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Abstract: I propose to estimate structural impulse responses from macroeco-
nomic time series by doing Bayesian inference on the Structural Vector Moving
Average representation of the data. This approach has two advantages over Struc-
tural Vector Autoregressions. First, it imposes prior information directly on the
impulse responses in a flexible and transparent manner. Second, it can handle
noninvertible impulse response functions, which are often encountered in appli-
cations. Rapid simulation of the posterior distribution of the impulse responses
is possible using an algorithm that exploits the Whittle likelihood. The impulse
responses are partially identified, and I derive the frequentist asymptotics of the
Bayesian procedure to show which features of the prior information are updated
by the data. The procedure is used to estimate the effects of technological news
shocks on the U.S. business cycle.
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1 Introduction

Since Sims (1980), Structural Vector Autoregression (SVAR) analysis has been the most
popular method for estimating the impulse response functions (IRFs) of observed macro
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variables to unobserved shocks without imposing a specific equilibrium model structure.
Since the IRFs are only partially identified in the standard SVAR model, researchers often
exploit prior information to estimate unknown features of the IRFs. Despite its popularity,
the SVAR model has two well-known drawbacks. First, existing inference methods only
exploit certain types of prior information, such as zero or sign restrictions, and these methods
tend to implicitly impose unacknowledged restrictions. Second, the SVAR model does not
allow for noninvertible IRFs. These can arise when the econometrician does not observe all
variables in economic agents’ information sets, as in models with news or noise shocks. If the
structural shocks were observed, we could estimate IRFs using Local Projections as in Jordà
(2005), but here I follow the standard assumption that shocks are not directly observed.

I propose a new method for estimating structural IRFs: Bayesian inference on the Struc-
tural Vector Moving Average (SVMA) representation of the data. The parameters of this
model are the IRFs, so prior information can be imposed by placing a flexible Bayesian prior
distribution directly on the parameters of economic interest. The SVMA approach thus
overcomes the two drawbacks of SVAR analysis. First, researchers can flexibly and trans-
parently exploit all types of prior information about IRFs. Second, the SVMA model does
not restrict the IRFs to be invertible a priori, so the model can be applied to a wider range of
empirical questions than the SVAR model. To take the SVMA model to the data, I develop
a posterior simulation algorithm that uses the Whittle likelihood approximation to speed up
computations. As the IRFs are partially identified, I derive the frequentist asymptotic limit
of the posterior distribution to show which features of the prior are dominated by the data.

The first key advantage of the SVMA model is that prior information about IRFs –
the parameters of economic interest – can be imposed in a direct, flexible, and transparent
manner. In standard SVAR analysis the mapping between parameters and IRFs is indirect,
and the IRFs are estimated by imposing zero or sign restrictions on short- or long-run
impulse responses. In the SVMA model the parameters are the IRFs, so all types of prior
information/restrictions on IRFs may be exploited by placing a prior distribution on the
parameters. While many prior choices are feasible, I propose a multivariate Gaussian prior
that facilitates graphical prior elicitation. In particular, researchers can exploit valuable
prior information about the shapes and smoothness of IRFs.

The second key advantage of the SVMA model is that, unlike SVARs, it does not restrict
IRFs to be invertible a priori, which broadens the applicability of the method. The IRFs are
said to be invertible if the current shocks can be recovered as linear functions of current and
past – but not future – data. As shown in the literature, noninvertible IRFs arise in many
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interesting applications when the econometrician does not observe all variables in the eco-
nomic agents’ information sets, such as in macro models with news shocks or noisy signals.
A long-standing problem for standard SVAR methods is that they cannot consistently esti-
mate noninvertible IRFs because the SVAR model implicitly assumes invertibility. Proposed
fixes in the SVAR literature either exploit restrictive model assumptions or proxy variables
for the shocks, which are not always available. In contrast, the SVMA model is generally
applicable since its parametrization does not impose invertibility on the IRFs a priori.

The SVMA approach is most attractive when the number of variables/shocks is small,
and a preliminary structural model is available to guide prior elicitation for most of the
IRFs. It is both an advantage and a challenge of the SVMA approach in this paper that
the method requires a joint prior distribution on all IRFs. On the one hand, the SVMA
approach is up front about its prior assumptions about IRFs, whereas the full prior on IRFs
is typically not explicated in SVAR studies (for example, it is difficult to intuit what the
restriction to invertible IRFs means graphically). On the other hand, prior elicitation for
high-dimensional IRFs at all horizons of interest demands hard thought by the researcher.
Since identification relies on distinguishing between shocks a priori, there is a limit to how
diffuse the prior can be and still yield useful posterior inference. In the empirical application
I use a Dynamic Stochastic General Equilibrium (DSGE) model to guide the choice of prior,
an idea considered in a VAR context by Ingram & Whiteman (1994) and Del Negro &
Schorfheide (2004).1 SVMA analysis is especially challenging with variables that do not
appear in usual DSGE models, or when the researcher only has prior information about a
subset of the shocks.

To conduct posterior inference about the IRFs, I develop a posterior simulation algorithm
that exploits the Whittle (1953) likelihood approximation. Inference in the SVMA model
is challenging due to the flexible parametrization, which explains the literature’s preoccupa-
tion with the computationally convenient SVAR alternative. The computational challenges
of the SVMA model are solved by simulating from the posterior using Hamiltonian Monte
Carlo (HMC), a Markov Chain Monte Carlo method that is well-suited to high-dimensional
models. HMC evaluates the likelihood and score 100,000s of times in realistic applications.
Approximating the exact likelihood with the Whittle likelihood drastically reduces compu-
tation time because the Whittle score function can be computed highly efficiently. The

1Unlike Del Negro & Schorfheide, I do not explicitly specify a prior for the deep DSGE parameters, which
is then updated by the data; in fact, I deviate from the DSGE model when specifying part of the prior,
illustrating the flexibility of the approach.
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resulting algorithm is fast, asymptotically efficient, and easy to apply, while allowing for
both invertible and noninvertible IRFs.2

Having established a method for computing the posterior, I derive its frequentist large-
sample limit to show how the data updates the prior information. Because the IRFs are
partially identified, some aspects of the prior are not dominated by the data in large samples.3

I establish new results on the frequentist limit of the posterior distribution for a large class
of partially identified models under weaker conditions than assumed by Moon & Schorfheide
(2012). I then specialize the results to the SVMA model with a non-dogmatic prior, allowing
for noninvertibility. When the Whittle likelihood is used, the asymptotic form of the SVMA
posterior distribution does not depend on whether the true shocks are Gaussian or not.
Hence, as in finite-sample Gaussian inference, the asymptotic posterior depends on the data
only through the autocovariances, which in turn pin down the reduced-form (Wold) impulse
responses; all other information about structural impulse responses comes from the prior.

I demonstrate the practical usefulness of the SVMA method in an empirical application
that estimates the effects of technological news shocks on the U.S. business cycle. Technolog-
ical news shocks – signals about future productivity increases – have received much attention
in the recent macro literature. My analysis is the first to fully allow for noninvertible IRFs
without dogmatically imposing a particular DSGE model. I use data on productivity, out-
put, and the real interest rate, with the DSGE model in E. Sims (2012) serving as a guide
to prior elicitation. The posterior distribution indicates that the IRFs are severely nonin-
vertible, implying that no SVAR can deliver accurate estimates of the IRFs in this dataset.4

The news shock is found to be unimportant for explaining movements in TFP and GDP,
but it is an important driver of the real interest rate.

The SVMA approach facilitates imposing prior information concerning IRFs while allow-
ing for noninvertibility, but these advantages create some drawbacks. First, prior informa-
tion about IRFs in the SVMA model has implications for Granger casuality relationships
and structural elasticities. Users of the SVMA method should verify through simulation that
the implicit prior on these quantities is reasonable. Although the majority of the empirical
literature has considered prior information that explicitly concerns IRFs, the SVMA model
is not as natural a starting point if the available prior information concerns other parame-

2A drawback of the Whittle likelihood is that it cannot be easily extended to allow for stochastic volatility.
3Consistent with Phillips (1989), I use the term “partially identified” in the sense that a nontrivial function

of the parameter vector is point identified, but the full parameter vector is not.
4Section 2.7 argues that the data and prior in conjunction can be informative about the probability and

severity of noninvertibility.
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ters. Second, identification in the SVMA model is analogous to SVARs only if the IRFs are
restricted to being invertible. If noninvertibility cannot be ruled out a priori, identification
is more complicated than the traditional rotational indeterminacy in SVAR models (which
simply assume away noninvertibility), as is well known and further described in Section 2.4.

The SVMA estimation approach in this paper is more flexible than previous attempts
in the literature, and it appears to be the first method for conducting valid inference about
possibly noninvertible IRFs. Hansen & Sargent (1981) and Ito & Quah (1989) estimate
SVMA models without assuming invertibility by maximizing the Whittle likelihood, but
the only prior information they consider is a class of exact restrictions implied by rational
expectations. Barnichon & Matthes (2018) propose a Bayesian approach to inference in
SVMA models, but they consider a limited class of identification schemes and they center
the prior at SVAR-implied IRFs. None of these three papers develop valid procedures for
doing inference on IRFs that may be partially identified and noninvertible.5 Moreover, each
of the three papers imposes parametric functional forms on the IRFs, which I avoid.

A few SVAR papers have attempted to exploit general types of prior information about
IRFs, but these methods are less flexible than the SVMA approach. Furthermore, by as-
suming an underlying SVAR model, they automatically rule out noninvertible IRFs. Dwyer
(1998) works with an inflexible trinomial prior on IRFs. Gordon & Boccanfuso (2001) trans-
late a prior on IRFs into a “best-fitting” prior on SVAR parameters, but Kocięcki (2010)
shows that their method neglects the Jacobian of the transformation. Kocięcki’s fix requires
the transformation to be one-to-one, which limits the ability to exploit prior information
about long-run responses, shapes, and smoothness. Baumeister & Hamilton (2015b), who
improve on the method of Sims & Zha (1998), persuasively argue for an explicit Bayesian
approach to imposing prior information. Their Bayesian SVAR method allows for a fully
flexible prior on impact impulse responses, but they assume invertibility, and their prior on
longer-horizon impulse responses is implicit and chosen for computational convenience.

Section 2 reviews SVARs and then discusses the SVMA model, invertibility, identifica-
tion, and prior elicitation. Section 3 outlines the posterior simulation method. Section 4
empirically estimates the role of technological news shocks in the U.S. business cycle. Sec-
tion 5 contains asymptotic analysis. Section 6 concludes. Applied readers may want to focus
on Sections 2 to 4. Technical details and notational definitions are relegated to Appendix A.

5Standard errors in Hansen & Sargent (1981) are only valid when the prior restrictions point identify the
IRFs. Barnichon & Matthes (2018) approximate the SVMA likelihood using an autoregressive formula that
is explosive when the IRFs are noninvertible, causing serious numerical instability. Barnichon & Matthes
focus on invertible IRFs and extend the model to allow for asymmetric and state-dependent effects of shocks.
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Proofs can be found in Appendix B. A supplementary Online Appendix and Matlab code
for SVMA analysis are available on the author’s website.6

2 Model, invertibility, and prior elicitation

In this section I describe the SVMA model and my method for imposing priors on IRFs. I
define the SVMA model, whose parameters are IRFs. Because the SVMA model does not
restrict the IRFs to be invertible, it can be applied to more empirical settings than the SVAR
approach. The lack of identification of the IRFs necessitates the use of prior information,
which I impose by placing a prior distribution directly on the IRFs.

2.1 SVARs and their shortcomings

I begin with a brief review of Structural Vector Autoregressions (SVARs). The parametriza-
tion of the SVAR model makes it difficult to exploit certain types of valuable prior informa-
tion about impulse responses. Moreover, SVARs are ill-suited for empirical applications in
which the econometrician has less information than economic agents.

