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Appendix B Variance-covariance matrix for moment-
based methods

Here we describe how we estimate the variance-covariance matrix of the cross-sectional mo-
ments when implementing the moment-based inference approaches in Section 4.4. We take
the “3rd Moment” inference approach as an example. The measurement error variance-
covariance matrices of other moment-based approaches can be derived in a similar fashion.

Let m̂ϵj,t, for ϵ = 0, 1 and j = 1, 2, 3, be the cross-sectional sample moments of household
after-tax income in period t, and mϵj,t be the corresponding population moments, where ϵ
indicates the employment status of the group and j represents the order of the moment, such
as the sample mean, variance, and third central moment. For instance,

m̂11,t =
∑N

i=1 ιi,tϵi,t∑N
i=1 ϵi,t

, m11,t = E[ιi,t | ϵi,t = 1, zt],

m̂1j,t =
∑N

i=1(ιi,t − m̂11,t)jϵi,t∑N
i=1 ϵi,t

, m1j,t = E[(ιi,t −m11,t)j | ϵi,t = 1, zt], for j > 1.

Define m̂t ≡ (m̂01,t, m̂02,t, m̂03,t, m̂11,t, m̂12,t, m̂13,t)′ . To construct the measurement error
variance-covariance matrix V [m̂t | zt], we need to compute the variances and covariances
across m̂ϵj,t’s. It is easy to see that m̂0j,t and m̂1k,t are asymptotically independent as
N → ∞ for any moment orders j, k, so we can focus on deriving the diagonal blocks where
the moments share the same employment status ϵ.
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Let us first consider the variance of m̂11,t. As (ιi,t, ϵi,t) is cross-sectionally i.i.d. given zt,
we resort to the Central Limit Theorem and Slutsky’s theorem and obtain1

V[m̂11,t | zt] = V[ιi,t | ϵi,t = 1, zt]
NL

+ op

(
N−1

)
. (B.1)

The sample analog of V[ιi,t | ϵi,t = 1, zt] is m̂12,t, the sample variance of the employed
group in period t. As explained in the main text, we assume that the variance-covariance
matrix of the moments is constant across time and estimate it using full-sample sample
moments (i.e., averaging across time). Thus, the numerator in (B.1) is approximated by
m̂12 ≡ 1

|T |
∑

t∈T m̂12,t, where T is the subset of time points we observe the micro data, and
|T | gives the number of elements in set T .2 Similarly, the denominator in (B.1) can be
approximated by N̂1 ≡ 1

|T |
∑

t∈T
∑N

i=1 ϵi,t.
For other elements in the “employed” block, we have

V[m̂12,t | zt] = V[(ιi,t −m11)2 | ϵi,t = 1, zt]
NL

+ op

(
N−1

)
≈ m̂14 − m̂2

12

N̂1
,

V[m̂13,t | zt] = V[(ιi,t −m11)3 | ϵi,t = 1, zt]
NL

+ op

(
N−1

)
≈ m̂16 − 6m̂14m̂12 − m̂2

13 + 9m̂3
12

N̂1
,

Cov[m̂11,t, m̂12,t | zt] = cov[ιi,t −m11, (ιi,t −m11)2 | ϵi,t = 1, zt]
NL

+ op

(
N−1

)
≈ m̂13

N̂1
,

Cov[m̂11,t, m̂13,t | zt] = cov[ιi,t −m11, (ιi,t −m11)3 | ϵi,t = 1, zt]
NL

+ op

(
N−1

)
≈ m̂14 − 3m̂2

12

N̂1
,

Cov[m̂12,t, m̂13,t | zt] = cov[(ιi,t −m11)2 , (ιi,t −m11)3 | ϵi,t = 1, zt]
NL

+ op

(
N−1

)
≈ m̂15 − 4m̂13m̂12

N̂1
.

