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1 Introduction

Macroeconomic models with heterogeneous agents have exploded in popularity in recent
years.1 New micro data sets – including firm and household surveys, social security and tax
records, and censuses – have exposed the empirical failures of traditional representative agent
approaches. The new models not only improve the fit to the data, but also make it possible
to meaningfully investigate the causes and consequences of inequality among households
or firms along several dimensions, including endowments, financial constraints, age, size,
location, etc.

So far, however, empirical work in this area has only been able to exploit limited features
of the micro data sources that motivated the development of the new models. As emphasized
by Ahn, Kaplan, Moll, Winberry, and Wolf (2017), the burgeoning academic literature has
mostly calibrated model parameters and performed over-identification tests by matching a
few empirical moments that are deemed important a priori. This approach may be highly
inefficient, as it ignores that the models’ implied macro dynamics and cross-sectional proper-
ties often fully determine the entire distribution of the observed macro and micro data. The
failure to exploit the joint information content of macro and micro data stands in stark con-
trast to the well-developed inference procedures for estimating representative agent models
using only macro data (Herbst and Schorfheide, 2016).

To exploit the full information content of macro and micro data, we develop a general
technique to perform Bayesian inference in heterogeneous agent models. We assume the
availability of aggregate time series data as well as repeated cross sections of micro data.
Evaluation of the joint macro and micro likelihood function is complicated by the fact that
the model-implied cross-sectional distributions typically depend on unobserved aggregate
state variables. To overcome this problem, we devise a way to compute a numerically un-
biased estimate of the model-implied likelihood function of the macro and micro data. As
argued by Andrieu, Doucet, and Holenstein (2010) and Flury and Shephard (2011), such
an unbiased likelihood estimate can be employed in standard Markov Chain Monte Carlo
(MCMC) procedures to generate draws from the fully efficient Bayesian posterior distribution
given all available data.

The starting point of our analysis is the insight that existing solution methods for hetero-
geneous agent models directly imply the functional form of the joint sampling distribution of

1For references and discussion, see Krueger, Mitman, and Perri (2016), Ahn, Kaplan, Moll, Winberry,
and Wolf (2017), and Kaplan and Violante (2018).
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macro and micro data, given structural parameters. These models are typically solved nu-
merically by imposing a flexible functional form on the relevant cross-sectional distributions
(e.g., a discrete histogram or parametric family of densities). The distributions are governed
by time-varying unobserved state variables (e.g., moments). To calculate the model-implied
likelihood, we decompose it into two parts. First, heterogeneous agent models are typically
solved using the method of Reiter (2009), which linearizes with respect to the macro shocks
but not the micro shocks. Hence, the macro part of the likelihood can be evaluated using
standard linear state space methods, as proposed by Mongey and Williams (2017) and Win-
berry (2018).2 Second, the likelihood of the repeated cross sections of micro data, conditional
on the macro state variables, can be evaluated by simply plugging into the assumed cross-
sectional density. The key challenge that our method overcomes is that the econometrician
typically does not directly observe the macro state variables. Instead, the observed macro
time series are imperfectly informative about the underlying states.

Our procedure can loosely be viewed as a rigorous Bayesian version of a two-step ap-
proach: First we estimate the latent macro states from macro data, and then we compute
the model-implied cross-sectional likelihood conditional on these estimated macro states.
More precisely, we obtain a numerically unbiased estimate of the likelihood by averaging
the cross-sectional likelihood across repeated draws from the smoothing distribution of the
hidden states given the macro data. We emphasize that, despite being based on a likelihood
estimate, our method is fully Bayesian and automatically takes into account all sources of
uncertainty about parameters and states. An attractive computational feature is that evalu-
ation of the micro part of the likelihood lends itself naturally to parallel computing. Hence,
computation time scales well with the size of the data set. Though our baseline method is
designed for repeated cross sections of micro data, we present ideas for exploiting panel data
in Section 6.

We perform finite-sample valid and fully efficient Bayesian inference by plugging the
unbiased likelihood estimate into a standard MCMC algorithm. The generic arguments of
Andrieu, Doucet, and Holenstein (2010) and Flury and Shephard (2011) imply that the
ergodic distribution of the MCMC chain is the full-information posterior distribution that
we would have obtained if we had known how to evaluate the exact likelihood function (not
just an unbiased estimate of it). This is true no matter how many smoothing draws are used
to compute the unbiased likelihood estimate. In principle, we may use any MCMC posterior

2If non-Reiter model solution methods are used, our general estimation approach could in principle still
be applied, though its computational feasibility would be context-dependent, as discussed in Section 7.
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sampling algorithm that relies only on evaluating (the unbiased estimate of) the posterior
density, such as Random Walk Metropolis-Hastings.

In contrast to other estimation methods, our full-information method is automatically
finite-sample efficient and can easily handle unobserved individual heterogeneity, micro mea-
surement error, as well as data imperfections such as selection or censoring. In an important
early work, Mongey and Williams (2017) propose to exploit micro data by collapsing it to
time series of cross-sectional moments and incorporating these into the macro likelihood. In
principle, this approach can be as efficient as our full-information approach if the structural
model implies that these moments are sufficient statistics for the micro data. We provide
examples where this is not the case, for example due to the presence of unobserved individual
heterogeneity and/or micro measurement error. Even when sufficient statistics do exist, it
is necessary to properly account for sampling error in the observed cross-sectional moments,
which is done automatically by our full-information likelihood method, but could be delicate
and imprecise for moment-based approaches. Moreover, textbook adjustments to the micro
likelihood allow us to accommodate specific empirically realistic features of micro data such
as selection (e.g., over-sampling of large firms) or censoring (e.g., top-coding of income),
whereas this is challenging to do efficiently with moment-based approaches.