Modern dynamic macroeconomics attaches primary importance to impulse response func-
tions (IRFs). The economy is assumed to be driven by unpredictable shocks (impulses) whose
effect on observable macro aggregates is known as the propagation mechanism. Hansen &
Sargent (1981) and Watson (1994, Sec. 4) argue that – in a linear setting – this impulse-
propagation paradigm is captured by the Structural Vector Moving Average (SVMA) model

yt = Θ(L)εt, Θ(L) = ∑∞
`=0 Θ`L

`, (1)

where L denotes the lag operator, yt = (y1,t, . . . , yn,t)′ is an n-dimensional vector of observed
macro variables, and the structural shocks εt = (ε1,t, . . . , εn,t)′ form a martingale difference
sequence with E(εtε′t) = diag(σ)2, σ = (σ1, . . . , σn)′. Most linearized discrete-time macro
models can be written in SVMA form. Θij,`, the (i, j) element of Θ`, is the impulse response
of variable i to shock j at horizon ` after the shock’s initial impact. The IRF (Θij,`)`≥0 is
thus a key object of interest in macroeconomics (Ramey, 2016).

Most researchers follow Sims (1980) and estimate structural IRFs using a SVAR model

A(L)yt = Hεt, A(L) = In −
∑m
`=1A`L

`, (2)

6http://scholar.princeton.edu/mikkelpm/publications/irf_bayes
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wherem is a finite lag length, and the matrices A1, . . . , Am andH are each n×n. If the SVAR
is stable, the model (2) implies that the data has an SVMA representation (1). The IRFs
implied by the SVAR model are not identified from the data if the shocks are unobserved,
as is usually the case. While the VAR polynomial A(L) can be recovered from a regression
of yt on its lags, the impact matrix H and shock standard deviations σ are not identified.7

Thus, researchers attempt to exploit weak prior information about the model parameters to
estimate unknown features of the IRFs.

One drawback of the SVAR model is that its parametrization makes it difficult to exploit
certain types of prior information. The IRFs Θ(L) = A(L)−1H implied by the SVAR are
nonlinear functions of the parameters (A(L), H), and impulse responses Θij,` at long horizons
` are functions of the short-run autocovariances of the data. Hence, the shapes and smooth-
ness of the model-implied IRFs depend indirectly on the SVAR parameters, which impedes
the use of prior information about such features of the IRFs.8 Instead, SVAR papers impose
zero or sign restrictions on short- or long-run impulse responses to sharpen identification.9

Because of the indirect parametrization, such SVAR identification schemes are known to
impose additional unintended and unacknowledged prior information about IRFs.10

A second drawback of the SVAR model is the invertibility problem. The defining property
of the SVAR model (2) is that the structural shocks εt = (ε1,t, . . . , εn,t)′ can be recovered
linearly from the history (yt, yt−1, . . . ) of observed data, given knowledge of H and σ. This
invertibility assumption – that future data is not required to recover the current shocks – is
arbitrary and may be violated if the econometrician does not observe all variables relevant
to the decisions of forward-looking economic agents, as discussed in Section 2.3 below.

2.2 SVMA model

I overcome the drawbacks of the SVAR model by doing Bayesian inference directly on the
SVMA model (1). Since the parameters of this model are the IRFs themselves, prior infor-

7Denote the reduced-form (Wold) forecast error by ut|t−1 = yt − proj(yt | yt−1, yt−2, . . . ) = Hεt, where
“proj” denotes population linear projection. Let E(ut|t−1u

′
t|t−1) = JJ ′ be the (identified) Cholesky decom-

position of the forecast error covariance matrix. Then all that the second moments of the data reveal about
H and σ is that H diag(σ) = JQ for some unknown n× n orthogonal matrix Q (Uhlig, 2005, Prop. A.1).

8The shapes of the IRFs are governed by the magnitudes and imaginary parts of the roots of the VAR
lag polynomial A(L), and the roots are in turn complicated functions of the lag matrices A1, . . . , Am.

9Ramey (2016) and Stock & Watson (2016) review SVAR identification schemes.
10Consider the AR(1) model yt = A1yt−1 + εt with n = m = 1 and |A1| < 1. The IRF is Θ` = A`1, so the

sign restriction Θ1 ≥ 0 implicitly also restricts Θ` ≥ 0 for all ` ≥ 2. Increasing the lag length m makes the
model more flexible but the mapping from parameters to IRFs more complicated.
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mation can be imposed directly on the objects of interest.
The SVMA model assumes the observed time series yt = (y1,t, . . . , yn,t)′ are driven by

current and lagged values of unobserved, unpredictable shocks εt = (ε1,t, . . . , εn,t)′ (Hansen
& Sargent, 1981). For simplicity, I follow the SVAR literature in assuming that the number
n of shocks is known and equals the number of observed series.

Assumption 1 (SVMA model).

yt = Θ(L)εt, t ∈ Z, Θ(L) = ∑q
`=0 Θ`L

`, (3)

where L is the lag operator, q is the finite MA lag length, and Θ0,Θ1, . . . ,Θq are each n× n
coefficient matrices. The shocks are serially and mutually unpredictable: For each t and j,
E(εj,t | {εk,t}k 6=j, {εs}−∞<s<t) = 0 and E(ε2

j,t) = σ2
j , where σj > 0.

Assumption 1 imposes stationarity and linearity, as is standard in the SVAR literature.
The mean-zero assumption is purely for notational convenience. For now, I assume that the
moving average (MA) lag length q is finite and known. Section 2.8 discusses estimation of
q. To fit persistent data q must be large, which the computational strategy in Section 3 is
well-suited for. The methods in this paper can be extended to the case q =∞ by imposing
a parametric from on long-horizon IRFs, although I do not pursue this strategy for brevity.

The SVMA and SVAR models are related but not equivalent. If the matrix lag poly-
nomial Θ(L) has a one-sided inverse D(L) = ∑∞

`=0D`L
` = Θ(L)−1, the SVMA model (3)

is compatible with an underlying SVAR D(L)yt = εt (with lag length m = ∞). However,
the fact that I do not constrain Θ(L) to have a one-sided inverse is key to allowing for
noninvertible IRFs, cf. Section 2.3.

Unlike in SVARs, the parameters of the SVMA model have direct economic interpreta-
tions as impulse responses (see also Barnichon & Matthes, 2018). Denote the (i, j) element
of matrix Θ` by Θij,`. The index ` will be referred to as the horizon. For each j ∈ {1, . . . , n},
choose an ij ∈ {1, . . . , n} and normalize the impact response of variable ij to shock j:
Θijj,0 = 1. Then the parameter Θij,` is the expected response at horizon ` of variable i to
shock j, for a shock magnitude that raises variable ij by one unit on impact:11

Θij,` = E(yi,t+` | εj,t = 1)− E(yi,t+` | εj,t = 0). (4)

The impulse response function (IRF) of variable i to shock j is the (q+1)-dimensional vector

11Henceforth, moments of the data and shocks are implicitly conditioned on the parameters (Θ, σ).
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Figure 1: Hypothetical IRFs of two observed variables (along rows) to two unobserved shocks
(along columns). The upper right display, say, shows the IRF of the FFR to the demand shock.
The horizontal axes represent the impulse response horizon ` = 0, 1, . . . , q, where q = 10. IRFs in
the left column are normalized so a positive monetary policy (MP) shock yields a 100 basis point
increase in the FFR on impact; IRFs in the right column are normalized so a positive demand shock
yields a 1 percentage point increase in the output gap on impact.

(Θij,0,Θij,1, . . . ,Θij,q)′. In addition to the impulse response parameters Θij,`, the model
contains the shock standard deviation parameters σj, which govern the overall magnitudes
of the responses to one-standard-deviation impulses to εj,t.

The parameters are best understood through an example. Figure 1 plots a hypothetical
set of impulse responses for a bivariate application with two observed time series, the federal
funds rate (FFR) y1,t and the output gap y2,t, and two unobserved shocks, a monetary policy
shock ε1,t and a demand shock ε2,t. I impose the normalizations i1 = 1 and i2 = 2, so that
Θ21,3, say, is the horizon-3 impulse response of the output gap to a monetary policy shock
that raises the FFR by 1 unit (100 basis points) on impact. Each impulse response (the
crosses in the figure) corresponds to a distinct IRF parameter Θij,`. The joint visualization
of these parameters is familiar from theoretical macro modeling, facilitating prior elicitation.

Because I wish to estimate the IRFs using parametric Bayesian methods, I strengthen
Assumption 1 by imposing the working assumption that the structural shocks are Gaussian.

Assumption 2 (Gaussian shocks). εt i.i.d.∼ N(0, diag(σ2
1, . . . , σ

2
n)), t ∈ Z.
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The Gaussianity assumption places the focus on the unconditional second-order properties
of the data yt, as is standard in the SVAR literature, but the assumption is not central
to my analysis. Section 5 shows that if the Bayesian posterior distribution for the IRFs is
computed using the Whittle likelihood in Section 3 (thus imposing Gaussianity as a working
assumption), the resulting Bayesian inference is asymptotically valid (but possibly inefficient)
under weak non-parametric regularity conditions on the shock distribution.

2.3 Invertibility

One advantage of the SVMA model is that it allows for noninvertible IRFs. These arise
frequently in economic models in which the econometrician does not observe all variables in
economic agents’ information sets.

The IRF parameters are invertible if the current shock εt can be recovered as a linear
function of current and past – but not future – values (yt, yt−1, . . . ) of the observed data,
given knowledge of the parameters.12 In this sense, noninvertibility is caused by economically
important variables being omitted from the econometrician’s information set.13 An invertible
collection of IRFs can be rendered noninvertible by removing or adding observed variables.

Invertibility is not a compelling a priori restriction when estimating structural IRFs,
for two reasons. First, the definition of invertibility is statistically motivated and has little
economic content. For example, the reasonable-looking IRFs in Figure 1 happen to be
noninvertible, but minor changes to the lower left IRF in the figure render the IRFs invertible.
Second, interesting macro models generate noninvertible IRFs, such as models with news
shocks or noisy signals.14 Intuitively, upon receiving a signal about changes in policy or
economic fundamentals that will occur sufficiently far into the future, economic agents change
their current behavior much less than their future behavior. Thus, future – in addition to
current and past – data is needed to distinguish the signal from other concurrent shocks.

By their very definition, SVARs implicitly restrict IRFs to be invertible, as discussed in
Section 2.1. This fact has spawned an extensive literature on modifying standard SVAR

12Precisely, the IRFs are invertible if εt lies in the closed linear span of (yt, yt−1, . . . ). Invertible MA
representations are also referred to as “fundamental” in the literature. See Hansen & Sargent (1981, 1991)
and Lippi & Reichlin (1994) for extensive mathematical discussions of invertibility in SVMAs and SVARs.

13See Hansen & Sargent (1991), Sims & Zha (2006), Fernández-Villaverde, Rubio-Ramírez, Sargent &
Watson (2007), Forni, Giannone, Lippi & Reichlin (2009), Leeper, Walker & Yang (2013), Forni, Gambetti
& Sala (2014), and Lütkepohl (2014).

14See Alessi, Barigozzi & Capasso (2011, Sec. 4–6), Blanchard, L’Huillier & Lorenzoni (2013, Sec. II),
Leeper et al. (2013, Sec. 2), and Beaudry & Portier (2014, Sec. 3.2).
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methods. Some papers assume additional model structure,15 while others rely on the avail-
ability of proxy variables for the shocks.16 These methods only produce reliable results under
additional assumptions or if the requisite data is available, whereas my SVMA approach
yields valid Bayesian inference about IRFs regardless of invertibility.

The SVMA model (3) is parametrized directly in terms of IRFs and does not impose
invertibility a priori (Hansen & Sargent, 1981). Specifically, the IRFs are invertible if and
only if the polynomial z 7→ det(Θ(z)) has no roots inside the unit circle.17 In general, the
structural shocks can be recovered from past, current, and future values of the data:18

εt = D(L)yt, D(L) = ∑∞
`=−∞D`L

` = Θ(L)−1.