In each equation, the first equality is given by a similar cross-sectionally i.i.d. argument.
The second approximation rewrites the variance/covariance in the numerator in terms of
population moments (as in Fisher, 1930, but omitting inconsequential degree-of-freedom
adjustments), and then substitutes these population moments with their sample analogs
averaged over time. Note that the last terms in the equations above call for even higher-
order sample moments. Specifically, to approximate the variance/covariance involving the

1In the denominator, 1
N

∑N
i=1 ϵi,t

p→ E[ϵi,t] as N → ∞. Recall that E[ϵi,t] = L for all t.
2In our numerical experiment, the micro sample size Nt = N is constant over time. If this were not the

case, m̂12 should be constructed using sample size weights.
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m-th and n-th order sample moments, we need sample moments up to the (m+n)-th order.
For the “unemployed” block, we can replace m̂1j,t, ϵi,t = 1, L, m̂1j, and N̂1 with

m̂0j,t, ϵi,t = 0, 1 − L, m̂0j, and N̂0 ≡ 1
|T |

∑
t∈T

∑N
i=1(1 − ϵi,t), respectively.

Combining all steps above, we can approximate the measurement error variance-covari-
ance matrix using sample moments of micro data:

V [m̂t | zt] ≈

 V00 03×3

03×3 V11

 ,

V00 ≡ 1
N̂0


m̂02 m̂03 m̂04 − 3m̂2

02

m̂03 m̂04 − m̂2
02 m̂05 − 4m̂03m̂02

m̂04 − 3m̂2
02 m̂05 − 4m̂03m̂02

m̂06−6m̂04m̂02
−m̂2

03+9m̂3
02

 ,

V11 ≡ 1
N̂1


m̂12 m̂13 m̂14 − 3m̂2

12

m̂13 m̂14 − m̂2
12 m̂15 − 4m̂13m̂12

m̂14 − 3m̂2
12 m̂15 − 4m̂13m̂12

m̂16−6m̂14m̂12
−m̂2

13+9m̂3
12

 .
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Heterogeneous household model: Parameter calibration

β Discount factor 0.96 π(0 → 1) U to E trans. 0.5
α Capital share 0.36 π(1 → 0) E to U trans. 0.038
δ Capital depreciation 0.10 ρζ Agg. TFP AR(1) 0.859
b UI replacement rate 0.15 σζ Agg. TFP AR(1) 0.014
µλ Idiosyncratic distr. -0.25 σe Meas. err. in output 0.02

Table C.1: Parameter calibration in the heterogeneous household model.

Appendix C Heterogeneous household model

C.1 Calibration

Table C.1 shows the parameter calibration used to simulate the data. Here π(0 → 1), for
example, denotes the idiosyncratic Markov transition probability P (ϵi,t+1 = 1 | ϵi,t = 0).

C.2 Additional simulation results

Here we provide additional results for the numerical illustration of the heterogeneous house-
hold model. Figure C.1 shows the full-information and macro-only posterior distributions of
the steady-state consumption policy function for unemployed households. Figure C.2 shows
the full-information and macro-only posterior distributions of the impulse response function
of the asset distribution for unemployed households with respect to a TFP shock. In terms
of the comparison between full-information and macro-only inference, both these figures are
qualitatively similar to those for employed households, cf. Figures 3 and 4 in the main paper.

Figure C.3 shows the full-information and macro-only posterior densities of the model
parameters in an alternative simulation where we only observe N = 100 micro draws every
ten periods (instead of N = 1000). All other settings are the same as in Section 4. Naturally,
the accuracy of posterior inference is affected by the smaller sample size, but we see that the
individual heterogeneity parameter µλ is still precisely estimated in this simulation.
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Het. household model: Consumption policy function, unemployed

Figure C.1: Posterior draws of steady-state consumption policy function for unemployed house-
holds. See caption for Figure 3.

Het. household model: Impulse responses of asset distribution, unemployed

Figure C.2: Posterior of impulse response function of unemployed households’ asset distribution
with respect to an aggregate productivity shock. See caption for Figure 4.