We illustrate the joint inferential power of macro and micro data through two numerical
examples: a heterogeneous household model (Krusell and Smith, 1998) and a heterogeneous
firm model (Khan and Thomas, 2008). In both cases we assume that the econometrician
observes certain standard macro time series as well as intermittent repeated cross sections
of, respectively, (i) household employment and income and (ii) firm capital and labor inputs.
Using simulated data, and given flat priors, we show that our full-information method ac-
curately recovers the true structural model parameters. Importantly, for several structural
parameters, the micro data reduces the length of posterior credible intervals substantially,
relative to inference that exploits only the macro data. In fact, we give examples of pa-
rameters that can only be identified if micro data is available. In contrast, inference from
moment-based approaches can be highly inaccurate and sensitive to the choice of moments.

We deliberately keep our numerical illustrations low-dimensional and build our code on
top of the user-friendly Dynare-based model solution method of Winberry (2018). Though
pedagogically useful, this particular numerical model solution method cannot handle very
rich models, so a full-scale empirical illustration is outside the scope of this paper. However,
there is nothing in our general inference approach that rules out larger-scale models. We
argue in Section 7 that our general inference approach is compatible with cutting-edge model
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solution methods that apply automatic dimension reduction of the state space equations
(Ahn, Kaplan, Moll, Winberry, and Wolf, 2017).

Literature. Our paper contributes to the recent literature on structural estimation of
heterogeneous agent models by exploiting the full, combined information content available
in macro and micro data. We build on the idea of Mongey and Williams (2017) and Win-
berry (2018) to estimate heterogeneous agent models from the linear state space repre-
sentation obtained from the Reiter (2009) model solution approach. Several papers have
exploited only macro data (as well as calibrated steady-state micro moments) for estima-
tion, including Winberry (2018), Hasumi and Iiboshi (2019), Acharya, Negro, and Dogra
(2020), Auclert, Rognlie, and Straub (2020), and Auclert, Bardóczy, Rognlie, and Straub
(2021). Challe, Matheron, Ragot, and Rubio-Ramirez (2017), Mongey and Williams (2017),
Bayer, Born, and Luetticke (2020), and Papp and Reiter (2020) additionally track particular
cross-sectional moments over time. In contrast, we exploit the entire model-implied likeli-
hood function given repeated micro cross sections, which is (at least weakly) more efficient,
as discussed further in Section 3.3.

We are not aware of other papers that tackle the fundamental problem that the aggre-
gate shocks affecting cross-sectional heterogeneity are not directly observed. Parra-Alvarez,
Posch, and Wang (2020) use the model-implied steady-state micro likelihood in a heteroge-
neous household model, but abstract from macro data or aggregate dynamics. Closest to
our approach are Fernández-Villaverde, Hurtado, and Nuño (2019), who exploit the model-
implied joint sampling density of macro and micro data in a particular heterogeneous agent
macro model. However, they assume that the underlying state variables are directly ob-
served, whereas our contribution is to solve the computational challenges that arise in the
generic case where the macro states are (partially) latent.

Certain other existing methods for combining macro and micro data cannot be applied
in our setting. Hahn, Kuersteiner, and Mazzocco (2022) develop asymptotic theory for esti-
mation using interdependent micro and macro data sets, but their full-information approach
requires derivatives of the exact likelihood in closed form, which is not available in our setting
due to the need to integrate out unobserved state variables. Chang, Chen, and Schorfheide
(2021) propose a reduced-form approach to estimating the feedback loop between aggregate
time series and heterogeneous micro data; they do not consider estimation of structural mod-
els. In likelihood estimation of representative agent models, micro data has mainly been used
to inform the prior, as in Chang, Gomes, and Schorfheide (2002). Finally, unlike the microe-

5



conometric literature on heterogeneous agent models (Arellano and Bonhomme, 2017), our
work explicitly seeks to estimate the deep parameters of a general equilibrium macro model
by also incorporating aggregate time series data.

Outline. Section 2 shows that heterogeneous agent models imply a fully-specified statis-
tical model for the macro and micro data. Section 3 presents our method for computing
an unbiased likelihood estimate that is used to perform efficient Bayesian inference. There
we also compare our full-information approach with moment-based estimation approaches.
Sections 4 and 5 illustrate the inferential power of combining macro and micro data using
two simple numerical examples, a heterogeneous household model and a heterogeneous firm
model. Section 6 proposes an extension to panel data. Section 7 concludes and discusses
possible future research directions. Appendix A contains proofs and technical results. A
Supplemental Appendix and a full Matlab code suite are available online.3

2 Framework

We first describe how heterogeneous agent models generically imply a statistical model for
the macro and micro data. Then we illustrate how a simple model with heterogeneous
households fits into this framework.

