Full-Information Estimation of Heterogeneous Agent Models Using Macro and Micro Data

Laura Liu Mikkel Plagborg-Møller Indiana University Princeton University

Slides: https://scholar.princeton.edu/mikkelpm

August 23, 2021

Combining micro and macro data for structural inference

• Parameters of heterogeneous agent macro models are often calibrated to match both micro and macro data.

Krueger, Mitman & Perri (2016); AKMWW (2017); Kaplan & Violante (2018)

- Micro data tends to be precise or have clear structural interpretation, but macro data useful to get general equilibrium dynamics right.
 Kydland & Prescott (1996); Nakamura & Steinsson (2018)
- Het agent models often estimated by matching only a few moments, which is inefficient according to the models themselves.
 - Contrasts with likelihood inference framework in *representative* agent models estimated from macro data. Herbst & Schorfheide (2016)

This paper

- Generic procedure for Bayesian (likelihood) inference from macro (time series) and micro (repeated cross-sec) data.
- Challenge: Latent macro states affect cross-sec distributions.
- Solution: Numerically unbiased likelihood estimate \implies valid and efficient inference.
- Demonstrate advantages of likelihood approach through simple examples:
 - Fully exploit joint information content in data, as different parameters can be informed by different types of data.
 - No need to select moments a priori.
 - Easy to accommodate measurement error, selection, censoring, etc.

Literature

- Inference in het agent models:
 - Micro: Arellano & Bonhomme (2017); Parra-Alvarez, Posch & Wang (2020)
 - Macro (+ micro calib): Winberry (2018); Hasumi & liboshi (2019); Auclert, Bardóczy, Rognlie & Straub (2020); Acharya, Chen, Del Negro, Dogra, Matlin & Sarfati (2021)
 - Macro + time series of cross-sec moments: Challe, Matheron, Ragot & Rubio-Ramirez (2017); Mongey & Williams (2017); Hahn, Kuersteiner & Mazzocco (2018); Bayer, Born & Luetticke (2020); Papp & Reiter (2020)
 - Macro states + full micro: Fernández-Villaverde, Hurtado & Nuño (2018)
 - Semi-structural: Chang, Chen & Schorfheide (2018)
- Unbiased likelihood in MCMC: Andrieu, Doucet & Holenstein (2010); Flury & Shephard (2011)

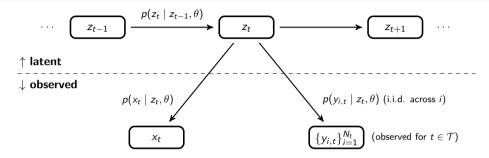
Setting

2 Method

3 Illustration: Heterogeneous household model

4 Illustration: Heterogeneous firm model

Model



- *z_t*: latent aggregate states (includes param's of cross-sec distr's).
- x_t: observed macro time series.
- $y_{i,t}$: observed micro data, sampled i.i.d. across *i* and independently across *t*, given aggregate states (repeated cross sections).
- Note: No restrictions on micro/macro feedback loop.

Example: Krusell & Smith (1998), Winberry (2016)

• Households $i \in [0, 1]$:

$$\max_{\substack{c_{i,t}, a_{i,t} \ge 0}} \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \log c_{i,t} \right]$$

s.t. $c_{i,t} = \lambda_i \{ w_t [(1-\tau)\epsilon_{i,t} + b(1-\epsilon_{i,t})] + (1+r_t)a_{i,t-1} - a_{i,t} \}$

- $\epsilon_{i,t} \in \{0,1\}$: idiosyncratic employment status, evolves as persistent Markov chain.
- λ_i : log-normal permanent idiosyncratic productivity. $E[\log \lambda_i] = \mu_{\lambda}$, $E[\lambda_i] = 1$.
- Representative firm: $Y_t = e^{\zeta_t} K_t^{\alpha} L^{1-\alpha}$. Capital mkt clearing: $K_t = \sum_{\epsilon=0}^1 \int a\mu_t(\epsilon, da)$.

• Log TFP: $\zeta_t = \rho_{\zeta} \zeta_{t-1} + \varepsilon_t$, with aggregate shock $\varepsilon_t \stackrel{i.i.d.}{\sim} N(0, \sigma_{\zeta}^2)$.

• Balanced government budget: $\tau L = b(1 - L)$.

Example: Krusell & Smith (1998), Winberry (2016) (cont.)

