LP), vector autoregressions (VAR), shrinkage variants (Bayesian, smoothing).

• Large-sample equivalence, but finite-sample trade-offs:

• Point estimation: bias vs. variance.

• Inference: different notions of confidence interval coverage.

• Point out areas for future research.
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Assumptions

• For simplicity, focus on simple case where xt (shock of interest) is. . .

1 observed.

2 independent of all past data.

3 mean = 0, variance = 1.

• Denote the full data vector by Yt = (xt , yt , . . . )′. Assume stationary.

• Abstract from any deterministic terms.

• These assumptions can be relaxed.
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Impulse responses estimators
• VAR estimator: extrapolates θ̂h from first p sample autocov’s. Sims (1980)

1 Estimate model

Yt =
p∑

ℓ=1
ÂℓYt−ℓ + ût , Σ̂ = 1

T

T∑
t=1

ût û′
t .

2 θ̂h = e′
2Ψ̂hν̂, where ν̂ = chol(Σ̂)e1, and we iterate

Ψ̂h =
min{p,h}∑

ℓ=1
ÂℓΨ̂h−ℓ, h = 1, 2, . . . , Ψ̂0 = I.

• LP estimator: direct projection, separately for each h. Jordà (2005)

yt+h = θ̂hxt +
p∑

ℓ=1
δ̂′

ℓ,hYt−ℓ + êt,h.
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LP and VAR estimate the same impulse responses

• In population, LP and VAR estimate the same impulse responses:

plim
T→∞

θ̂LP
h = plim

T→∞
θ̂VAR

h = Proj[yt+h | xt = 1] − Proj[yt+h | xt = 0] ≡ θh

for all horizons h ≤ p. P-M & Wolf (2021)

• Intuition:

1 θ̂VAR
h = MSE-optimal forecast given model-implied autocov’s out to horizon h.

2 VAR(p) estimator consistently estimates true autocov’s Cov(Yt , Yt−ℓ) for ℓ ≤ p.

3 LP estimates the MSE-optimal forecast by definition.

• Note: Result does not assume any particular parametric model (e.g., linear or VAR(p)).
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Implications of large-sample equivalence

1 LP ≈ VAR at short horizons h, but not necessarily for h > p.

2 LP IRF ≈ VAR IRF with sufficiently large p.

• In fact, estimators are asymptotically equivalent as p, T → ∞. Xu (2022)

3 LP and VAR are not conceptually distinct paradigms. Just two techniques for estimating
projections with shared large-sample estimand.

4 Identification ⊥ estimation: Any SVAR identification procedure can be implemented
using LP and vice versa (also when xt is not observed).

• Short-run/long-run zero restrictions, sign restrictions, narrative restrictions, higher moments.

5 LP is not more “robust to misspecification” than VAR (unless this means sensitivity to p).
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Finite-sample bias-variance trade-off

• At horizons h > p, we face non-trivial bias-variance trade-off:

• VAR extrapolates longer-run responses from first p autocov’s. Low variance, potentially high
bias if DGP ̸= VAR(p).

• LP does not extrapolate. High variance, low bias.

• In ongoing simulation project, my coauthors and I explore this trade-off across 1,000s of
empirically calibrated DGPs (caveat: stationarity). Li, P-M & Wolf (2022)
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Bias Standard deviation

Medians across 6,000 DGPs. Source: Li, P-M & Wolf (2022).
8



Improving the trade-off through shrinkage/penalization

• Shrinkage/penalization: nudge least-squares LP/VAR estimates towards a priori more
reasonable values.

• Bayesian VAR: shrink towards impulse responses for independent random walks or white noise.
Doan, Litterman & Sims (1984)

• Smoothness: shrink LP towards impulse responses that are smoother functions of h.
Shiller (1973); P-M (2016); Barnichon & Brownlees (2019)

• Functional form: shrink LP towards VAR-implied impulse responses or towards exponential
shapes. Barnichon & Matthes (2018); Miranda-Aggripino & Ricco (2021)

• Introduces some bias (unless prior is exactly right) in order to lower variance.

• Degree of shrinkage chosen based on Bayesian considerations or frequentist objective fct.