2.1 A general heterogeneous agent framework

Consider a given structural model that implies a fully-specified equilibrium relationship
among a set of aggregate and idiosyncratic variables. We assume the availability of macro
time series data as well as repeated cross sections of micro data, as summarized in Figure 1.
Let x ≡ {xt}1≤t≤T denote the vector of observed time series data (e.g., real GDP growth),
where xt is a vector, and T denotes the time series sample size. At a subset T ⊂ {1, 2, . . . , T}
of time points we additionally observe the micro data y ≡ {yi,t}1≤i≤Nt,t∈T , where yi,t is a
vector (e.g., the asset holdings of household i or the employment of firm i). At each time t,
the cross section {yi,t}1≤i≤Nt is sampled at random from the model-implied cross-sectional
distribution conditional on some macro state vector zt. For now it is convenient to assume
that {yi,t} constitutes a representative sample, but sample selection or censoring are easily

3https://github.com/mikkelpm/het_agents_bayes
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zt−1 zt zt+1. . . . . .
p(zt | zt−1, θ)

↑ latent

↓ observed

xt {yi,t}Nt
i=1

p(xt | zt, θ) p(yi,t | zt, θ) (i.i.d. across i)

(observed for t ∈ T )

Figure 1: Diagram of the distribution of the macro and micro data implied by a heterogeneous
agent model. The state vector zt includes any time-varying parameters that govern the cross-
sectional distribution p(yi,t | zt, θ).

accommodated in the framework, as we demonstrate in Section 5.4. Formally, we make the
following assumption.

Assumption 1. The data is sampled as follows:

1. Conditional on z ≡ {zt}T
t=1, the micro data {yi,t}1≤i≤Nt,t∈T is independent across t and

the data points {yi,t}Nt
i=1 at time t are sampled i.i.d. from the density p(yi,t | zt, θ).

2. Conditional on z, the micro data y is independent of the macro data x.

3. Conditional on zt and {xτ , zτ }τ≤t−1, the macro data xt is sampled from the density
p(xt | zt, θ). Conditional on {zτ }τ≤t−1, the state vector zt is sampled from the density
p(zt | zt−1, θ).

The first condition above operationalizes the notion of representative sampling of repeated
cross sections. The second condition entails no loss of generality, since we can always include
xt in the state vector zt. The third condition is a standard Markovian state space formulation
of the aggregate dynamics, as discussed further below.

Given the structural parameter vector θ, the fully-specified heterogeneous agent model
implies functional forms for the macro observation density p(xt | zt, θ), the macro state
transition density p(zt | zt−1, θ), and the micro sampling density p(yi,t | zt, θ). These density
functions reflect the equilibrium of the model, as we illustrate in the next subsection, and
they are the key inputs in the likelihood computation in Section 3. Notice that the framework
allows the micro and macro data to be dependent, though this dependence must be fully
captured by the macro state vector zt, which is determined by the structure of the model
at hand. Because the sampling densities p(xt | zt, θ) and p(yi,t | zt, θ) are derived from
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an equilibrium model, the likelihood function derived below in equation (5) automatically
embodies any constraints of the type envisioned by Imbens and Lancaster (1994) on the
relationship between the aggregate macro data and the time-varying population moments of
the micro sampling distribution. For example, if yi,t equals individual-level consumption, xt

equals aggregate consumption, and zt equals the underlying macro shocks (which determine
the dynamics of aggregates and of the micro distribution), then the asymptotic adding-up
constraint that limNt→∞

1
Nt

∑Nt
i=1 yi,t

a.s.= xt will be automatically satisfied if the sampling
densities are derived from a model that imposes market clearing.

In most applications, some of the aggregate state variables zt that influence the macro and
micro sampling densities are unobserved, i.e., zt ̸= xt. This fact complicates the evaluation
of the exact likelihood function and is the key technical challenge that we overcome in this
paper, as discussed in Section 3.

2.2 Example: Heterogeneous household model

We use a simple heterogeneous household model à la Krusell and Smith (1998) to illustrate
the components of the general framework introduced in Section 2.1. Our discussion of
the model and the numerical equilibrium solution technique largely follows Winberry (2016,
2018). Though this model is far too stylized for quantitative empirical work, we demonstrate
the flexibility of our framework by adding complications such as permanent heterogeneity
among households as well as measurement error in observables. In Section 4 we will estimate
a calibrated version of this model on simulated data.

Model assumptions. A continuum of heterogeneous households i ∈ [0, 1] are exposed
to idiosyncratic employment risk as well as aggregate shocks to wages and asset returns.
Households have log preferences over consumption ci,t at time t = 0, 1, 2, . . . . When em-
ployed (ϵi,t = 1), households receive wage income net of an income tax levied at rate τ .
When unemployed (ϵi,t = 0), they receive unemployment benefits equal to a fraction b of
their hypothetical working wage. The idiosyncratic unemployment state ϵi,t evolves exoge-
nously according to a two-state first-order Markov process that is independent of aggregate
conditions and household decisions. Households cannot insure themselves against their em-
ployment risk, since the only available financial instruments are shares of capital ãi,t, which
yield a rate of return rt. Financial investment is subject to the borrowing constraint ãi,t ≥ 0.

For expositional purposes, we add a dimension of permanent household heterogeneity:
Each household is endowed with a permanent labor productivity level λi, which is drawn at
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the beginning of time from a lognormal distribution with mean parameter E[log λi] = µλ ≤ 0
and variance parameter chosen such that E[λi] = 1. An employed household inelastically
supplies λi efficiency units of labor, earning pre-tax income of λiwt, where wt is the real wage
per efficiency unit of labor.