Under Assumption 1, the structural shocks can thus be recovered from multi-step forecast
errors: εt = ∑∞

`=0D`ut+`|t−1, where ut+`|t−1 = yt+` − proj(yt+` | yt−1, yt−2, . . . ) is the econo-
metrician’s (` + 1)-step error. Only if the IRFs are invertible do we have D` = 0 for ` ≥ 1,
in which case εt is a linear function of the one-step (Wold) error ut|t−1, as SVARs assume.

As an illustration, consider a univariate SVMA model with n = q = 1:

yt = εt + Θ1εt−1, Θ1 ∈ R, E(ε2
t ) = σ2. (5)

If |Θ1| ≤ 1, the IRF Θ = (1,Θ1) is invertible: The shock has the SVAR representation
εt = ∑∞

`=0(−Θ1)`yt−`, so it can be recovered using current and past values of the data. In
contrast, if |Θ1| > 1, no SVAR representation for εt exists: εt = −∑∞`=1(−Θ1)−`yt+`, so
future values of the data are required to recover the current structural shock. The latter case
is consistent with the SVMA model (5) but inconsistent with any SVAR model (2).19

15Lippi & Reichlin (1994) and Klaeffing (2003) characterize the range of noninvertible IRFs consistent with
a given estimated SVAR, while Mertens & Ravn (2010) and Forni, Gambetti, Lippi & Sala (2017) select a
single such IRF using additional model restrictions. Lanne & Saikkonen (2013) develop asymptotic theory
for a modified VAR model that allows for noninvertibility, but they do not consider structural estimation.

16Sims & Zha (2006), Fève & Jidoud (2012), Sims (2012), Beaudry & Portier (2014, Sec. 3.2), and Beaudry,
Fève, Guay & Portier (2015) argue that noninvertibility need not cause large biases in SVAR estimation if
forward-looking variables are available. Forni et al. (2009) and Forni et al. (2014) use information from large
panel data sets to ameliorate the omitted variables problem; based on the same idea, Giannone & Reichlin
(2006) and Forni & Gambetti (2014) propose tests of invertibility.

17That is, if and only if Θ(L)−1 is a one-sided lag polynomial, so that the SVAR representation Θ(L)−1yt =
εt obtains (Brockwell & Davis, 1991, Thm. 11.3.2, and Remark 1, p. 128).

18See Brockwell & Davis (1991, Thm. 3.1.3) and Lippi & Reichlin (1994, p. 312). D(L) = Θ(L)−1 may
not be well-defined in the knife-edge case where some roots of z 7→ det(Θ(z)) lie precisely on the unit circle.

19If |Θ1| > 1, an SVAR (with m =∞) applied to the time series (5) estimates the incorrect invertible IRF
(1, 1/Θ1) and (Wold) “shock” ut|t−1 = εt + (1−Θ2

1)
∑∞
`=1(−Θ1)−`εt−`.
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Bayesian analysis of the SVMA model can be carried out without reference to the invert-
ibility of the IRFs. The formula for the Gaussian SVMA likelihood function is the same in
either case, and standard state-space methods can be used to estimate the structural shocks,
cf. Sections 3 and 4 and Hansen & Sargent (1981). This contrasts sharply with SVAR
analysis, where special tools are needed to handle noninvertible specifications.

2.4 Identification

The IRFs in the SVMA model are only partially identified, as in SVAR analysis. The
lack of identification arises because the model treats all shocks symmetrically and because
noninvertible IRFs are not ruled out a priori.

Any two sets of IRFs that give rise to the same autocovariance function (ACF) are
observationally equivalent, assuming Gaussian shocks. Under Assumption 1, the matrix
ACF of the time series {yt} is given by

Γ(k) = E(yt+ky′t) =


∑q−k
`=0 Θ`+k diag(σ)2Θ′` if 0 ≤ k ≤ q,

0 if k > q.
(6)

Under Assumptions 1 and 2, the ACF completely determines the distribution of the observed
mean-zero strictly stationary Gaussian time series yt. The identified set S for the IRF
parameters Θ = (Θ0,Θ1, . . . ,Θq) and shock standard deviation parameters σ = (σ1, . . . , σn)′

is then a function of the ACF:

S(Γ) =

(Θ̃0, . . . , Θ̃q) ∈ ΞΘ, σ̃ ∈ Ξσ :
q−k∑
`=0

Θ̃`+k diag(σ̃)2Θ̃′` = Γ(k), 0 ≤ k ≤ q

 ,
where ΞΘ = {(Θ̃0, . . . , Θ̃q) ∈ Rn×n(q+1) : Θ̃ijj,0 = 1, 1 ≤ j ≤ n} is the parameter space for Θ,
and Ξσ = {(σ̃1, . . . , σ̃n)′ ∈ Rn : σ̃j > 0, 1 ≤ j ≤ n} is the parameter space for σ.20

The identified set for the SVMA parameters is large in economic terms. Appendix A.2
provides a constructive characterization of S(Γ), building on Hansen & Sargent (1981) and
Lippi & Reichlin (1994). I summarize the main insights here.21 The identified set contains
uncountably many parameter configurations if the number n of shocks exceeds 1. The lack

20If the shocks εt were known to have a non-Gaussian distribution, the identified set would change due to
the additional information provided by higher-order moments of the data, cf. Section 5.2.

21The identification problem is not easily cast in the framework of interval identification, as S(Γ) is of
strictly lower dimension than the parameter space ΞΘ ×Ξσ. Still, expression (6) for diag(Γ(0)) implies that
the identified set for scaled impulse responses Ψij,` = Θij,`σj is bounded.
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of identification is not just a technical curiosity but is of primary importance to economic
conclusions. For example, as in SVARs, for any observed ACF Γ(·), any horizon `, any shock
j, and any variable i 6= ij, there exist IRFs in the identified set S(Γ) with Θij,` = 0.

One reason for under-identification, also present in SVARs (cf. Section 2.1), is that the
assumptions so far treat the n shocks symmetrically: Without further restrictions, the model
and data do not distinguish the first shock from the second shock, say. Precisely, the two
parameter configurations (Θ, σ) and (Θ̃, σ̃) lie in the same identified set if there exists an
orthogonal n × n matrix Q such that Θ̃ diag(σ̃)Q = Θ diag(σ). If the IRFs were known to
be invertible, identification in the SVMA model would thus be exactly analogous to SVAR
identification: The identified set would equal all rotations of the reduced-form (Wold) IRFs.

The second source of under-identification is that the SVMA model, unlike SVARs, does
not arbitrarily restrict the IRFs to be invertible. For any noninvertible set of IRFs there
always exists an observationally equivalent invertible set of IRFs (if n > 1, there exist
several). If nq > 1, there are also several other observationally equivalent noninvertible
IRFs. If, say, we imposed exclusion restrictions on the elements of Θ0 to exactly identify the
orthogonal matrix Q in the previous paragraph, the identified set would be finite but its size
would be of order 2nq.22

Figure 2 illustrates the identification problem due to noninvertibility for a univariate
model with n = 1 and q = 4: yt = εt + ∑4

`=1 Θ`εt−`, Θ` ∈ R, E(ε2
t ) = σ2. The ACF in

the left panel of the figure is consistent with the four IRFs shown in the right panel. The
invertible IRF (thick line) is the one that would be estimated by a SVAR (with lag length
m =∞). Yet there exist three other IRFs that have very different economic implications but
are equally consistent with the observed ACF.23 If n > 1, the identification problem is even
more severe, as described in Appendix A.2. Hence, to learn anything useful about unknown
features of the IRFs, researchers must exploit available prior information.

22Because of the discrete nature of the second source of under-identification, it appears difficult to directly
apply the set identification methods of Giacomini & Kitagawa (2015) and Gafarov, Meier & Montiel Olea
(2018) to the SVMA model. This is an interesting topic for future research.

23Similarly, in the case n = q = 1, the parameters (Θ1, σ) yield the same ACF as the parameters (Θ̃1, σ̃),
where Θ̃1 = 1/Θ1 and σ̃ = σΘ1. If |Θ1| ≤ 1, an SVAR would estimate the invertible IRF (1,Θ1) for which
most of the variation in yt is due to the current shock εt. But the data would be equally consistent with the
noninvertible IRF (1, Θ̃1) for which yt is mostly driven by the previous shock εt−1.
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Figure 2: Example of IRFs that generate the same ACF, based on a univariate SVMA model with
n = 1 and q = 4. The right panel shows the four IRFs that generate the particular ACF in the left
panel; associated shock standard deviations are shown in the figure legend.

2.5 Prior specification and elicitation

In addition to handling noninvertible IRFs, the other key advantage of the SVMA model is
its natural parametrization, which allows prior information to be imposed directly on the
IRFs. I here propose a transparent procedure for imposing all types of prior information
about IRFs in a unified way.

Types and sources of prior information. To impose prior information, the re-
searcher must have some knowledge about the identity and effects of the unobserved shocks.
As in SVAR analysis, the researcher postulates that, say, the first shock ε1,t is a monetary
policy shock, the second shock ε2,t is a demand shock, etc. Then prior information about
the effects of the shocks, i.e., the IRFs, is imposed.

Because the SVMA model is parametrized in terms of IRFs, it is possible to exploit many
types of prior information in an integrated manner. Researchers commonly exploit zero, sign,
and magnitude restrictions on IRFs, as further discussed in Section 2.6. Researchers may
also have beliefs about the shapes and smoothness of IRFs, due to the presence of adjustment
costs, implementation lags, or information frictions. The empirical application in Section 4
demonstrates one way of constructing a prior using a DSGE model as a guide, without
imposing the model’s cross-equation restrictions dogmatically.
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Bayesian approach. Bayesian inference is a unified way to exploit all types of prior
information about the IRFs Θ. I place an informative, flexible prior distribution on the
SVMA model parameters, i.e., the IRFs Θ and shock standard deviations σ. Since there
is no known flexible conjugate prior for MA models, I use simulation methods to conduct
posterior inference about the structural parameters, as described in Section 3.

The first role of the prior is to attach weights to parameter values that are observationally
equivalent based on the data but distinguishable based on prior information. The information
in the prior and the data is synthesized in the posterior density, which is proportional to
the product of the prior density and the likelihood function. As discussed in Section 2.4,
the likelihood function does not have a unique maximum due to partial identification. The
SVMA analysis thus depends crucially on the prior information imposed, just as SVAR
analysis depends on the identification scheme. The frequentist asymptotics in Section 5
show formally that only some features of the prior information can be updated and falsified
by the data. This is unavoidable due to the lack of identification (Poirier, 1998), but it does
underscore the need for a transparent prior elicitation procedure.

The second role of the prior is to discipline the flexible IRF parametrization. SVMA
IRFs are high-dimensional objects, so prior information about their magnitudes, shapes, or
smoothness is necessary to avoid overfitting. In comparison, finite-order SVARs achieve di-
mension reduction by parametrizing the IRFs, implying that long-run responses are functions
of short-run autocorrelations in the data.

Gaussian prior. While many priors are possible, I first discuss a multivariate Gaussian
prior distribution that is easy to visualize. However, I stress that neither the overall SVMA
approach nor the numerical methods in this paper rely on Gaussianity of the prior. I describe
other possible prior choices below.

The multivariate Gaussian prior distribution on the impulse responses is given by

Θij,` ∼ N(µij,`, τ 2
ij,`), 0 ≤ ` ≤ q,

Corr(Θij,`+k,Θij,`) = ρkij, 0 ≤ ` ≤ `+ k ≤ q, (7)

for each (i, j). This correlation structure means that the prior smoothness of IRF (i, j) is
governed by ρij, as illustrated below. For simplicity, the IRFs (Θij,0,Θij,1, . . . ,Θij,q) are a
priori independent across (i, j) pairs. The normalized impulse responses have µijj,0 = 1
and τijj,0 = 0 for each j. The shock standard deviations σ1, . . . , σn are a priori mutually

15



0 2 4 6 8 10
-0.5

0

0.5

1

1.5
F

F
R

MP shock

0 2 4 6 8 10
-1

-0.5

0

0.5

1

1.5
Demand shock

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

O
u

tp
u

t 
g

ap

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

Figure 3: A choice of prior means (thick lines) and 90% prior confidence bands (shaded) for the
four IRFs (Θ) in the bivariate example in Figure 1.

independent and independent of the IRFs, with prior marginal distribution

log σj ∼ N(µσj , (τσj )2)

for each j. In practice, the prior variances (τσj )2 for the log shock standard deviations can
be chosen to be a large number.24 Prior independence between IRFs may not be attractive
in applications with plausible theoretical cross-variable restrictions (e.g., a Taylor rule). In
such cases, Section 2.6 shows how to impose dogmatic or non-dogmatic linear restrictions,
which induce nonzero prior correlations across different IRFs.