- Winberry (2016, 2018) numerically solves the model by approximating the cross-sectional distribution using a flexible parametric family: μ_t(a, ε) ≈ G(a, ε; ψ_t).
- Equilibrium conditions: optimality, market clearing, distribution consistency.
- Latent aggregate states z_t : ζ_t , log K_t , log w_t , r_t , ψ_t , etc.
- Macro observables x_t : e.g., aggregate output w/ measurement error $\log(Y_t) + e_t$.
- Micro observables $y_{i,t}$: e.g., employment status $\epsilon_{i,t}$ and after-tax income

$$\iota_{i,t} = \lambda_i \{ w_t[(1-\tau)\epsilon_{i,t} + b(1-\epsilon_{i,t})] + (1+r_t)a_{i,t-1} \}.$$

Setting

Ø Method

3 Illustration: Heterogeneous household model

4 Illustration: Heterogeneous firm model

Likelihood

• Joint likelihood of macro and micro data:

$$p(\mathbf{x}, \mathbf{y} \mid \theta) = \overbrace{p(\mathbf{x} \mid \theta)}^{\text{macro}} \overbrace{p(\mathbf{y} \mid \mathbf{x}, \theta)}^{\text{micro}}$$
$$= p(\mathbf{x} \mid \theta) \int p(\mathbf{y} \mid \mathbf{z}, \theta) p(\mathbf{z} \mid \mathbf{x}, \theta) d\mathbf{z}$$
$$= p(\mathbf{x} \mid \theta) \int \prod_{t \in \mathcal{T}} \prod_{i=1}^{N_t} p(y_{i,t} \mid z_t, \theta) p(\mathbf{z} \mid \mathbf{x}, \theta) d\mathbf{z}.$$

- Macro likelihood often easily computable.
 - Reiter (2009) model solution method: linearize wrt. macro shocks.
 - Yields linear state space model in xt and zt ⇒ Kalman filter. Mongey & Williams (2017); Winberry (2018)
- But integral in micro likelihood usually impossible to compute.

Unbiased likelihood estimate

• Numerically unbiased likelihood estimate:

$$\int \prod_{t\in\mathcal{T}}\prod_{i=1}^{N_t} p(y_{i,t}\mid z_t,\theta) p(\mathbf{z}\mid \mathbf{x},\theta) \, d\mathbf{z} \approx \frac{1}{J} \sum_{j=1}^J \prod_{t\in\mathcal{T}}\prod_{i=1}^{N_t} p(y_{i,t}\mid z_t=z_t^{(j)},\theta).$$

- {z_t^(j)}_{1≤t≤T}, j = 1,..., J, are draws from the joint smoothing density p(z | x, θ) of the latent states (from Kalman smoother).
- Loosely interpretable as two-step procedure: Estimate latent states from macro data, then evaluate micro likelihood.
- Formula lends itself well to parallel computing.

Bayesian inference via Markov Chain Monte Carlo

- Given choice of prior, we can sample from the posterior distribution of θ using any generic MCMC algorithm, e.g., RWMH or SMC.
- Pretend that the unbiased likelihood estimate is the exact likelihood.
- Ergodic distribution of the chain is the fully efficient, exact posterior distribution.
 Andrieu, Doucet & Holenstein (2010); Flury & Shephard (2011)
- Choice of J: MCMC algorithm converges regardless, but larger J means less numerical noise and so faster convergence.

Setting

2 Method

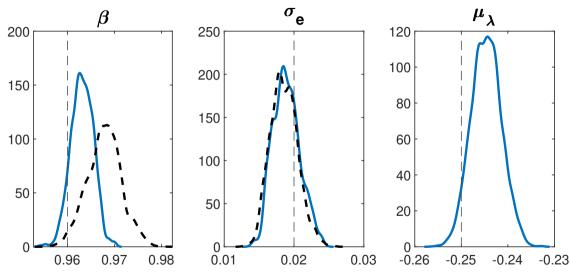
3 Illustration: Heterogeneous household model

4 Illustration: Heterogeneous firm model

Illustration: Krusell & Smith (1998), Winberry (2016)

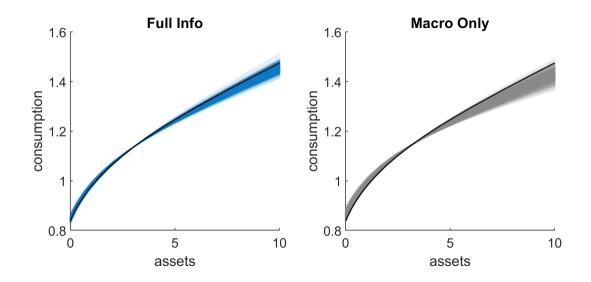
- Aggregate shock: TFP.
- Observables:
 - Macro: aggregate output with measurement error, T = 100.
 - Micro: HH employment status and after-tax income, $t = 10, 20, \ldots, 100, N = 1000$.
- Estimated parameters:
 - β : HH discount factor.
 - σ_e : stdev of measurement error in log output.
 - μ_{λ} : parameter of individual productivity distribution.
- True parameters as in Winberry (2016). μ_λ calibrated to match 20–90 percentile range of U.S. income. Piketty, Saez & Zucman (2018)

• Posterior density of model parameters:

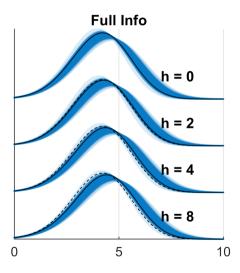


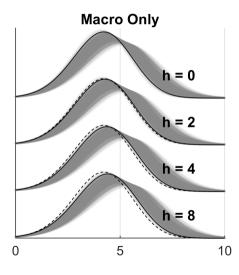
Solid blue: Full Info. Dashed black: Macro Only.