To summarize, the households’ problem can be written

max
ci,t,ai,t≥0

E0

[ ∞∑
t=0

βt log ci,t

]

s.t. ci,t = λi

{
wt[(1 − τ)ϵi,t + b(1 − ϵi,t)] + (1 + rt)ai,t−1 − ai,t

}
,

where ai,t = ãi,t/λi are the normalized asset holdings.
A representative firm produces the consumption good using a Cobb-Douglas production

function Yt = eζtKα
t L

1−α, where aggregate capital Kt depreciates at rate δ, and L is the
aggregate level of labor efficiency units (which is constant over time since employment risk
is purely idiosyncratic). The firm hires labor and rents capital in competitive input markets.
Log total factor productivity (TFP) evolves as an AR(1) process ζt = ρζζt−1+εt, where εt

i.i.d.∼
N(0, σ2

ζ ). The government balances its budget period by period, implying τL = b(1 − L).
We collect the deep parameters of this model in the vector θ. These include β, α, δ, τ ,

ρζ , σζ , the transition probabilities for idiosyncratic employment states, and µλ.

Equilibrium definition and computation. The mathematical definition of a recursive
competitive equilibrium is standard, and we refer to Winberry (2016) for details. We now
review Winberry’s method for solving the model numerically.

A key model object is the cross-sectional joint distribution of the micro state variables,
i.e., employment status ϵi,t, normalized assets ai,t−1, and permanent productivity λi. This
distribution, which we denote µ̃t(ϵ, a, λ), is time-varying as it implicitly depends on the
aggregate productivity state variable ζt at time t. Due to log utility and the linearity of the
households’ budget constraint in λi, macro aggregates are unaffected by the distribution of
the permanent cross-sectional heterogeneity λi (recall that E[λi] = 1). This implies that the
mean parameter µλ of the log-normal distribution of λi is only identifiable if micro data is
available, as discussed further in Section 4. In equilibrium we have µ̃t(ϵ, a, λ) = µt(ϵ, a)F (λ |
µλ), where F (· | µλ) denotes the time-invariant log-normal distribution for λi.

To solve the model numerically, Winberry (2016, 2018) assumes that the infinite-dimen-
sional cross-sectional distribution µt(ϵ, a) can be well approximated by a rich but finite-
dimensional family of distributions. The distribution of a given ϵ is a mixture of a mass
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point at 0 (the borrowing constraint) and an absolutely continuous distribution concentrated
on (0,∞). At every point in time, Winberry approximates the absolutely continuous part
using a density of the exponential form

gϵ(a) = exp
{
φ̃ϵ0 + φ̃ϵ1m̃ϵ1 +

q∑
ℓ=2

φϵℓ

[
(a− m̃ϵ1)ℓ − m̃ϵℓ

]}
,

where m̃ϵ1 = E[a | ϵ], m̃ϵl = E[(a− m̃ϵ1)ℓ | ϵ] for l ≥ 2, the φ̃ϵℓ’s are coefficients of the
distribution, and q ∈ N is a tuning parameter that determines the quality of the numer-
ical approximation. The q + 1 coefficients {φ̃ϵℓ}0≤l≤q are pinned down by the q moments
{m̃ϵℓ}1≤l≤q, along with the normalization that gϵ(a) integrates to one. The approximation of
the distribution µt(ϵ, a) at any point in time therefore depends on 2(q + 1) parameters: the
probability point mass at a = 0 as well as the q moments {m̃ϵℓ}1≤l≤q, for each employment
state ϵ. Denote the vector of all these parameters by ψ. The model solution method proceeds
under the assumption µt(a, ϵ) = G(a, ϵ;ψt), where G denotes the previously specified para-
metric mixture functional form for the distribution, and we have added a time subscript to
the parameter vector ψ = ψt. Though the approximation µt(a, ϵ) ≈ G(a, ϵ;ψt) only becomes
exact in the limit q → ∞, the approximation may be good enough for small q to satisfy the
model’s equilibrium equations to a high degree of numerical accuracy.

Adopting the distributional approximation, the model’s aggregate equilibrium can now
be written as a nonlinear system of expectational equations in a finite-dimensional vector zt

of macro variables:
Et[H(zt+1, zt, εt+1; θ)] = 0, (1)

where we have made explicit the dependence on the deep model parameters θ. Consistent
with the notation in Section 2.1, the vector zt includes (log) aggregate output log(Yt), capi-
tal log(Kt), wages log(wt), rate of return rt, and productivity ζt, but also the time-varying
distributional parameters ψt. For brevity, we do not specify the full equilibrium correspon-
dence H(·) here but refer to Winberry (2016) for details. Among other things, H(·) enforces
that the evolution over time of the cross-sectional distributional parameters ψt is consistent
with households’ optimal savings decision rule, given the other macro state variables in zt.
H(·) also enforces consistency between micro variables and macro aggregates, such as capital
market clearing Kt = ∑1

ϵ=0
∫
aµt(ϵ, da).