Figures 3 and 4, illustrate a prototypical prior elicitation process, continuing the bivariate
example from Figure 1. Figure 3 shows a choice of prior means and 90% prior confidence
bands for each of the impulse responses, directly implying corresponding values for the µij,`
and τ 2

ij,` hyperparameters. The prior distributions in the figures embed many different kinds
of prior information. For example, the IRF of the FFR to a positive demand shock is believed
to be hump-shaped with high probability, and the IRF of the output gap to a contractionary

24Because the elements of σ scale the ACF, which is identified, the data will typically be quite informative
about the standard deviations of the shocks, provided that the prior on the IRFs is sufficiently informative.
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Figure 4: Prior draws of the IRF of the FFR to a demand shock in the bivariate example in
Figure 1, for different prior smoothness parameters ρ12. Brightly colored lines are four draws from
the multivariate Gaussian prior distribution (7), with the mean and variance parameters in the top
right panel of Figure 3 and ρ12 ∈ {0.3, 0.9, 0.99}.

monetary policy shock is believed to be negative at horizons 2–8 with high probability. Yet
the prior expresses substantial uncertainty about several of the impulse responses.

Having elicited the prior means and variances, the smoothness hyperparameters ρij may
be chosen by trial-and-error simulations. For example, for each of the three hyperparameter
choices ρ12 ∈ {0.3, 0.9, 0.99}, Figure 4 depicts four draws of the IRF of the FFR to a demand
shock (i = 1, j = 2). The ρ12 = 0.3 draws are much more jagged than the ρ12 = 0.9 draws.
The ρ12 = 0.99 draws are so smooth that different draws essentially correspond to random
level shifts of the prior mean impulse responses. Because “smoothness” is a difficult notion to
quantify (Shiller, 1973), the choice of smoothness hyperparameters ρij is ultimately subjective
and context-dependent, and extensive graphical trial-and-error simulation is advisable. For
IRFs of slow-moving variables such as GDP growth, I suggest ρij = 0.9 as a starting point
in quarterly data. However, a lower choice such as ρij = 0.3 may be appropriate for IRFs
that are likely to be spiky, e.g., the response of an asset price to news.

It is advisable to check that the chosen prior on IRFs and shock standard deviations
implies a reasonable prior on the ACF of the data (in particular, a reasonable degree of
persistence). The prior on the ACF can be obtained by simulation through the formula (6).

Other priors. The Gaussian prior distribution is flexible and easy to visualize but other
prior choices are feasible as well. My inference procedure does not rely on Gaussianity of the
prior, as the simulation method in Section 3 only requires that the log prior density and its
gradient are computable. Hence, it is straight-forward to impose a different prior correlation
structure than (7), or to impose heavy-tailed or asymmetric prior distributions.
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2.6 Comparison with SVAR methods

I now show that standard SVAR identifying restrictions can be transparently imposed
through specific prior choices in the SVMA model, if desired.25

The most popular identifying restrictions in the literature are exclusion (i.e., zero) re-
strictions on short-run (i.e., impact) impulse responses: Θij,0 = 0 for certain pairs (i, j).
These short-run exclusion restrictions include so-called “recursive” or “Cholesky” orderings,
in which the Θ0 matrix is assumed triangular. Exclusion restrictions on impulse responses
(at horizon 0 or higher) can be incorporated in the SVMA framework by simply setting the
corresponding Θij,` parameters equal to zero and dropping them from the parameter vector.

Another popular type of identifying restrictions are exclusion restrictions on long-run (i.e.,
cumulative) impulse responses: ∑q

`=0 Θij,` = 0 for certain pairs (i, j). Long-run exclusion
restrictions can be accommodated in the SVMA model by restricting Θij,q = −∑q−1

`=0 Θij,`

when evaluating the likelihood and the score. Short- or long-run exclusion restrictions are
special cases of linear restrictions on the IRF parameters, e.g., C vec(Θ) = d, where C and d
are known. Such restrictions may arise from structural cross-equation relationships such as
a Taylor rule. Linear restrictions can be imposed in the posterior sampling by parametrizing
the relevant linear subspace.

The preceding discussion dealt with dogmatic prior restrictions that impose exclusion
restrictions with 100% prior certainty, but in many cases non-dogmatic restrictions are more
credible (Drèze & Richard, 1983). A prior belief that the impulse response Θij,` is close to
zero with high probability is imposed by choosing prior mean µij,` = 0 along with a small
value for the prior variance τ 2

ij,` (see the notation in Section 2.5). To impose a prior belief
that the long-run response ∑q

`=0 Θij,` is close to zero with high probability, we may first
elicit a Gaussian prior for the first q impulse responses (Θij,0, . . . ,Θij,q−1), and then specify
Θij,q = −∑q−1

`=0 Θij,` + νij, where νij is mean-zero Gaussian noise with a small variance.
Many SVAR papers exploit sign restrictions on impulse responses (Uhlig, 2005): Θij,` ≥ 0

or Θij,` ≤ 0 for certain triplets (i, j, `). Dogmatic sign restrictions can be imposed in the
SVMA framework by restricting the IRF parameter space ΞΘ to the subspace where the
inequality constraints hold (e.g., using reparametrization; see also Neal, 2011, Sec. 5.1).
The prior distribution for the impulse responses in question can be chosen to be diffuse on
the relevant subspace, if desired (e.g., truncated normal with large variance).26

25The online appendix to Barnichon &Matthes (2018) discusses dogmatic SVMA identification restrictions.
26Giacomini & Kitagawa (2015) develop a robust Bayes SVAR approach that imposes dogmatic exclusion

and sign restrictions without imposing any other identifying restrictions. My SVMA approach instead seeks
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However, researchers often have more prior information about impulse responses than
just their signs, and this can be exploited in the SVMA approach. For example, extremely
large values for some impulse responses can often be ruled out a priori.27 The Gaussian prior
in Section 2.5 is capable of expressing a strong but non-dogmatic prior belief that certain
impulse responses have certain signs, while expressing disbelief in extreme values. In some
applications, a heavy-tailed or skewed prior distribution may be more appropriate.

The SVMA approach can exploit the identifying power of external instruments. An
external instrument is an observed variable zt that is correlated with one of the structural
shocks but uncorrelated with the other shocks (Stock & Watson, 2008, 2012; Mertens &
Ravn, 2013). Such an instrument can be incorporated in the analysis by adding zt to the
vector yt of observed variables. Suppose we add it as the first element (i = 1), and that
zt is an instrument for the first structural shock (j = 1). The properties of the external
instrument then imply that we have a strong prior belief that Θ1j,0 is (close to) zero for
j = 2, 3, . . . , n. We may also have reason to believe that Θ1j,` ≈ 0 for ` ≥ 1.

Finally, the SVMA IRFs can be restricted to be invertible, if desired, by rejecting posterior
draws outside the invertible region {Θ: det(∑q

`=0 Θ`z
`) 6= 0 ∀ z ∈ C s.t. |z| < 1}.28

2.7 Bayesian inference about invertibility

Given an informative prior on certain features of the IRFs, the data can be informative
about the invertibility of the IRFs. As discussed in Section 2.4, it is impossible to test for
invertibility in the SVMA model without exploiting any prior information at all. However,
in the Bayesian approach to SVMA estimation with an informative prior, the data will
generally update the prior probability of invertibility. Thus, the data is informative about
invertibility if used in combination with substantive economic prior information about the
IRFs. I emphasize, though, that inference about invertibility is necessarily sensitive to large
changes in the prior, due to the identification issue described in Section 2.4.

To illustrate, consider again the univariate MA(1) model (5), and let the data be gen-
erated by parameters Θ1 = 1/4 and σ = 1. Suppose the sample size is very large so the
likelihood has two steep peaks at the points (Θ1, σ) = (1/4, 1) and (4, 1/4) in the identified
set. Without prior information, we are unable to distinguish between these peaks and thus

to allow for as many types of dogmatic and non-dogmatic prior information as possible.
27See the SVAR analyses by Kilian & Murphy (2012) and Baumeister & Hamilton (2015c).
28det(Θ0) = 0 implies noninvertibility. Otherwise, the roots of det(

∑q
`=0 Θ`z

`) equal the roots of det(In+∑q
`=1 Θ−1

0 Θ`z
`), which equal the reciprocals of the eigenvalues of the polynomial’s companion matrix.
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unable to draw conclusions about invertibility of the IRF. However, suppose we additionally
possess the economic prior information that the horizon-1 impulse response must be positive
but less than 2, and we thus adopt a uniform prior for Θ1 on [0, 2] (along with an indepen-
dent, diffuse prior on σ). The prior probability of invertibility (i.e., |Θ1| < 1) is then 1/2,
whereas the posterior probability is close to 1, since only one of the two profile likelihood
peaks for Θ1 lies in the [0, 2] interval. Although contrived, this univariate example shows
that the posterior probability of invertibility does not generally equal the prior probability.

The data can also be informative about more economically interpretable measures of
invertibility, in conjunction with an informative IRF prior. Sims & Zha (2006), Sims (2012),
and Beaudry et al. (2015) argue that invertibility should not exclusively be viewed as a binary
property. In the empirical application in Section 4, I compute the posterior distribution of
a continuous measure of invertibility: the R2 in a regression of the shocks εt on the history
(yt, yt−1, . . . ) of observed variables (R2 = 1 under invertibility). In the application, the
posterior distribution of this invertibility measure differs greatly from its prior.

2.8 Choice of lag length

In the absence of strong prior information about the persistence of the data, I recommend
choosing the MA lag length q by Bayesian model selection or information criteria. Given
the output of the posterior sampling algorithm described in the next section, Bayes factors
for models with different values of q can be approximated numerically (Chib, 2001, Sec.
10). Alternatively, the Bayesian or Akaike Information Criteria (BIC/AIC) can be used to
guide the choice of q. Since selecting too small a q is detrimental to valid identification, the
more conservative AIC or its Bayesian variants are attractive (Vehtari & Ojanen, 2012, Sec.
5.5). As in all cases of model selection, frequentist inference after estimating q is potentially
subject to bias and size distortions (Leeb & Pötscher, 2005).

3 Bayesian computation

In this section I develop an algorithm to simulate from the posterior distribution of the IRFs.
Because of the flexible and high-dimensional prior distribution placed on the IRFs, standard
Markov Chain Monte Carlo (MCMC) methods are cumbersome.29 I employ a Hamiltonian

29Chib & Greenberg (1994) estimate univariate reduced-form Autoregressive Moving Average models by
MCMC, but their algorithm is only effective in low-dimensional problems. Chan, Eisenstat & Koop (2016,
see also references therein) perform Bayesian inference in possibly high-dimensional reduced-form VARMA
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Monte Carlo algorithm that uses the Whittle (1953) likelihood approximation to speed up
computations. The algorithm is fast, asymptotically efficient, and easy to apply, and it
allows for both invertible and noninvertible IRFs.