• Estimated steady state consumption policy function, employed:

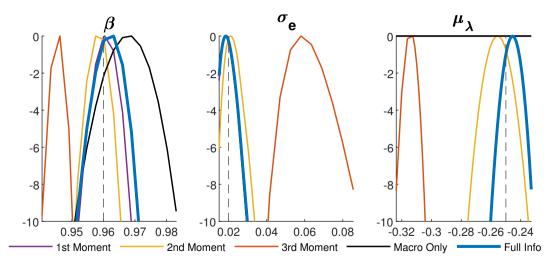


• Estimated IRF of asset distribution to 5% TFP shock, employed:





• Comparison of full-info and moment-based likelihood functions (formal theorem in paper):



Moment likelihoods computed using 1, 2, or 3 moments of assets for employed and unemployed. Statistical uncertainty about moments approximated using CLT with sample var-cov matrix.

Setting

2 Method

3 Illustration: Heterogeneous household model

4 Illustration: Heterogeneous firm model

Second illustration in paper: Khan & Thomas (2008), Winberry (2018)

• Firms:

- Idiosyncratic productivity shock and capital. Non-convex investment adjustment costs.
- Aggregate shocks: productivity and investment efficiency.
- Observables:
 - Macro: aggregate output and investment. Micro: firms' capital and labor inputs.
- Obtain accurate inference for firms' idiosyncratic TFP process parameters despite Khan & Thomas (2008) macro irrelevance result.
- Also demonstrate that our likelihood approach makes it easy to adjust inference for selection (e.g., only sample largest firms).

Setting

2 Method

3 Illustration: Heterogeneous household model

4 Illustration: Heterogeneous firm model

- Bayesian inference in het agent models using both macro (times series) and micro (repeated cross-sec) data.
- Challenge: Latent macro states affect cross-sec distribution.
 Solution: Numerically unbiased likelihood estimate => valid and efficient inference.
- Computations scale well with dimensions of data.
- Advantages of likelihood approach:
 - Automatically exploit joint information content in all types of data.
 - No need to select moments a priori.
 - Easy to accommodate measurement error, selection, censoring, etc.

Summary

- Bayesian inference in het agent models using both macro (times series) and micro (repeated cross-sec) data.
- Challenge: Latent macro states affect cross-sec distribution.
 Solution: Numerically unbiased likelihood estimate => valid and efficient inference.
- Computations scale well with dimensions of data.
- Advantages of likelihood approach:
 - Automatically exploit joint information content in all types of data.
 - No need to select moments a priori.
 - Easy to accommodate measurement error, selection, censoring, etc.

Thank you!

Appendix

Macro likelihood

- Reiter (2009): Linearize wrt. macro shocks, retain micro heterog'ty. AKMWW (2017); Auclert, Bardóczy, Rognlie & Straub (2020)
 - \Longrightarrow Linear state space model in macro var's and macro shocks:

$$egin{aligned} & x_t = S(heta) z_t + e_t \ & z_t - ar{z} = A(heta) (z_{t-1} - ar{z}) + B(heta) arepsilon_t \end{aligned}$$

- *e*_t: measurement error (could be zero).
- S(·), A(·), and B(·): complicated functions of structural parameters θ and of model's micro heterogeneity.
- Assume i.i.d. Gaussian et and εt ⇒ p(x | θ) can be obtained from Kalman filter. Mongey & Williams (2017); Winberry (2018)

MCMC with unbiased likelihood

• Likelihood estimate implicitly a function of random uniforms **u**:

$$\hat{p}(\mathbf{x}, \mathbf{y} \mid \theta) = p(\mathbf{x}, \mathbf{y} \mid \theta, \mathbf{u}).$$

• Numerical unbiasedness:

$$E_{\mathbf{u}}[\hat{p}(\mathbf{x},\mathbf{y} \mid heta)] = \int p(\mathbf{x},\mathbf{y} \mid heta,\mathbf{u}) \, d\mathbf{u} = p(\mathbf{x},\mathbf{y} \mid heta).$$

- When running MCMC, think of augmenting parameter vector with **u**. Proposals for **u** are just i.i.d. uniform.
- After running MCMC, throw away **u** draws. Resulting marginal of θ :

$$\int p(\theta, \mathbf{u} \mid \mathbf{x}, \mathbf{y}) \, d\mathbf{u} \propto \pi(\theta) \int p(\mathbf{x}, \mathbf{y} \mid \theta, \mathbf{u}) \, d\mathbf{u}$$
$$= \pi(\theta) p(\mathbf{x}, \mathbf{y} \mid \theta) \propto p(\theta \mid \mathbf{x}, \mathbf{y}).$$