Estimation of the heterogenous agent model requires a fast numerical solution method,
which Winberry (2016, 2018) achieves using the Reiter (2009) linearization approach. First
the system of equations (1) is solved numerically for the steady state values zt = zt−1 = z̄
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in the case of no aggregate shocks (εt = 0). Then the system (1) is linearized as a function
of the aggregate variables zt, zt−1, and εt around their steady state values, and the unique
bounded rational expectations solution is computed (if it exists) using standard methods for
linearized models (Herbst and Schorfheide, 2016). This leads to a familiar linear transition
equation of the form:

zt − z̄ = A(θ)(zt−1 − z̄) +B(θ)εt. (2)

The matricesA(θ) andB(θ) are functions of the derivatives of the equilibrium correspondence
H(·), evaluated at the steady state z̄. Notice that A(·) and B(·) implicitly depend on
functionals of the steady-state cross-sectional distribution of the micro state variables (ϵ, a).
This is because the Reiter (2009) approach only linearizes with respect to macro aggregates
zt and shocks εt, while allowing for all kinds of heterogeneity and nonlinearities on the
micro side, such as the borrowing constraint in the present model. In practice, Winberry
(2016, 2018) implements the linearization of equation (1) automatically through the software
package Dynare.4 For pedagogical purposes, we build our inference machinery on top of the
code that Winberry kindly makes available on his website, but we discuss alternative cutting-
edge model solution methods in Section 7.

Our inference method treats the linearized equilibrium relationship (2) as the true model
for the (partially unobserved) macro aggregates zt. That is, we do not attempt to correct
for approximation errors due to linearization or due to the finite-dimensional approximation
of the micro distribution. In particular, the transition density p(zt | zt−1, θ) introduced
in Section 2.1 is obtained from the linear Gaussian dynamic equation (2), as opposed to
the exact nonlinear equilibrium of the model, which is challenging to compute. We stress
that the goal of our paper is to fully exploit all observable implications of the (numerically
approximated) structural model, and we leave concerns about model misspecification to
future work (see also Section 7).

Sampling densities. We now show how the sampling densities of macro and micro data
can be derived from the numerical model equilibrium.

For sake of illustration, assume that we observe a single macro variable given by a noisy
measure of log output, i.e., xt = log(Yt) + et, where et ∼ N(0, σ2

e). The measurement error
is not necessary for our method to work; we include it to illustrate the identification status
of different kinds of parameters in Section 4. For this choice of observable, the sampling

4See Adjemian, Bastani, Juillard, Karamé, Maih, Mihoubi, Perendia, Pfeifer, Ratto, and Villemot (2011).
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density p(xt | zt, θ) introduced in Section 2.1 is given by a normal density with mean log(Yt)
and variance σ2

e . More generally, we could consider a vector of macro observables xt linearly
related to the state variables zt, with a vector et of additive measurement error:5

xt = S(θ)zt + et. (3)

Together, the equations (2)–(3) constitute a linear state space model in the observed and
unobserved macro variables. We exploit this fact to evaluate the macro and micro likelihood
function in Section 3.

As for the micro data, suppose additionally that we observe repeated cross sections
of households’ employment status ϵi,t and after-tax/after-benefits income ιi,t = λi{wt[(1 −
τ)ϵi,t + b(1 − ϵi,t)] + (1 + rt)ai,t−1}. That is, at certain times t ∈ T = {t1, t2, . . . , t|T |} we
observe Nt observations yi,t = (ϵi,t, ιi,t)′, i = 1, . . . , Nt, drawn independently from a cross-
sectional distribution that is consistent with µt(ϵ, a), F (λ | µλ), and zt. The joint sampling
density p(yi,t | zt, θ) can be derived from the model’s underlying cross-sectional distributions.
The conditional distribution of ιi,t given ϵi,t and the macro states is absolutely continuous,
since the micro heterogeneity λi smooths out the point mass at the households’ borrowing
constraint. By differentiating the cumulative distribution function, it can be verified that
the conditional sampling density of ιi,t given ϵi,t equals

p(ιi,t | ϵi,t, zt, θ) = πϵi,t
(ψt)

f( ιi,t

ξi,t
| µλ)

ξi,t

+ [1 − πϵi,t
(ψt)]

∫ ∞

0

f( ιi,t

ξi,t+(1+rt)a | µλ)
ξi,t + (1 + rt)a

gϵi,t
(a | ψt) da,

(4)
where f(· | µλ) is the assumed log-normal density for λi, πϵ(ψt) ≡ P (a = 0 | ϵ, ψt) is the
probability mass at zero for assets, and ξi,t ≡ wt[(1 − τ)ϵi,t + b(1 − ϵi,t)]. In practice, the
integral can be evaluated numerically, cf. Section 4.

This concludes the specification of the model as well as the derivations of the macro state
transition density and of the sampling densities for the macro and micro data. In Section 3
we will use these ingredients to derive the likelihood function consistent with the model and
the observed data.

Other observables and models. Of course, one could think of many other empiri-
cally relevant choices of macro and micro observables, leading to other expressions for the
sampling densities. Our choices here are merely meant to illustrate how our framework is

5Some of the elements of et could have variance 0 if no measurement error is desired.
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flexible enough to accommodate: (i) a mixture of discrete and continuous observables; (ii)
observables that depend on both micro and macro states; and (iii) persistent cross-sectional
heterogeneity λi that, given repeated cross section data, effectively amounts to measurement
error at the micro level.