5



Heterogeneous household model: Posterior density, N = 100
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Figure C.3: Posterior densities with (blue solid curves) and without (black dashed curves) con-
ditioning on the micro data, for cross-sectional sample size N = 100. See caption for Figure 2.
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Appendix D Heterogeneous firm model

D.1 Model assumptions

We here briefly describe the assumptions of the heterogeneous firm model. See Khan and
Thomas (2008) and Winberry (2018) for more complete discussions of the model. Note that
the notation in this section recycles some of the notation used for the household model in
Section 2.2.

A unit mass of firms i ∈ [0, 1] have decreasing returns to scale production functions Yi,t =
eζt+ϵi,tkα

i,tn
ν
i,t, where ki,t and ni,t denote firm-specific capital and labor inputs (α + ν < 1).

Labor ni,t is hired in a competitive labor market with aggregate wage rate wt. Aggregate
log TFP ζt evolves as an AR(1) process ζt = ρζζt−1 + εζ,t, εζ,t

i.i.d.∼ N(0, σ2
ζ ). The firm-

specific log productivity levels evolve as independent AR(1) processes ϵi,t = ρϵϵi,t−1 + ωi,t,
where the idiosyncratic shocks ωi,t

i.i.d.∼ N(0, σ2
ϵ ) are independent across i and are dynamically

independent of aggregate TFP.
After production, firms can choose to turn part of their production good into investment

in next-period capital. A gross investment level of Ii,t yields next-period capital ki,t+1 =
(1 − δ)ki,t + eqtIi,t. The aggregate investment efficiency shifter qt follows an AR(1) process
qt = ρqqt−1 +εq,t, where the aggregate shock εq,t

i.i.d.∼ N(0, σ2
q ) is independent of the aggregate

TFP shock εζ,t. Investment activity is free if |Ii,t/ki,t| ≤ a, where a ≥ 0 is a parameter.
Otherwise, firms pay a fixed adjustment cost of ξi,t in units of labor (i.e., the monetary cost
is ξi,t × wt). ξi,t is drawn at the beginning of every period from a uniform distribution on
the interval [0, ξ̄], independently across firms and time. Here ξ̄ ≥ 0 is another parameter.

A representative household chooses consumption Ct and labor supply Lt to maximize

E0

[ ∞∑
t=0

βt

{
logCt − χ

L1+φ
t

1 + φ

}]
,

where φ is the inverse Frisch elasticity of labor supply. The household owns all firms and
markets are complete. Market clearing requires Ct =

∫
(Yi,t + Ii,t) di and Lt =

∫
ni,t di.

See Winberry (2018, section 2.2) for the Bellmann equations implied by the firms’ and
household’s optimality conditions.

7



Heterogeneous firm model: Parameter calibration

β Discount factor 0.961 ξ Fixed cost bound 0.0083
χ Labor disutility N̄ = 1

3 ρζ Agg. TFP AR(1) 0.859
φ Inverse Frisch 10−5 σζ Agg. TFP AR(1) 0.014
ν Labor share 0.64 ρq Agg. inv. eff. AR(1) 0.859
α Capital share 0.256 σq Agg. inv. eff. AR(1) 0.014
δ Capital depreciation 0.085 ρϵ Idio. TFP AR(1) 0.53
a No fixed cost region 0.011 σϵ Idio. TFP AR(1) 0.0364

Table D.1: Parameter calibration in the heterogeneous firm model.

D.2 Calibration

Table D.1 shows the parameter calibration used to simulate the data. The labor disutility
parameter χ is chosen so that steady-state hours equal N̄ = 1/3, given all other parameters.
As explained in Section 5.1, the only difference from Winberry (2018) is that the idiosyncratic
productivity process uses the alternative (less persistent) parametrization from Khan and
Thomas (2008). We do this because Winberry’s Dynare code appears to be more numerically
stable in a neighborhood of these alternative parameter values.

D.3 Estimating the parameters of the firms’ productivity process

In this subsection we run the same estimation exercise as in Section 5, except that we here
estimate the AR(1) parameter ρϵ and innovation standard deviation σϵ of the firms’ idiosyn-
cratic log productivity process. All other structural parameters (including the adjustment
cost parameters) are assumed known for simplicity. The data and estimation settings are
similar to those in Section 5.3 except that micro cross sections are observed at each of the
five time points t = 10, 20, . . . , 50.

