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Combining micro and macro data for structural inference

• Parameters of heterogeneous agent macro models are often calibrated to match both
micro and macro data.
Krueger, Mitman & Perri (2016); AKMWW (2017); Kaplan & Violante (2018)

• Micro data tends to be precise or have clear structural interpretation, but macro data
useful to get general equilibrium dynamics right.
Kydland & Prescott (1996); Nakamura & Steinsson (2018)

• Het agent models often estimated by matching only a few moments, which is inefficient
according to the models themselves.

• Contrasts with likelihood inference framework in representative agent models estimated from
macro data. Herbst & Schorfheide (2016)
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This paper

• Generic procedure for Bayesian (likelihood) inference from macro (time series) and micro
(repeated cross-sec) data.

• Challenge: Latent macro states affect cross-sec distributions.

• Solution: Numerically unbiased likelihood estimate =⇒ valid and efficient inference.

• Demonstrate advantages of likelihood approach through simple examples:

• Fully exploit joint information content in data, as different parameters can be informed by
different types of data.

• No need to select moments a priori.

• Easy to accommodate measurement error, selection, censoring, etc.
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Literature

• Inference in het agent models:

• Micro: Arellano & Bonhomme (2017); Parra-Alvarez, Posch & Wang (2020)

• Macro (+ micro calib): Winberry (2018); Hasumi & Iiboshi (2019); Auclert, Bardóczy, Rognlie &
Straub (2020); Acharya, Chen, Del Negro, Dogra, Matlin & Sarfati (2021)

• Macro + time series of cross-sec moments: Challe, Matheron, Ragot & Rubio-Ramirez (2017);
Mongey & Williams (2017); Hahn, Kuersteiner & Mazzocco (2018); Bayer, Born & Luetticke (2020);
Papp & Reiter (2020)

• Macro states + full micro: Fernández-Villaverde, Hurtado & Nuño (2018)

• Semi-structural: Chang, Chen & Schorfheide (2018)

• Unbiased likelihood in MCMC: Andrieu, Doucet & Holenstein (2010); Flury & Shephard (2011)
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Model

zt−1 zt zt+1. . . . . .
p(zt | zt−1, θ)

↑ latent

↓ observed

xt {yi ,t}Nt
i=1

p(xt | zt , θ) p(yi,t | zt , θ) (i.i.d. across i)

(observed for t ∈ T )

• zt : latent aggregate states (includes param’s of cross-sec distr’s).

• xt : observed macro time series.

• yi,t : observed micro data, sampled i.i.d. across i and independently across t, given aggregate
states (repeated cross sections).

• Note: No restrictions on micro/macro feedback loop.
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Example: Krusell & Smith (1998), Winberry (2016)

• Households i ∈ [0, 1]:

max
ci,t ,ai,t≥0

E0

[ ∞∑
t=0

βt log ci ,t

]
s.t. ci ,t = λi

{
wt [(1 − τ)ϵi ,t + b(1 − ϵi ,t)] + (1 + rt)ai ,t−1 − ai ,t

}
• ϵi,t ∈ {0, 1}: idiosyncratic employment status, evolves as persistent Markov chain.

• λi : log-normal permanent idiosyncratic productivity. E [log λi ] = µλ, E [λi ] = 1.

• Representative firm: Yt = eζt Kα
t L1−α. Capital mkt clearing: Kt =

∑1
ϵ=0

∫
aµt(ϵ, da).

• Log TFP: ζt = ρζζt−1 + εt , with aggregate shock εt
i .i .d .∼ N(0, σ2

ζ ).

• Balanced government budget: τL = b(1 − L).
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Example: Krusell & Smith (1998), Winberry (2016) (cont.)

• Winberry (2016, 2018) numerically solves the model by approximating the cross-sectional
distribution using a flexible parametric family: µt(a, ϵ) ≈ G(a, ϵ;ψt).

• Equilibrium conditions: optimality, market clearing, distribution consistency.

• Latent aggregate states zt : ζt , log Kt , log wt , rt , ψt , etc.

• Macro observables xt : e.g., aggregate output w/ measurement error log(Yt) + et .

• Micro observables yi ,t : e.g., employment status ϵi ,t and after-tax income

ιi ,t = λi{wt [(1 − τ)ϵi ,t + b(1 − ϵi ,t)] + (1 + rt)ai ,t−1}.
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Likelihood
• Joint likelihood of macro and micro data:

p(x, y | θ) =
macro︷ ︸︸ ︷

p(x | θ)
micro︷ ︸︸ ︷

p(y | x, θ)

= p(x | θ)
∫

p(y | z, θ)p(z | x, θ) dz

= p(x | θ)
∫ ∏

t∈T

Nt∏
i=1

p(yi ,t | zt , θ)p(z | x, θ) dz.

• Macro likelihood often easily computable.

• Reiter (2009) model solution method: linearize wrt. macro shocks.