We emphasize that the general framework in Section 2.1 can also handle many other
types of heterogeneous agent models. To show this, Section 5 will consider an alternative
model with heterogeneous firms as in Khan and Thomas (2008).

3 Efficient Bayesian inference

We now describe our method for doing efficient Bayesian inference. We first construct a
numerically unbiased estimate of the likelihood, and then discuss the posterior sampling
procedure. Finally, we compare our approach with procedures that collapse the micro data
to a set of cross-sectional moments.

3.1 Unbiased likelihood estimate

Our likelihood estimate is based on decomposing the joint likelihood into a macro part and
a micro part (conditional on the macro data):

p(x,y | θ) =
macro︷ ︸︸ ︷

p(x | θ)
micro︷ ︸︸ ︷

p(y | x, θ)

= p(x | θ)
∫
p(y | z, θ)p(z | x, θ) dz

= p(x | θ)
∫ ∏

t∈T

Nt∏
i=1

p(yi,t | zt, θ)p(z | x, θ) dz. (5)

Note that this decomposition is satisfied by construction under Assumption 1 and will purely
serve as a computational tool. The form of the decomposition should not be taken to mean
that we are assuming that “x affects y but not vice versa.” As discussed in Section 2, our
framework allows for a fully general equilibrium feedback loop between macro and micro
variables.

The macro part of the likelihood is easily computable from the Reiter-linearized state
space model (2)–(3). Assuming i.i.d. Gaussian measurement error et and macro shocks εt,
the macro part of the likelihood p(x | θ) can be obtained from the Kalman filter. This is
computationally cheap even in models with many state variables and/or observables. This
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idea was developed by Mongey and Williams (2017) and Winberry (2018) for estimation of
heterogeneous agent models from aggregate time series data.

The novelty of our approach is that we compute an unbiased estimate of the micro
likelihood conditional on the macro data. Although the integral in expression (5) cannot be
computed analytically in realistic models, we can obtain a numerically unbiased estimate of
the integral by random sampling:

∫ ∏
t∈T

Nt∏
i=1

p(yi,t | zt, θ)p(z | x, θ) dz ≈ 1
J

J∑
j=1

∏
t∈T

Nt∏
i=1

p(yi,t | zt = z
(j)
t , θ), (6)

where z(j) ≡ {z(j)
t }1≤t≤T , j = 1, . . . , J , are draws from the joint smoothing density p(z | x, θ)

of the latent states. Again using the Reiter-linearized model solution, the Kalman smoother
can be used to produce these state smoothing draws with little computational effort (e.g.,
Durbin and Koopman, 2002). As the number of smoothing draws J → ∞, the likelihood
estimate converges to the exact likelihood, but we show below that finite J is sufficient for
our purposes, as we rely only on the numerical unbiasedness of the likelihood estimate, not
its consistency.

Our likelihood estimate can loosely be interpreted as arising from a two-step approach:
First we estimate the states from the macro data, and then we plug the state estimates z(j)

t

into the micro sampling density. However, unlike more ad hoc versions of this general idea,
we will argue next that the unbiased likelihood estimate makes it possible to perform valid
Bayesian inference that fully takes into account all sources of uncertainty about states and
parameters.

The expression on the right-hand side of the likelihood estimate (6) is parallelizable
over smoothing draws j, time t, and/or individuals i. Thus, given the right computing
environment, the computation time of our method scales well with the dimensions of the
micro data. This is particularly helpful in models where evaluation of the micro sampling
density involves numerical integration, as in the household model in Section 4 below.

3.2 Posterior sampling

Now that we have a numerically unbiased estimate of the likelihood, we can plug it into any
generic MCMC procedure to obtain draws from the posterior distribution, given a choice
of prior density. We may simply pretend that the likelihood estimate is exact and run the
MCMC algorithm as we otherwise would, as explained by Andrieu, Doucet, and Holenstein
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(2010) and Flury and Shephard (2011). Despite the simulation error in estimating the
likelihood, the ergodic distribution of the MCMC chain will equal the fully efficient posterior
distribution p(θ | x,y). This is true no matter how small the number J of smoothing draws
is. Still, the MCMC chain will typically exhibit better mixing if J is moderately large so
that proposal draws are not frequently rejected merely due to numerical noise. In principle,
we can use any generic MCMC method that requires only the likelihood and prior density as
inputs, such as Metropolis-Hastings. Our approach can also be applied to Sequential Monte
Carlo sampling (Herbst and Schorfheide, 2016, chapter 5).6

3.3 Comparison with moment-based methods

The above full-information approach yields draws from the same posterior distribution as
if we had used the model-implied exact joint likelihood of the micro and macro data; it is
thus finite-sample optimal in the usual sense. An alternative approach proposed by Challe,
Matheron, Ragot, and Rubio-Ramirez (2017) and Mongey and Williams (2017) is to col-
lapse the micro data into a small number of cross-sectional moments which are tracked over
time (that is, the repeated cross sections of micro data are transformed into time series of
cross-sectional moments). We now examine under which circumstances our full-information
approach is strictly more efficient than this moment-based approach.

We focus on moment-based approaches that track the evolution of cross-sectional mo-
ments over time, rather than exploiting only steady-state moments. Empirically, cross-
sectional distributions are often time-varying (Krueger, Perri, Pistaferri, and Violante, 2010;
Wolff, 2016). The model-based numerical illustrations below also exhibit time-variation in
cross-sectional distributions. Thus, collapsing the time-varying moments to averages across
the entire time sample would leave information on the table.