I first define the posterior density of the structural parameters. Let T be the sample
size and YT = (y′1, y′2, . . . , y′T )′ the data vector. Denote the prior density for the SVMA
parameters by πΘ,σ(Θ, σ). The likelihood function of the SVMA model (3) depends on the
parameters (Θ, σ) only through the scaled impulse responses Ψ = (Ψ0,Ψ1, . . . ,Ψq), where
Ψ` = Θ` diag(σ) for ` = 0, 1, . . . , q. Let pY |Ψ(YT | Ψ(Θ, σ)) denote the likelihood function,
where the notation indicates that Ψ is a function of (Θ, σ). The posterior density is then

pΘ,σ|Y (Θ, σ | YT ) ∝ pY |Ψ(YT | Ψ(Θ, σ))πΘ,σ(Θ, σ).

Hamiltonian Monte Carlo. To efficiently draw from the posterior distribution, I use
a variant of MCMC known as Hamiltonian Monte Carlo (HMC). See Neal (2011) for an
overview of HMC. By exploiting information contained in the gradient of the log posterior
density to systematically explore the posterior distribution, HMC is known to outperform
other generic MCMC methods in high-dimensional settings. In the SVMA model, the di-
mension of the full parameter vector is n2(q + 1), which can easily be well into the 100s
in realistic applications. Nevertheless, the HMC algorithm has no trouble producing draws
from the posterior of the SVMA parameters. I use the modified HMC algorithm by Hoffman
& Gelman (2014), called the No-U-Turn Sampler (NUTS), which adaptively sets the HMC
tuning parameters while still provably delivering draws from the posterior distribution.

As with other MCMC methods, the HMC algorithm delivers parameter draws from a
Markov chain whose long-run distribution is the posterior distribution. After discarding
a burn-in sample, the output of the HMC algorithm is a collection of parameter draws
(Θ(1), σ(1)), . . . , (Θ(N), σ(N)), each of which is (very nearly) distributed according to the pos-
terior distribution. The draws are not independent, and plots of the autocorrelation functions
of the draws are useful for gauging the reduction in effective sample size relative to the ideal
of i.i.d. sampling. In my experience, the proposed algorithm for the SVMA model yields
autocorrelations that drop off to zero after only a few lags. However, I caution that the
HMC algorithm – like most Metropolis-Hastings variants – may exhibit slow convergence if
a highly diffuse prior causes the posterior to be multimodal.

models, but they impose statistical parameter normalizations that preclude structural estimation of IRFs.
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Likelihood, score and Whittle approximation. HMC requires that the log poste-
rior density and its gradient can be computed quickly at any given parameter values. The
gradient of the log posterior density equals the gradient of the log prior density plus the
gradient of the log likelihood (the latter is henceforth referred to as the score). In most
cases, such as with the Gaussian prior in Section 2.5, the log prior density and its gradient
are easily computed. The log likelihood and the score are the bottlenecks. In the empirical
study in the next section a full run of the HMC procedure requires 100,000s of evaluations
of the likelihood and the score.

With Gaussian shocks (Assumption 2), the likelihood of the SVMA model (3) can be
evaluated using the Kalman filter, but a faster alternative is to use the Whittle (1953)
approximation to the likelihood of a stationary Gaussian process. See the Online Appendix
for a description of the Kalman filter. Appendix A.3 shows that both the Whittle log
likelihood and the Whittle score for the SVMA model can be calculated efficiently using the
Fast Fourier Transform.30 When the MA lag length q is large, as in most applications, the
Whittle likelihood is noticeably faster to compute than the exact likelihood, and massive
computational savings arise from using the Whittle approximation to the score.

Numerical implementation. The HMC algorithm is easy to apply once the prior has
been specified. I give further details on the Bayesian computations in the Online Appendix.
As initial value for the HMC iterations I use a rough approximation to the posterior mode
obtained using the characterization of the identified set in Appendix A.2. Matlab code for
implementing the full inference procedure is available on my website, cf. Footnote 6. The
Online Appendix illustrates the accuracy and rapid convergence of the Bayesian compu-
tations when applied to the bivariate model and prior in Figures 1 and 3, as well as to
specifications in which the prior is centered far from the true parameter values.

Reweighting. The Online Appendix describes an optional reweighting step that trans-
lates the Whittle HMC draws into draws from the exact posterior pΘ,σ|Y (Θ, σ | YT ). However,
the asymptotic analysis in Section 5.2 shows that, at least for moderate lag lengths q, the
reweighting step has negligible effect in large samples.

30Hansen & Sargent (1981), Ito & Quah (1989), and Christiano & Vigfusson (2003) also employ the
Whittle likelihood for SVMA models. Qu & Tkachenko (2012a,b) and Sala (2015) use the Whittle likelihood
to perform approximate Bayesian inference on DSGE models, but their Random-Walk Metropolis-Hastings
simulation algorithm is less efficient than HMC.
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4 Application: News shocks and business cycles

I now use the SVMA method to infer the role of technological news shocks in the U.S.
business cycle. Following the literature, I define a technological news shock to be a signal
about future productivity increases. My prior on IRFs is informed by a conventional sticky-
price DSGE model, without imposing the model restrictions dogmatically. The posterior
distribution indicates that the IRFs are severely noninvertible in my specification. News
shocks turn out to be relatively unimportant drivers of productivity and output growth, but
more important for the real interest rate.

Technological news shocks have received great attention in the recent empirical and the-
oretical macro literature, but researchers have not yet reached a consensus on their impor-
tance. As explained in Section 2.3, structural macro models with news shocks often exhibit
noninvertible IRFs, giving the SVMA method a distinct advantage over SVARs, as the latter
assume away noninvertibility. Beaudry & Portier (2014) survey the evolving news shock lit-
erature. Recent empirically minded contributions include Benati, Chan, Eisenstat & Koop
(2016), Sims (2016), Arezki, Ramey & Sheng (2017), and Chahrour & Jurado (2018).

Specification and data. I employ a SVMA model with three observed variables and
three unobserved shocks: Total factor productivity (TFP) growth, real gross domestic prod-
uct (GDP) growth, and the real interest rate are assumed to be driven by a productivity
shock, a technological news shock, and a monetary policy shock. I use quarterly data from
1954Q3–2007Q4, yielding sample size T = 213. I exclude data from 2008 to the present as
my analysis ignores financial shocks.

The data set is detailed in the Online Appendix. TFP growth is obtained from Fernald
(2014). The real interest rate equals the effective federal funds rate minus the contempora-
neous GDP deflator inflation rate. The series are detrended using the kernel smoother in
Stock & Watson (2012). I pick a MA lag length of q = 16 quarters based on two consid-
erations. First, the Akaike Information Criterion (computed using the Whittle likelihood)
selects q = 13. Second, the autocorrelation of the real interest rate equals 0.17 at lag 13 but
is close to zero at lag 16.

Prior. The prior on the IRFs is of the multivariate Gaussian type introduced in Section 2.5,
with hyperparameters informed by a conventional sticky-price DSGE model. The DSGE
model is primarily used to guide the choice of prior means, and the model restrictions are
not imposed dogmatically on the SVMA IRFs. Figure 5 plots the prior means and variances
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Figure 5: Prior means (thick lines), 90% prior confidence bands (shaded), and four random draws
(brightly colored lines) from the prior for IRFs (Θ), news shock application. The impact impulse
response is normalized to 1 in each IRF along the diagonal of the figure.

for the impulse responses, along with four draws from the joint prior distribution. The figure
also shows the normalization that defines the scale of each shock.

The DSGE model used to inform the prior is the one developed by Sims (2012, Sec. 3). It
is built around a standard New Keynesian structure with monopolistically competitive firms
subject to a Calvo pricing friction, and the model adds capital accumulation, investment
adjustment costs, habit formation, and interest rate smoothing. Within the DSGE model,
the productivity and news shocks are, respectively, unanticipated and anticipated exogenous
disturbances to the change in log TFP (cf. eq. 30–33 in Sims, 2012). The monetary policy
shock is an unanticipated disturbance term in the Taylor rule (cf. eq. 35 in Sims, 2012).
Detailed model assumptions and equilibrium conditions are described in Sims (2012, Sec.
3), but I repeat that I only use the DSGE model to guide the SVMA prior; the model
restrictions are not imposed dogmatically.31

31My approach differs from IRF matching (Rotemberg & Woodford, 1997). That method identifies a
SVAR using exclusion restrictions, and then chooses the structural parameters of a DSGE model so that the
DSGE-implied IRFs match the estimated SVAR IRFs. In my procedure, the DSGE model non-dogmatically
informs the choice of prior on IRFs, but then the data is allowed to speak through a flexible SVMA model.
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As prior means for the nine SVMA IRFs I use the corresponding IRFs implied by the log-
linearized DSGE model, with one exception mentioned below.32 I use the baseline calibration
of Sims (2012, Table 1), which assumes that news shocks are correctly anticipated TFP
increases taking effect three quarters into the future. Because I am particularly uncertain
that an anticipation horizon of three quarters is correct, I modify the prior means for the
impulse responses of TFP growth to the news shock: The prior means smoothly increase
and then decrease over the interval ` ∈ [0, 6], with a maximum value at ` = 3 equal to half
the DSGE-implied impulse response.

The prior variances for the IRFs are chosen by combining information from economic
intuition and DSGE calibration sensitivity experiments. For example, I adjust the prior
variances for the IRFs so that the DSGE-implied IRFs mostly fall within the 90% prior
bands when the anticipation horizon changes between nearby values. The 90% prior bands
for the IRFs that correspond to the news shock are chosen quite large, and they mostly
contain 0. In contrast, the prior bands corresponding to the monetary policy shock are
narrower, expressing a strong belief that monetary policy shocks have a small effect on TFP
growth but a persistent positive effect on the real interest rate due to interest rate smoothing
by the central bank. The prior band for the effect of productivity shocks on GDP growth is
fairly wide, since this IRF should theoretically be sensitive to the degree of nominal rigidity.33

The prior expresses a belief that the IRFs for GDP growth and the real interest rate
are smooth, while those for TFP growth are less smooth. Specifically, I set ρ1j = 0.5 and
ρ2j = ρ3j = 0.9 for j = 1, 2, 3. These choices are consistent with standard calibrations of
DSGE models. The ability to easily impose different degrees of prior smoothness across IRFs
is unique to the SVMA approach; it would be much harder to achieve in a SVAR set-up.

The prior on the shock standard deviations is very diffuse. For each shock j, the prior
mean µσj of log(σj) is set to log(0.5), while the prior standard deviation τσj is set to 2.34

These values should of course depend on the units of the observed series.

Results. Given my prior, the data is informative about most of the IRFs. Figure 6
summarizes the posterior distribution of the IRFs. Figure 7 shows the posterior distribution

32The DSGE-implied IRFs for the real interest rate use the same definition of this variable as in the
construction of the data series. IRFs are computed using Dynare 4.4.3 (Adjemian et al., 2011).

33As suggested by a referee, the Online Appendix shows that posterior inference is quite robust to doubling
the prior standard deviation of the IRFs of the real interest rate to the technology and monetary policy shocks.

34Unreported simulations show that the prior 5th and 95th percentiles of the FEVD (cf. (8)) are very
close to 0 and 1, respectively, for almost all (i, j, `) combinations.
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Figure 6: Summary of posterior IRF (Θ) draws, news shock application. The plots show prior
90% confidence bands (shaded), posterior means (crosses), and posterior 5–95 percentile intervals
(vertical bars).

of the forecast error variance decomposition (FEVD), defined as35

FEVDij,` = Var(∑q
k=0 Θij,kεj,t+`−k | εt−1, εt−2, . . . )
Var(yi,t+` | εt−1, εt−2, . . . )

=
∑`
k=0 Θ2

ij,kσ
2
j∑n

b=1
∑`
k=0 Θ2

ib,kσ
2
b

. (8)

FEVDij,` is the fraction of the forecast error variance that would be eliminated if we knew
all future realizations of shock j when forming `-quarter-ahead forecasts of variable i at time
t using knowledge of all shocks up to time t− 1.