• Yields linear state space model in xt and zt =⇒ Kalman filter.
Mongey & Williams (2017); Winberry (2018)

• But integral in micro likelihood usually impossible to compute.
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Unbiased likelihood estimate

• Numerically unbiased likelihood estimate:

∫ ∏
t∈T

Nt∏
i=1

p(yi ,t | zt , θ)p(z | x, θ) dz ≈ 1
J

J∑
j=1

∏
t∈T

Nt∏
i=1

p(yi ,t | zt = z(j)
t , θ).

• {z(j)
t }1≤t≤T , j = 1, . . . , J , are draws from the joint smoothing density p(z | x, θ) of the

latent states (from Kalman smoother).

• Loosely interpretable as two-step procedure: Estimate latent states from macro data,
then evaluate micro likelihood.

• Formula lends itself well to parallel computing.
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Bayesian inference via Markov Chain Monte Carlo

• Given choice of prior, we can sample from the posterior distribution of θ using any generic
MCMC algorithm, e.g., RWMH or SMC.

• Pretend that the unbiased likelihood estimate is the exact likelihood.

• Ergodic distribution of the chain is the fully efficient, exact posterior distribution.
Andrieu, Doucet & Holenstein (2010); Flury & Shephard (2011)

• Choice of J : MCMC algorithm converges regardless, but larger J means less numerical
noise and so faster convergence.
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Illustration: Krusell & Smith (1998), Winberry (2016)

• Aggregate shock: TFP.

• Observables:

• Macro: aggregate output with measurement error, T = 100.

• Micro: HH employment status and after-tax income, t = 10, 20, . . . , 100, N = 1000.

• Estimated parameters:

• β: HH discount factor.

• σe : stdev of measurement error in log output.

• µλ: parameter of individual productivity distribution.

• True parameters as in Winberry (2016). µλ calibrated to match 20–90 percentile range of
U.S. income. Piketty, Saez & Zucman (2018)
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• Posterior density of model parameters:
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Solid blue: Full Info. Dashed black: Macro Only.
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• Estimated steady state consumption policy function, employed:
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• Estimated IRF of asset distribution to 5% TFP shock, employed:
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• Comparison of full-info and moment-based likelihood functions (formal theorem in paper):
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Moment likelihoods computed using 1, 2, or 3 moments of assets for employed and unemployed.
Statistical uncertainty about moments approximated using CLT with sample var-cov matrix.
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Second illustration in paper: Khan & Thomas (2008), Winberry (2018)

• Firms:

• Idiosyncratic productivity shock and capital. Non-convex investment adjustment costs.

• Aggregate shocks: productivity and investment efficiency.

• Observables:

• Macro: aggregate output and investment. Micro: firms’ capital and labor inputs.

• Obtain accurate inference for firms’ idiosyncratic TFP process parameters despite Khan &
Thomas (2008) macro irrelevance result.

• Also demonstrate that our likelihood approach makes it easy to adjust inference for
selection (e.g., only sample largest firms).
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Summary
• Bayesian inference in het agent models using both macro (times series) and micro

(repeated cross-sec) data.

• Challenge: Latent macro states affect cross-sec distribution.
Solution: Numerically unbiased likelihood estimate =⇒ valid and efficient inference.

• Computations scale well with dimensions of data.

• Advantages of likelihood approach:

• Automatically exploit joint information content in all types of data.

• No need to select moments a priori.

• Easy to accommodate measurement error, selection, censoring, etc.

Thank you!
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Appendix



Macro likelihood
• Reiter (2009): Linearize wrt. macro shocks, retain micro heterog’ty.

AKMWW (2017); Auclert, Bardóczy, Rognlie & Straub (2020)

=⇒ Linear state space model in macro var’s and macro shocks:

xt = S(θ)zt + et

zt − z̄ = A(θ)(zt−1 − z̄) + B(θ)εt

• et : measurement error (could be zero).

• S(·), A(·), and B(·): complicated functions of structural parameters θ and of model’s
micro heterogeneity.

• Assume i.i.d. Gaussian et and εt =⇒ p(x | θ) can be obtained from Kalman filter. Mongey
& Williams (2017); Winberry (2018)

Back
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MCMC with unbiased likelihood
• Likelihood estimate implicitly a function of random uniforms u:

p̂(x, y | θ) = p(x, y | θ,u).

• Numerical unbiasedness:

Eu[p̂(x, y | θ)] =
∫

p(x, y | θ,u) du = p(x, y | θ).

• When running MCMC, think of augmenting parameter vector with u. Proposals for u are
just i.i.d. uniform.

• After running MCMC, throw away u draws. Resulting marginal of θ:∫
p(θ,u | x, y) du ∝ π(θ)

∫
p(x, y | θ,u) du

= π(θ)p(x, y | θ) ∝ p(θ | x, y).

Back
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