If the micro sampling density has sufficient statistics for the parameters of interest, and
the sufficient statistics are one-to-one functions of the observed cross-sectional moments, then
these moments contain the same amount of information about the structural parameters as
the full micro data set. As stated in the Pitman-Koopman-Darmois theorem, only the
exponential family has a fixed number of sufficient statistics. The following result obtains.

6Implementation of Algorithm 8 in Herbst and Schorfheide (2016) requires some care. The mutation step
(step 2.c) can use the unbiased likelihood estimate with finite number of smoothing draws J , by Andrieu,
Doucet, and Holenstein (2010). However, it is not immediately clear whether an unbiased likelihood estimate
suffices for the correction step (step 2.a). For the latter step, we therefore advise using a larger number of
smoothing draws to ensure that the likelihood estimate is close to its analytical counterpart.
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Theorem 1. If the conditional sampling density of the micro data yi,t can be expressed as

p(yi,t | zt, θ) = exp
φ0(zt, θ) + m0(yi,t) +

Q∑
ℓ=1

φℓ(zt, θ)mℓ(yi,t)
 , (7)

for certain functions φℓ(·, ·),mℓ(·), ℓ = 0, . . . , Q, then there exist sufficient statistics for θ
given by the cross-sectional moments

m̂ℓ,t = 1
Nt

Nt∑
i=1

mℓ(yi,t), ℓ = 1, . . . , Q. (8)

Proof. Please see Appendix A.1.

That is, under the conditions of the theorem, the full micro-macro data set {y,x} contains
as much information about the parameters θ as the moment-based data set {m̂,x}, where
m̂ ≡ {m̂ℓ,t}1≤ℓ≤Q,t∈T . This result is not trivial due to the presence of the latent macro
states zt, which are integrated out in the likelihood (5). The key requirement is that in
(7), the terms inside the exponential should be additive and each term should take the form
φℓ(zt, θ)mℓ(yi,t).

Whether or not the micro sampling density exhibits the exponential form (7) depends
on the model and on the choice of micro observables. As explained in Section 2.2, in this
paper we adopt the Winberry (2018) model solution approach, which approximates the
cross-sectional distribution of the idiosyncratic micro state variables si,t using an exponential
family of distributions. Hence, if we observed the micro states si,t directly, Theorem 1 implies
that there would be no loss in collapsing the micro data to a certain set of cross-sectional
moments. However, there may not exists sufficient statistics for the actual micro observables
yi,t, which are generally non-trivial functions of the latent micro states si,t and macro states
zt. The following corollary gives conditions under which sufficient statistics still obtain. Let
yi,t be a dy × 1 vector and si,t be a ds × 1 vector.

Corollary 1. Suppose we have:

1. The conditional density of the micro states si,t given zt is of the exponential form.

2. The micro states are related to the micro observables as follows:

si,t = B1(zt, θ)Υ(yi,t) +B0(zt, θ), (9)

where:
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a) dy = ds.

b) Υ(·) is a known, piecewise bijective and differentiable function with its domain and
range being subsets of Rds.

c) The ds × ds matrix B1(zt, θ) is non-singular for almost all values of (zt, θ).

Then there exist sufficient micro statistics for θ.

Proof. Please see Appendix A.1. The proof states the functional form of the sufficient
statistics.

There are several relevant cases where the conditions of Corollary 1 fail and hence suffi-
cient statistics may not exist. First, the dimension dy of the observables yi,t could be strictly
smaller than the dimension ds of the latent micro states si,t. Second, there may not exist
any linear relationship between si,t and some function Υ(yi,t) of yi,t, for example due to
binding constraints. Third, there may be unobserved individual heterogeneity and/or micro
measurement error, such as the individual-specific productivity parameter λi in Section 2.2.
We provide further discussion in Appendix A.2.

Even if the model exhibits sufficient statistics given by cross-sectional moments of the
observed micro data, valid inference requires taking into account the sampling uncertainty
of these moments. This is a challenging task, since the finite-sample distribution of the
moments is typically not Gaussian (especially for higher moments), see Appendix A.3 for
an example. Hence, the observation equation for the moments does not fit into the linear-
Gaussian state space framework (2)–(3) that lends itself to Kalman filtering. If the micro
sample size is large, the sampling distribution of the moments may be well approximated
by a Gaussian distribution, but even then the variance-covariance matrix of the distribution
will generally be time-varying and difficult to compute/estimate. In Section 4 below we
consider one natural method for approximately accounting for the sampling uncertainty of
the moments. We find that this moment-based approach is less reliable than our preferred
full-information approach.

The potential inefficiency and fragility of the moment-based approach contrasts with
the ease of applying our efficient full-information method. Users of our method need not
worry about the existence of sufficient statistics, nor do they need to select which moments
to include in the analysis and figure out how to account for their sampling uncertainty.
Moreover, we show by example in Section 5.4 that the full-information approach can easily
accommodate empirically relevant features of micro data such as censoring or selection, which
is challenging to do in a moment-based framework (at least in an efficient way).
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4 Illustration: Heterogeneous household model

We now demonstrate that combining macro and micro data can sharpen structural inference
when estimating the heterogeneous household model of Section 2.2 on simulated data. We
contrast the results of our efficient full-information approach with those of an alternative
moment-based approach. This section should be viewed as a proof-of-concept exercise, as
we deliberately keep the dimensionality of the inference problem small in order to focus
attention on the core workings of our procedure.