The posterior means for several IRFs differ substantially from the prior means, and the
posterior 90% intervals are narrower than the prior 90% bands. The effects of productivity
and monetary policy shocks on TFP and GDP growth are especially precisely estimated.
From the perspective of the prior beliefs, it is surprising to learn that the impact effect of
productivity shocks on GDP growth is quite large, and the effect of monetary policy shocks

35The variances in the fraction are computed under the assumption that the shocks are serially and
mutually independent. In the literature the FEVD is defined by conditioning on (yt−1, yt−2, . . . ) instead of
(εt−1, εt−2, . . . ). This distinction matters when the IRFs are noninvertible. Baumeister & Hamilton (2015a)
conduct inference on the FEVD in a Bayesian SVAR, assuming invertibility.
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Figure 7: Summary of posterior draws of FEVDij,` (8), news shock application. The figure shows
posterior means (crosses) and posterior 5–95 percentile intervals (vertical bars). For each variable
i and each horizon `, the posterior means sum to 1 across the three shocks j.

on the real interest rate is not very persistent. The monetary policy shock has non-neutral
(negative) effects on the level of GDP in the long run, even though the prior distribution for
the cumulative response is centered around zero, cf. the Online Appendix.

The news shock is not an important driver of TFP and GDP growth but is important
for explaining real interest rate movements. The IRF of TFP growth to the news shock
indicates that future productivity increases are anticipated only one quarter ahead, and the
increase is mostly reversed in the following quarters. According to the posterior, the long-run
response of the level of TFP to a news shock is unlikely to be substantially positive, implying
that economic agents seldom correctly anticipate shifts in medium-run productivity levels.
The news shock contributes little to the forecast error variance for TFP and GDP growth
at all horizons. The monetary policy shock is only slightly more important for explaining
GDP growth, while the productivity shock is much more important by these measures.
However, the monetary policy shock is important for explaining short-run movements in the
real interest rate, while the news shock dominates longer-run movements in this series.

The posterior distribution indicates that the IRFs are severely noninvertible in economic
terms. Section 2.7 argued that the data can be informative about invertibility if used in
conjunction with an informative prior on IRFs. In Figure 8 I report a continuous measure of

27



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20
Prod. shock

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10
News shock

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10
MP shock

Figure 8: Histograms of posterior draws of the population R2 values in regressions of each shock
on current and 50 lagged values of the observed data, news shock application. Curves are kernel
density estimates of the prior distribution of R2s. Histograms and curves each integrate to 1.

invertibility suggested by Watson (1994, p. 2901) and Sims & Zha (2006, p. 243). For each
posterior parameter draw I compute the R2 in a population regression of each shock εj,t on
current and 50 lags of data (yt, yt−1, . . . , yt−50), assuming i.i.d. Gaussian shocks.36 This R2

value should be essentially 1 for all shocks if the IRFs are invertible, by definition. Instead,
Figure 8 shows a high posterior probability that the news shock R2 is below 0.3, despite
the prior putting most weight on values near 1.37 The Online Appendix demonstrates that
the noninvertibility is economically significant: The posterior distribution of the invertible
IRFs that are closest (in a certain precise sense) to the actual IRFs is very different from the
posterior distribution in Figure 6.

Additional results. In the Online Appendix I plot the posterior distribution of the
structural shocks, check prior sensitivity and model validity, discuss related empirical papers,
and verify that my method accurately recovers true IRFs on simulated data.

36Given the parameters, I run the Kalman filter in the Online Appendix forward for 51 periods on data
that is identically zero (due to Gaussianity, conditional variances do not depend on realized data values).
This yields a final updated state prediction variance matrix Var(diag(σ)−1ε51 | y51, . . . , y1) whose diagonal
elements equal 1 minus the desired population R2 values at the given parameters.

37Essentially no posterior IRF draws are exactly invertible; the prior probability is 0.06%.
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5 Asymptotic theory

To gain insight into how the data updates the prior information, I derive the asymptotic
limit of the Bayesian posterior distribution from a frequentist point of view. I first derive
a general result on the frequentist asymptotics of Bayes procedures for a large class of
partially identified models. Specializing to the SVMA model, I show that when the Whittle
likelihood is used, the limiting form of the posterior distribution does not depend on whether
the shocks are truly Gaussian. Hence, asymptotically, the role of the data is to pin down
the true autocovariances, whereas all other information about IRFs comes from the prior.

5.1 General result for partially identified models

In this subsection I present a general result on the frequentist asymptotic limit of the Bayesian
posterior distribution in partially identified models. Due to identification failure, the analysis
is nonstandard, as the data does not dominate all aspects of the prior in large samples.

Consider a general model for which the data vector YT is independent of the parameter
of interest θ, conditional on a second parameter Γ.38 In other words, the likelihood function
of the data YT only depends on θ through Γ. This property holds for models with a partially
identified parameter θ, as explained in Poirier (1998). Because I will restrict attention to
models in which the parameter Γ is identified, I refer to Γ as the reduced-form parameter,
while θ is called the structural parameter. The parameter spaces for Γ and θ are denoted
ΞΓ and Ξθ, respectively, and these are assumed to be finite-dimensional Euclidean.

As an illustration, consider the SVMA model with data vector YT = (y′1, . . . , y′T )′. Let
Γ = (Γ(0), . . . ,Γ(q)) be the ACF of the observed time series, and let θ denote a single IRF,
for example the IRF of the first variable to the first shock, i.e., θ = (Θ11,0, . . . ,Θ11,q)′. I
explain below why I focus on a single IRF. Since the distribution of the stationary Gaussian
process yt only depends on θ through the ACF Γ, we have YT ⊥⊥ θ | Γ.

In any model satisfying YT ⊥⊥ θ | Γ, the prior information about θ conditional on Γ is not
updated by the data YT , but the data is informative about Γ. Let Pθ|Y (· | YT ) denote the
posterior probability measure for θ given data YT , and let PΓ|Y (· | YT ) denote the posterior
measure for Γ. For any Γ̃ ∈ ΞΓ, let Πθ|Γ(· | Γ̃) denote the conditional prior measure for θ

38T denotes the sample size, but the model does not have to be a time series model.
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given Γ, evaluated at Γ = Γ̃. As in Moon & Schorfheide (2012, Sec. 3), decompose

Pθ|Y (A | YT ) =
∫

ΞΓ
Πθ|Γ(A | Γ)PΓ|Y (dΓ | YT ) (9)

for any measurable set A ⊂ Ξθ. Let Γ0 denote the true value of Γ. If the reduced-form
parameter Γ0 is identified, the posterior PΓ|Y (· | YT ) for Γ will typically concentrate around Γ0

in large samples, so that the posterior for θ is well approximated by Pθ|Y (· | YT ) ≈ Πθ|Γ(· | Γ0),
the conditional prior for θ given Γ at the true Γ0.

The following lemma formalizes the intuition about the asymptotic limit of the posterior
distribution for θ. Define the L1 norm ‖P‖L1 = sup|h|≤1 |

∫
h(x)P (dx)| on the space of signed

measures, where P is any signed measure and the supremum is over all scalar real-valued
Borel measurable functions h(·) bounded in absolute value by 1.39

Lemma 1. Let the posterior measure Pθ|Y (· | YT ) satisfy the decomposition (9). All stochas-
tic limits below are taken under the true probability measure of the data. Assume:

(i) The map Γ̃ 7→ Πθ|Γ(θ | Γ̃) is continuous at Γ0 with respect to the L1 norm ‖ · ‖L1.40

(ii) For any neighborhood U of Γ0 in ΞΓ, PΓ|Y (U | YT ) p→ 1 as T →∞.

Then as T →∞,
‖Pθ|Y (· | YT )− Πθ|Γ(· | Γ0)‖L1

p→ 0.

If furthermore Γ̂ is a consistent estimator of Γ0, i.e., Γ̂ p→ Γ0, then

‖Pθ|Y (· | YT )− Πθ|Γ(· | Γ̂)‖L1
p→ 0.

In addition to stating the explicit asymptotic form of the posterior distribution, Lemma 1
yields three main insights. First, the posterior for θ given the data does not collapse to a point
asymptotically, a consequence of the lack of identification. Second, the sampling uncertainty
about the true reduced-form parameter Γ0, which is identified in the sense of assumption

39The L1 distance ‖P1 − P2‖L1 equals twice the total variation distance (TVD) between probability
measures P1 and P2. Convergence in TVD implies convergence of Bayes point estimators under certain
side conditions. In all results and proofs in this paper, the L1 norm may be replaced by any (fixed) weaker
norm for which the supremum is taken over a subset of measurable functions satisfying |h(·)| ≤ 1, e.g., the
space of bounded Lipschitz functions.

40Denote the underlying probability sample space by Ω, and let Bθ be the Borel sigma-algebra on Ξθ. For-
mally, assumption (i) requires the existence of a function ς : Bθ×ΞΓ → [0, 1] such that {ς(B,Γ(o))}B∈Bθ, o∈Ω is
a version of the regular conditional probability measure of θ given Γ, and such that ‖ς(·,Γk)−ς(·,Γ0)‖L1 → 0
as k →∞ for any sequence {Γk}k≥1 satisfying Γk → Γ0 and Γk ∈ ΞΓ.
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(ii), is asymptotically negligible relative to the uncertainty about θ given knowledge of Γ0.
Third, in large samples, the way the data disciplines the prior information on θ is through
the consistent estimator Γ̂ of Γ0.

Lemma 1 gives weaker and simpler conditions for result (ii) in Theorem 1 of Moon &
Schorfheide (2012). Lipschitz continuity in Γ of the conditional prior measure Πθ|Γ(· | Γ)
(their Assumption 2) is weakened to continuity, and the high-level assumption of asymptotic
normality of the posterior for Γ (their Assumption 1) is weakened to posterior consistency.

Assumption (i) invokes continuity with respect to Γ of the conditional prior of θ given
Γ. This assumption is satisfied in many models with partially identified parameters, if θ
is chosen appropriately. The assumption is unlikely to be satisfied in other contexts. For
example, if θ were identified because there existed a function mapping Γ to θ, and Γ were
identified, then assumption (i) could not be satisfied. More generally, assumption (i) will
typically not be satisfied if the identified set for θ is a lower-dimensional subspace of Ξθ.41

Assumption (ii) invokes posterior consistency for Γ0, i.e., the posterior for the reduced-
form parameter Γ must concentrate on small neighborhoods of the true value Γ0 in large
samples. While assumption (i) is a condition on the prior, assumption (ii) may be viewed as
a condition on the likelihood of the model, although assumption (ii) does require that the
true reduced-form parameter Γ0 is in the support of the marginal prior distribution for Γ.
As long as the reduced-form parameter Γ0 is identified, posterior consistency holds under
weak regularity conditions, as discussed in the next subsection and the Online Appendix.

As the proof of Lemma 1 shows, the likelihood function used to calculate the posterior
measure does not have to be correctly specified. That is, if Γ̃ 7→ pY |Γ(YT | Γ̃) denotes the
likelihood function for Γ used to compute the posterior PΓ|Y (· | YT ), then pY |Γ(YT | Γ0) need
not be the true density of the data. As long as PΓ|Y (· | YT ) is a probability measure that
satisfies the consistency assumption (ii), where the convergence in probability occurs under
the true probability measure of the data, then the conclusion of the lemma follows.

5.2 Limiting posterior distribution in the SVMA model

I now specialize the general result from the previous subsection to the SVMA model with
a non-dogmatic prior, assuming that the Whittle likelihood is used for Bayesian inference.
I show that the limiting form of the posterior does not depend on whether the shocks are
Gaussian or whether the IRFs are invertible. Asymptotically, the role of the data is to pin

41See Remarks 2 and 3, pp. 768–770, in Moon & Schorfheide (2012).
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down the true autocovariances of the data, which in turn pins down the reduced-form (Wold)
IRFs, while all other information about the structural IRFs comes from the prior.