9



LP preferred over Penalized LP VAR preferred over BVAR

Fraction of DGPs where estimators are preferred according to loss function =
ω × bias2 + (1 − ω) × variance. Source: Li, P-M & Wolf (2022).
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Confidence intervals for impulse responses

• VAR(p)-based CIs are non-robust at longer horizons (lack uniform validity).

• Consider AR(1): θ̂h = ρ̂h.

• Sampling distr’n highly sensitive to estimation error ρ̂ − ρ when h → ∞. Methods that are
tailored to the case h → ∞ don’t work at shorter horizons.
Wright (2000); Gospodinov (2004); Pesavento and Rossi (2007), Mikusheva (2012)

• Unit roots can cause non-normal limiting distr’n (not always). Want to avoid pre-testing for
unit roots. Inoue & Kilian (2002, 2020)

• In contrast, linearity of LP means normal approx’n works regardless of h and unit roots.
Dufour, Pelletier & Renault (2006); Breitung & Brüggemann (2019); Montiel Olea & P-M (2021)

• Important to control for lagged data so variance of OLS residual doesn’t blow up.

• Bonus: No need for Newey-West standard errors if we’re regressing on a shock xt .
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Can we shorten the CIs?

• LP (or VAR with large p) often yields wide CIs in practice. Can shrinkage help here?

• No, not if we insist on usual coverage notion: 1 − α coverage prob. separately at each horizon,
regardless of true impulse responses. Pratt (1961); Amstrong & Kolesár (2018)

• Intuition: Must guard against worst-case bias over parameter space.

• If we want narrower CIs, we have to relax the coverage requirement. Ideas:

• Control coverage prob. only on average across horizons. Armstrong, Kolesár & P-M (2022)

• Restrict parameter space (e.g., a priori upper bound on jaggedness of IRF).

• Coverage for simpler “surrogate IRF”. Genovese & Wasserman (2008)

• Don’t report confidence band. Think harder about what specific hypothesis we want to test.
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Impulse responses in nonlinear models

• What do linear LP/VAR estimate in nonlinear DGPs?

• Assume general nonlinear causal representation, given shock vector εt = (xt , ε2:n,t):

yt+h = gh(εt+h, . . . , εt+1, εt , Yt−1).

• E.g., binary outcomes, ZLB, discrete/smooth regime-switching, higher-order lag dynamics.

• Many possible definitions of nonlinear impulse responses. Linear LP/VAR do not
consistently estimate all of these. Gonçalves, Herrera, Kilian & Pesavento (2021, 2022)

• Consider manipulating xt from δ1 to δ2, while averaging over other shocks and the history:

θh(δ1, δ2) ≡ E
[
gh

(
εt+h, . . . , εt+1, (δ2, ε2:n,t), Yt−1

)
−gh

(
εt+h, . . . , εt+1, (δ1, ε2:n,t), Yt−1

)]
.
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Interpretation of linear LP/VAR estimand in nonlinear models

• If shocks are mutually and serially independent, and h ≤ p,

plim
T→∞

θ̂LP
h = plim

T→∞
θ̂VAR

h = lim
δ→0

∫ ∞

−∞
w(x)θh(x , x + δ)

δ
dx ,

where w(·) ≥ 0 and
∫ ∞

−∞ w(x) dx = 1.
Yitzhaki (1996); Angrist & Pischke (2009); Rambachan & Shephard (2021); Kolesár & P-M (2022)

• Linear LP/VAR estimate a meaningful summary: weighted average of scaled causal
effects θh(x , x + δ)/δ for infinitesimal shock size δ ≈ 0.

• Weight function w(·) does not depend on h. Estimable. Angrist & Krueger (1999)

• Ongoing work: implications for state/sign-dependence, compare with nonlinear estim’rs.
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Conclusions and areas for future research

• LP and VAR belong to a menu of procedures with shared large-sample estimand.

• Shrinkage/penalization usually improves bias-variance trade-off.

• Can new procedures further optimize trade-off? Does trade-off differ when we have panel data?

• However, shrinkage does not help confidence interval construction in the usual sense.

• Should we relax the coverage requirement, and how? How to deal with very long horizons?
Müller & Watson (2017, 2018)

• Linear LP/VAR useful also in nonlinear DGPs, but much work to be done.

• Do existing nonlinear estimators have interpretable estimands under misspecification? Can we
hope to accurately estimate specific nonlinearities in macro data, and how?
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