Figure D.1 shows the full-information posterior densities of the idiosyncratic productivity
parameters (ρϵ, σϵ), across 9 simulated data sets.3 The posterior densities are well-centered
and concentrated near the true parameter values. We refrain from comparing with posterior
inference that only exploits macro data, as these posteriors are extremely diffuse, consistent
with Khan and Thomas (2008).

3We simulated 10 data sets but discarded one, as standard MCMC convergence diagnostics showed a
failure of convergence of the Metropolis-Hastings sampler for that particular data set.
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Heterogeneous firm model: Posterior densities of productivity parameters

Figure D.1: Posterior densities across 9 simulated data sets. Vertical dashed lines indicate true
parameter values. Posterior density estimates from the 9,000 retained MCMC draws using Matlab’s
ksdensity function with default settings.

Appendix E Alternative panel data approach

We here propose an alternative approach to handling panel data that may sometimes be
more convenient than the procedure discussed in Section 6. Another view of the challenge
described in that section is that, while the solution to the heterogeneous agent model sup-
plies the marginal cross-sectional distribution of micro state variables at any point in time
p (si,t | zt, θ), it does not directly supply the joint density of micro state variables across
multiple points in time p

(
{si,t}t∈T | z, θ

)
. To get around this issue, our second proposal is

to artificially expand the micro state vector when solving the heterogeneous agent model, by
including the previous periods’ state variables in the current state vector.

Again, consider for illustration the heterogeneous household model in Section 2.2, and
suppose each household is observed for two consecutive periods. Rather than treating
the micro state vector as simply si,t = (λi, ϵi,t, ai,t−1) (permanent productivity, current-
period employment, and predetermined normalized assets), we now expand it to be s̃i,t =
(λi, ϵi,t, ai,t−1, ϵi,t−1, ai,t−2) (thus including previous-period employment and normalized as-
sets). Let ψ̃t denote the parameters governing the full four-dimensional cross-sectional
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distribution for the expanded micro state variables s̃i,t. Then ψ̃t is part of the expanded
aggregate state z̃t.

Having expanded the micro state vector, we now modify the numerical model solver so
that it outputs the joint cross-sectional density of s̃i,t, not just of si,t. This is achieved by
altering the model solution code and continuing to impose all model-implied restrictions on
the evolution of the cross-sectional distribution (which is summarized by distribution param-
eters ψ̃t). Note that the model-implied restrictions include those implied by the individual
saving behavior a′

t(a, ϵ) and the exogenous Markov process for employment p(ϵi,t | ϵi,t−1, θ).
We also continue to apply the Reiter (2009) type model solution method, leading to a state
space model for macro variables characterized by equations (2) and (3).

Given a draw of the macro states z̃ outputted from the modified model solution, we can
easily compute the micro likelihood for two consecutive periods of household employment and
income (yi,t, yi,t−1) = (ϵi,t, ιi,t, ϵi,t−1, ιi,t−1). This can be calculated as a simple distributional
transformation of the four-dimensional distribution of the expanded micro state vector s̃i,t,
using the definition ιi,t′ = λi{wt′ [(1 − τ)ϵi,t′ + b(1 − ϵi,t′)] + (1 + rt′)ai,t′−1} for t′ ∈ {t− 1, t}.

Though conceptually simple, the downside of the approach described in this section is
that the expansion of the micro state vector is computationally demanding, for two rea-
sons. First, as the dimension of the effective micro state vector s̃i,t increases, so does the
dimension of the distribution parameters ψ̃t, and then both the speed and the precision of
off-the-shelf numerical methods for solving heterogeneous agent models tend to deteriorate.
Second, achieving a sufficiently accurate approximation of the cross-sectional distribution
of the higher-dimensional expanded micro state vector s̃i,t may require using a large num-
ber q of basis functions in the finite-dimensional distributional approximation described in
Section 2.2, which further increases the dimension of ψ̃t in the equilibrium approximation.
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