An important caveat on the results in this subsection is that the MA lag length q is
considered fixed as the sample size T tends to infinity. In applications where q is large
relative to T , i.e., when the data is very persistent, these asymptotics may not be a good
guide to the finite-sample behavior of the posterior. Nevertheless, the fixed-q asymptotics
do shed light on the interplay between the SVMA model, the prior, and the data.42

Set-up and main result. To map the SVMA model into the general framework, let θ
denote the IRFs and shock standard deviation corresponding to the first shock, and let Γ
denote the ACF of the data: θ = ({Θi1,`}1≤i≤n, 0≤`≤q, σ1) and Γ = (Γ(0), . . . ,Γ(k)). I now
apply Lemma 1 to the SVMA model, which gives a simple description of the limiting form
of the Whittle posterior PW

θ|Y (· | YT ) for all the structural parameters pertaining to the first
shock. This analysis of course applies to each of the other shocks.

I choose θ to be the IRFs and shock standard deviation corresponding to a single shock
in order to satisfy the prior continuity assumption in Lemma 1. In the SVMA model,

Γ(k) = σ2
1
∑q−k
`=0 Θ:1,`+kΘ′:1,` +∑n

j=2 σ
2
j

∑q−k
`=0 Θ:j,`+kΘ′:j,`, k = 0, 1, . . . , q, (10)

where Θ:j,` = (Θ1j,`, . . . ,Θnj,`)′. If θ = ({Θi1,`}1≤i≤n, 0≤`≤q, σ1) and there are two or more
shocks (n ≥ 2), then the above equations for k = 0, 1, . . . , q are of the form Γ = G(θ) + U ,
where G(·) is a matrix-valued function and U is a function only of structural parameters
pertaining to shocks j ≥ 2. θ and U are a priori independent provided that the n2 IRFs and
n shock standard deviations are a priori mutually independent (for example, the multivariate
Gaussian prior in Section 2.5 imposes such independence). In this case, the reduced-form
parameter Γ equals a function of the structural parameter θ plus a priori independent “noise”
U . If the prior on the IRFs is non-dogmatic so that U has full support, we can expect the
conditional prior distribution of θ given Γ to be continuous in Γ.43

On the other hand, the conditional prior distribution for θ given Γ would not be contin-
uous in Γ if I had picked θ to be all IRFs and shock standard deviations. If θ = (Θ, σ), then
Γ would equal a deterministic function of θ, cf. (10), and so continuity of the conditional
prior Πθ|Γ(· | Γ) would not obtain. Hence, Lemma 1 is not useful for deriving the limit of

42I conjecture that my results can be extended to the asymptotic embedding q = q(T ) = O(T ν), for
appropriate ν > 0 and under additional nonparametric conditions.

43This paragraph is inspired by Remark 3, pp. 769–770, in Moon & Schorfheide (2012).
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the joint posterior of all structural parameters of the SVMA model.
In the main result below, the only restrictions imposed on the underlying data generating

process are the following nonparametric stationarity and weak dependence assumptions.

Assumption 3. {yt} is an n-dimensional time series satisfying the following assumptions.
All limits and expectations below are taken under the true probability measure of the data.

(i) {yt} is a covariance stationary time series with mean zero.

(ii) ∑∞k=−∞ ‖Γ0(k)‖ <∞, where the true ACF is defined by Γ0(k) = E(yt+ky′t), k ∈ Z.

(iii) infω∈[0,π) det
(∑∞

k=−∞ e
−ıkωΓ0(k)

)
> 0.

(iv) For any fixed integer k ≥ 0, T−1∑T
t=k+1 yty

′
t−k

p→ Γ0(k) as T →∞.

The assumption imposes four weak conditions on {yt}. First, the time series must be co-
variance stationary to ensure that the true ACF Γ0(·) is well-defined (as usual, the mean-zero
assumption can be easily relaxed). Second, the process is assumed to be weakly dependent,
in the sense that the matrix ACF is summable, implying that the spectral density is well-
defined. Third, the true spectral density must be uniformly non-singular, meaning that the
process has full rank, is strictly nondeterministic, and has a positive definite ACF. Fourth,
I assume the weak law of large numbers applies to the sample autocovariances.

The main result states the limiting form of the Whittle posterior under general choices for
the prior on IRFs and shock standard deviations. That is, I do not assume the multivariate
Gaussian prior from Section 2.5. I also do not restrict the prior to the region of invertible
IRFs, unlike the implicit priors used in SVAR analysis. Let ΠΘ,σ(·) denote any prior measure
for (Θ, σ) on the space ΞΘ×Ξσ. Through equation (6), this prior induces a joint prior measure
ΠΘ,σ,Γ(·) on (Θ, σ,Γ), which in turn implies marginal prior measures Πθ(·) and ΠΓ(·) for θ
and Γ as well as the conditional prior measure Πθ|Γ(· | Γ) for θ given Γ. Let PW

θ|Y (· | YT )
denote the Whittle posterior measure for θ computed using the Whittle SVMA likelihood,
cf. Section 3, and the prior ΠΘ,σ(·).

Proposition 1. Let the data YT = (y′1, . . . , y′T )′ be generated from a time series {yt} satisfy-
ing Assumption 3 (but not necessarily Assumptions 1 and 2). Assume that the prior ΠΘ,σ(·)
for (Θ, σ) has full support on ΞΘ × Ξσ. If the induced conditional prior Πθ|Γ(· | Γ) satisfies
the continuity assumption (i) of Lemma 1, then the Whittle posterior satisfies

‖PW
θ|Y (· | YT )− Πθ|Γ(· | Γ0)‖L1

p→ 0,
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as T →∞ under the true probability measure of the data. The above convergence also holds
with Γ0 replaced by Γ̂ = {Γ̂(k)}0≤k≤q, the sample ACF.

Continuity of the conditional prior Πθ|Γ(· | Γ) is stated as a high-level assumption in
Proposition 1. I conjecture that prior continuity holds for the multivariate Gaussian prior
introduced in Section 2.5, for the reasons discussed below equation (10).

How the data updates the prior. According to Proposition 1, the posterior for the
structural parameters θ does not collapse to a point asymptotically, but the data does pin
down the true ACF Γ0. Equivalently, the data reveals the true reduced-form IRFs and
innovation variance matrix, or more precisely, reveals the Wold representation of the observed
time series yt (Hannan, 1970, Thm. 2′′, p. 158). This result is true also in finite samples
for Gaussian time series; the point of Proposition 1 is to show that Bayesian inference
using the Whittle likelihood asymptotically mimics finite-sample Gaussian inference in this
sense. Hence, inference based on the Whittle likelihood can be viewed asymptotically as a
limited information Bayesian procedure which only exploits second moments of the data.
Due to the under-identification of the SVMA model, many different structural IRFs are
observationally equivalent with the Wold IRFs, cf. Appendix A.2. In large samples, the
prior is the only source of information able to discriminate between different structural IRFs
that are consistent with the true ACF.

Proposition 1 shows to what extent the data can falsify the prior. The data indicates
whether the induced prior ΠΓ(·) on the ACF is at odds with the true ACF Γ0. For example,
if the prior distribution on IRFs imposes a strong (but non-dogmatic) belief that {yt} is very
persistent, but the actual data generating process is not persistent, the posterior will in large
samples put most mass on IRFs that imply low persistence. On the other hand, if the prior
on IRFs is tightly concentrated around parameters (Θ, σ) that lie in the identified set S(Γ0),
cf. Section 2.4, then the posterior also concentrates around (Θ, σ), regardless of how close
(Θ, σ) are to the true parameters. The Online Appendix provides simulations that further
illustrate the consequences of misspecifying the prior.

Robustness to misspecified likelihood. Proposition 1 states that the posterior mea-
sure, computed using the Whittle likelihood and thus under the working assumption of a
Gaussian SVMA model, converges to Πθ|Γ(· | Γ0) regardless of whether the Gaussian SVMA
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model is correctly specified.44 The only restrictions on the true data generating process
are the stationarity and weak dependence conditions in Assumption 3. Of course, the IRF
parameters only have a structural economic interpretation if the basic SVMA model holds.
In this case, the ACF has the form (6), so the conditional prior Πθ|Γ(· | Γ0) imposes valid re-
strictions on the structural parameters. Thus, under Assumptions 1 and 3, the large-sample
shape of the Whittle SVMA posterior provides valid information about θ even when the
shocks are non-Gaussian or heteroskedastic (i.e., E(ε2

j,t | {εs}s<t) is non-constant).45

The asymptotic robustness to non-Gaussianity is a consequence of the negligible impor-
tance of the uncertainty surrounding estimation of the true ACF Γ0. As in the general
Lemma 1, the latter uncertainty gets dominated in large samples by the conditional prior
uncertainty about the structural parameters θ given knowledge of Γ0. Because the sampling
distribution of any efficient estimator of Γ0 in general depends on fourth moments of the
data, it is sensitive to departures from Gaussianity, but this sensitivity does not matter for
the first-order asymptotic limit of the posterior for the partially identified parameter θ.

My results do not and cannot imply that Bayesian inference based on the Gaussian SVMA
model is asymptotically equivalent to optimal Bayesian inference under non-Gaussian shocks.
If the SVMA likelihood were computed under the assumption that the structural shocks εt
are i.i.d. Student-t distributed, say, then the asymptotic limit of the posterior would differ
from Πθ|Γ(· | Γ0). Indeed, if the shocks are known to be non-Gaussian, then higher-order
cumulants of the data have identifying power, and invertibility may be testable (Lanne &
Saikkonen, 2013; Gospodinov & Ng, 2015).

However, Bayesian inference based on non-Gaussian shocks is less robust than Gaussian
inference. Intuitively, while the expectation of the Gaussian or Whittle (quasi) log likelihood
function depends only on second moments of the data, the expectation of a non-Gaussian
log likelihood function generally depends also on higher moments. Hence, Bayesian infer-
ence computed under non-Gaussian shocks is misleading asymptotically if a failure of the
distributional assumptions causes misspecification of higher-order moments.

Proposition 1 also implies that the error incurred in using the Whittle approximation
to the SVMA likelihood is negligible in large samples: The data pins down the true ACF
asymptotically even when the Whittle approximation is used. This is true whether or not
the data is generated by a Gaussian SVMA model, as long as Assumption 3 holds.

44Baumeister & Hamilton (2015b) derive an analogous result for a Bayesian SVAR model with a particular
family of prior distributions and assuming invertibility.

45Assumption 1 implies Assumption 3 if the true polynomial Θ(z) does not have roots exactly on the unit
circle and the shocks εt have enough moments.
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6 Conclusion

I have proposed a Bayesian Structural Vector Moving Average approach to estimating impulse
response functions. The approach has two advantages over SVAR analysis. First, prior
elicitation on IRFs is flexible and transparent. Second, structural shocks are allowed to
be possibly noninvertible, thus broadening the scope of semi-structural inference in applied
macroeconomics. The method is most attractive in applications with a small number of
variables/shocks, and where structural models can be used to guide prior elicitation.

There a several interesting potential avenues for future research. First, in applications
where only a single shock is of interest, it would be helpful to devise “automatic priors” for
the IRFs corresponding to the remaining shocks. Second, although the Whittle likelihood
algorithm in this paper yields valid inference asymptotically even with non-Gaussian shocks,
it may be useful to explicitly incorporate stochastic volatility in the likelihood to increase
statistical efficiency. Third, future research should address any potential numerical issues
with the Hamiltonian Monte Carlo sampling procedure that may arise in settings with many
variables or with a multimodal posterior distribution (caused by a diffuse prior).

A Appendix

A.1 Notation

In is the n× n identity matrix. ı is the imaginary unit. For a vector a, diag(a) denotes the
diagonal matrix with the elements of a along the diagonal in order. For a square matrix A,
tr(A) and det(A) are the trace and determinant, and diag(A) is the vector consisting of the
diagonal elements in order. For any matrix B, B′ denotes the matrix transpose, B̄ denotes
the elementwise complex conjugate, B∗ = B̄′ is the complex conjugate transpose, Re(B) is
the real part of B, ‖B‖ =

√
tr(B∗B) is the Frobenius norm, and vec(B) is the columnwise

vectorization. An n × n matrix Q is unitary if QQ∗ = In, and a real unitary matrix is
orthogonal. Independence of random variables X and Y conditional on Z is denoted by
X ⊥⊥ Y | Z. Kc denotes the complement of a set K.

A.2 Constructive characterization of the identified set

The result below applies the analysis of Lippi & Reichlin (1994) to the SVMA model; see
also Hansen & Sargent (1981) and Komunjer & Ng (2011). I identify a set of IRFs Θ =
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(Θ0, . . . ,Θq) with the matrix polynomial Θ(z) = ∑q
`=0 Θ`z

`, and I use the notation Θ and
Θ(z) interchangeably where appropriate. The proposition states that if we start with a set of
IRFs Θ(z) in the identified set, then we can obtain all other sets of IRFs in the identified set
by orthogonally rotating Θ(z) and/or by “flipping the roots” of Θ(z). Only a finite sequence
of such operations is necessary to jump between any two elements of the identified set.

Proposition 2. Let {Γ(k)}0≤k≤q be an arbitrary ACF. Pick an arbitrary (Θ, σ) ∈ S(Γ)
satisfying det(Θ(0)) 6= 0.46 Define Ψ(z) = Θ(z) diag(σ).

Construct a matrix polynomial Ψ̌(z) in either of the following two ways:

(i) Set Ψ̌(z) = Ψ(z)Q, where Q is an arbitrary orthogonal n× n matrix.

(ii) Let γ1, . . . , γr (r ≤ nq) denote the roots of the polynomial det(Ψ(z)). Pick an arbitrary
positive integer k ≤ r. Let η ∈ Cn be a vector such that Ψ(γk)η = 0 (such a vector exists
because det(Ψ(γk)) = 0). Let Q be a unitary matrix whose first column is proportional
to η (if γk is real, choose Q to be a real orthogonal matrix). All elements of the first
column of the matrix polynomial Ψ(z)Q then contain the factor (z − γk). In each
element of the first column, replace the factor (z−γk) with (1−γkz). Call the resulting
matrix polynomial Ψ̌(z). If γk is real, skip the next paragraph.

If γk is not real, let η̃ ∈ Cn be a vector such that Ψ̌(γk)η̃ = 0, and let Q̃ be a unitary
matrix whose first column is proportional to η̃. All elements of the first column of
Ψ̌(z)Q̃ then contain the factor (z−γk). In each element of the first column, replace the
factor (z − γk) with (1− γkz). Call the resulting matrix polynomial Ψ̃(z). The matrix
Ψ̃(0)Ψ̃(0)∗ is real, symmetric, and positive definite, so let J be its n × n Cholesky
factor: JJ ′ = Ψ̃(0)Ψ̃(0)∗. In an abuse of notation, set Ψ̌(z) = Ψ̃(z)Ψ̃(0)−1J , which is
guaranteed to be a real matrix polynomial.

Now obtain a set of IRFs Θ̌ and shock standard deviations σ̌ from Ψ̌(z):

(a) For each j = 1, . . . , n, if the (ij, j) element of Ψ̌(0) is negative, flip the signs of all
elements in the j-th column of Ψ̌(z), and call the resulting matrix polynomial ˇ̌Ψ(z). For
each j = 1, . . . , n, let σ̌j denote the (ij, j) element of ˇ̌Ψ(0). Define σ̌ = (σ̌1, . . . , σ̌n) and
Θ̌(z) = ˇ̌Ψ(z) diag(σ̌)−1 (if the inverse exists).

Then (Θ̌, σ̌) ∈ S(Γ), provided that all elements of σ̌ are strictly positive.

46If det(Θ0) = 0, some linear combination of y1,t, . . . , yn,t is perfectly predictable based on knowledge of
shocks εt−1, εt−2, . . . before time t. In most applications, this event ought to receive zero prior probability.
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On the other hand, if (Θ̌, σ̌) ∈ S(Γ) is an arbitrary point in the identified set satisfying
det(Θ̌(0)) 6= 0, then (Θ̌, σ̌) can be obtained from (Θ, σ) as follows:

1. Start with the initial point (Θ, σ) and the associated polynomial Ψ(z) defined above.

2. Apply an appropriate finite sequence of the above-mentioned transformations (i) or (ii),
in an appropriate order, to Ψ(z), resulting ultimately in a polynomial Ψ̌(z).

3. Apply the above-mentioned operation (a) to Ψ̌(z). The result is (Θ̌, σ̌).

Remarks:

1. An initial point in the identified set can be obtained by following the procedure in
Hannan (1970, pp. 64–66) and then applying transformation (a). This essentially
corresponds to computing the Wold decomposition of {yt} and applying appropriate
normalizations (Hannan, 1970, Thm. 2′′, p. 158).

2. Transformation (ii) corresponds to “flipping the root” γk of det(Ψ(z)). If γk is not real,
transformation (ii) requires that we also flip the complex conjugate root γk, since this
ensures that the resulting matrix polynomial will be real after a rotation.

3. If the IRF parameter space ΞΘ were restricted to those IRFs that are invertible (cf.
Section 2.3), then transformation (ii) would be unnecessary. In this case, the identified
set for Ψ(z) = Θ(z) diag(σ) can be obtained by taking any element in the set (e.g.,
the Wold IRFs) and applying all possible orthogonal rotations, i.e., transformation (i).
This is akin to identification in SVARs, cf. Section 2.1 and Uhlig (2005, Prop. A.1).

4. The purpose of transformation (a) is to enforce the normalizations Θijj,0 = 1.

A.3 Whittle likelihood and score

Let V (Ψ) be an nT × nT symmetric block Toeplitz matrix consisting of T × T blocks of
n× n matrices, where the (s, t) block is given by ∑q−(t−s)

`=0 Ψ`+(t−s)Ψ′` for t ≥ s and the sum
is taken to equal 0 when t > s+ q. Then the exact log likelihood function can be written

log pY |Ψ(YT | Ψ) = −1
2nT log(2π)− 1

2 log det(V (Ψ))− 1
2Y
′
TV (Ψ)−1YT . (11)

This is what the Kalman filter described in the Online Appendix computes. For all k =
0, 1, 2 . . . , T − 1, define the Fourier frequencies ωk = 2πk/T , the discrete Fourier transform
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(DFT) of the data ỹk = (2πT )−1/2∑T
t=1 e

−ıωk(t−1)yt, the DFT of the MA parameters Ψ̃k(Ψ) =∑q+1
`=1 e

−ıωk(`−1)Ψ`−1, and the SVMA spectral density matrix fk(Ψ) = (2π)−1Ψ̃k(Ψ)Ψ̃k(Ψ)∗ at
frequency ωk. The Whittle (1953) approximation to the log likelihood (11) is given by

log pWY |Ψ(YT | Ψ) = −nT log(2π)− 1
2

T−1∑
k=0

{
log det(fk(Ψ)) + ỹ∗k[fk(Ψ)]−1ỹk

}
.

The approximation is obtained by substituting V (Ψ) ≈ 2π∆F (Ψ)∆∗ in (11) (Brockwell &
Davis, 1991, Prop. 4.5.2). Here ∆ is an nT × nT unitary matrix with (s, t) block equal
to T−1/2eıωs−1(t−1)In. F (Ψ) is a block diagonal nT × nT matrix with (s, s) block equal to
fs(Ψ). The Whittle log likelihood is computationally cheap because {ỹk, Ψ̃k(Ψ)}0≤k≤T−1 can
be computed efficiently using the Fast Fourier Transform (Hansen & Sargent, 1981, Sec. 2b;
Brockwell & Davis, 1991, Ch. 10.3).47

Now I derive the gradient of the Whittle log likelihood. For all k = 0, 1, . . . , T − 1, define
Ck(Ψ) = [fk(Ψ)]−1 − [fk(Ψ)]−1ỹkỹ

∗
k[fk(Ψ)]−1 and its Discrete Fourier Transform C̃k(Ψ) =∑T

`=1 e
−ıωk(`−1)C`−1(Ψ).48 Finally, let C̃k(Ψ) = C̃T+k(Ψ) for k = −1,−2, . . . , 1− T .

Lemma 2.
log pWY |Ψ(YT | Ψ)

∂Ψ`

= −
q∑

˜̀=0

Re[C̃˜̀−`(Ψ)]Ψ˜̀, ` = 0, 1, . . . , q. (12)

The lemma gives the score with respect to Ψ. Since Ψ` = Θ` diag(σ), the chain rule gives
the score with respect to Θ and log σ.

B Proofs

B.1 Proof of Lemma 1

By the triangle inequality,

‖Pθ|Y (· | YT )−Πθ|Γ(· | Γ̂)‖L1 ≤ ‖Πθ|Γ(· | Γ̂)−Πθ|Γ(· | Γ0)‖L1 + ‖Pθ|Y (· | YT )−Πθ|Γ(· | Γ0)‖L1 .

If Γ̂ p→ Γ0, the first term above tends to 0 in probability by assumption (i) and the continuous
mapping theorem. Hence, the statement of the lemma follows if I can show that the second

47As noted by Hansen & Sargent (1981, p. 32), the computation time can be halved by exploiting ỹT−k = ỹk
and fT−k(Ψ) = fk(Ψ) for k = 1, 2, . . . , T .

48Again, computation time can be saved by exploiting CT−k(Ψ) = Ck(Ψ) for k = 1, 2, . . . , T .
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term above tends to 0 in probability.
Let ε > 0 be arbitrary. By assumption (i), there exists a neighborhood U of Γ0 in ΞΓ such

that ‖Πθ|Γ(· | Γ)−Πθ|Γ(· | Γ0)‖L1 < ε/2 for all Γ ∈ U . By assumption (ii), PΓ|Y (U c | YT ) < ε/4
w.p.a. 1. The decomposition (9) then implies

‖Pθ|Y (· | YT )− Πθ|Γ(· | Γ0)‖L1 =
∥∥∥∥∫ [Πθ|Γ(· | Γ)− Πθ|Γ(· | Γ0)]PΓ|Y (dΓ | YT )

∥∥∥∥
L1

≤
∫
U
‖Πθ|Γ(· | Γ)− Πθ|Γ(· | Γ0)‖L1PΓ|Y (dΓ | YT )

+
∫
Uc
‖Πθ|Γ(· | Γ)− Πθ|Γ(· | Γ0)‖L1PΓ|Y (dΓ | YT )

≤
∫
U

ε

2PΓ|Y (dΓ | YT ) + 2PΓ|Y (U c | YT )

≤ ε

2 + 2 ε4

w.p.a. 1. Here I use that the L1 distance between probability measures is bounded by 2.

B.2 Proof of Proposition 1

By Lemma 1, I just need to verify posterior consistency. The calculation in Eqn. 11 of Moon
& Schorfheide (2012) shows that the Whittle posterior PW

θ|Y (· | YT ) satisfies the decomposition
(9), where the posterior measure PW

Γ|Y (· | YT ) for the autocovariance function Γ is defined
in the Online Appendix. By Lemma C.1 in the Online Appendix, the latter posterior is
consistent provided that Γ0 is in the support of the induced prior ΠΓ(·).

Γ0 is indeed in the support of ΠΓ(·), for the following reason. Let Γ(Θ, σ) denote the map
(6) from structural parameters (Θ, σ) ∈ ΞΘ × Ξσ to ACFs Γ ∈ Tn,q. There exists a (non-
unique) set of IRFs and shock standard deviations (Θ̌, σ̌) ∈ ΞΘ×Xσ such that Γ0 = Γ(Θ̌, Σ̌)
(Hannan, 1970, pp. 64–66). Let U be an arbitrary neighborhood of Γ0 in Tn,q. The map
Γ(·, ·) is continuous, so Γ−1(U) is a neighborhood of (Θ̌, σ̌) in ΞΘ × Ξσ. Because ΠΘ,σ(·) has
full support on ΞΘ × Ξσ, we have ΠΓ(U) = ΠΘ,σ(Γ−1(U)) > 0. Since the neighborhood U
was arbitrary, Γ0 lies in the support of the induced prior ΠΓ(·).

B.3 Proofs of Lemma 2 and Proposition 2

Please see the Online Appendix.
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