4.1 Model, data, and prior

We consider the stylized heterogeneous household model defined in Section 2.2. We aim to
estimate the households’ discount factor β, the standard deviation σe of the measurement
error in log output, and the individual productivity heterogeneity parameter µλ. All other
parameters are assumed known for simplicity.

Consistent with Section 2.2, we assume that the econometrician observes aggregate data
on log output with measurement error, as well as repeated cross sections of household em-
ployment status ϵi,t and after-tax/after-benefits income ιi,t.

We adopt the annual parameter calibration in Winberry (2016), see Supplemental Ap-
pendix C.1. In particular, β = 0.96. We choose the true measurement error standard
deviation σe so that about 20% of the variance of observed log output is due to measure-
ment error, yielding σe = 0.02.7 The individual heterogeneity parameter µλ is chosen to be
−0.25, implying that the model’s cross-sectional 20th to 90th percentile range of log after-tax
income roughly matches the range in U.S. data (Piketty, Saez, and Zucman, 2018, Table I).

Using this calibration, we simulate T = 100 periods of macro data, as well as micro
data consisting of Nt = N = 1, 000 households observed at each of the ten time points
t = 10, 20, 30, . . . , 100. The data is simulated using the same approximate model solution
method as is used to compute the unbiased likelihood estimate, see Section 2.2.

Finally, we choose the prior on (β, σe, µλ) to be flat in the natural parameter space.

7One possible real-world interpretation of the measurement error is that it represents the statistical
uncertainty in estimating the natural rate of output (recall that the model abstracts from nominal rigidities).
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4.2 Computation

Following Winberry (2016, 2018), we solve the model using a Dynare implementation of
the Reiter (2009) method. This allows us to use Dynare’s built-in Kalman filter/smoother
procedures when evaluating the micro likelihood estimate (6). We use an approximation
of degree q = 3 when approximating the asset distribution, in the notation of Section 2.2.
We average the likelihood across J = 500 smoothing draws. The integral (4) in the micro
sampling density of income is evaluated using a combination of numerical integration and
interpolation.8 To simulate micro data from the cross-sectional distribution, we apply the
inverse probability transform to the model-implied cumulative distribution function of assets,
which in turn is computed using numerical integration.

For simplicity, our MCMC algorithm is a basic Random Walk Metropolis-Hastings algo-
rithm with tuned proposal covariance matrix and adaptive step size (Atchadé and Rosenthal,
2005).9 The starting values are determined by a rough grid search on the simulated data.
We generate 10,000 draws and discard the first 1,000 as burn-in. Using parallel computing
on 20 cores, likelihood evaluation takes about as long as Winberry’s (2016) procedure for
computing the model’s steady state.

4.3 Results

Figure 2 shows that both macro and micro data can be useful or even essential for estimating
some parameters, but not others. The figure depicts the posterior densities of the three
parameters, on a single sample of simulated data. The full-information posterior (blue solid
curves) is concentrated close to the true values of the three parameters (which are marked by
vertical thin dashed lines). The figure also shows the posterior density without conditioning
on the micro data (black dashed curves). The household discount factor β is an important
determinant of not just aggregate variables, but also the heterogeneous actions of the micro
agents in the economy. Ignoring the micro data leads to substantially less accurate inference
about β in this simulation, as the macro-only posterior is less precisely centered around the

8First, we use a univariate numerical integration routine to evaluate the integral on an equal-spaced grid
of values for log ι. Then we use cubic spline interpolation to evaluate the integral at arbitrary ι. In practice,
a small number of grid points is sufficient in this application, since the density (4) is a smooth function of ι.

9Our proposal distribution is a mixture of (i) the adapted multivariate normal distribution and (ii) a
diffuse normal distribution, with 95% probability attached to the former. We verified the Diminishing
Adaption condition and Containment condition in Rosenthal (2011), so the distribution of the MCMC draws
will converge to the posterior distribution of the parameters.
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Heterogeneous household model: Posterior density
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Figure 2: Posterior densities with (blue solid curves) and without (black dashed curves) condition-
ing on the micro data. Both sets of results use the same simulated data set. Vertical dashed lines
indicate true parameter values. Posterior density estimates from the 9,000 retained MCMC draws
using Matlab’s ksdensity function with default settings. The third display omits the macro-only
results, since µλ is not identified from macro data alone.

true value as well as more diffuse than the full-information posterior. Nevertheless, macro
data clearly does meaningfully contribute to pinning down the parameter β. More starkly,
µλ can only be identified from the cross section, since by construction the macro aggregates
are not influenced by the distribution of the individual permanent productivity draws λi.
In contrast, essentially all the information about the measurement error standard deviation
σe comes from the macro data, again by construction. Thus, our results here illustrate the
general lesson that both macro and micro data can be either essential, useful, or irrelevant
for estimating different parameters.

Figure 3 shows that efficient use of the micro data leads to substantially more precise
estimates of the steady state consumption policy function for employed households.10 The
left panel shows that full-information posterior draws of the consumption policy function
(thin curves) are fairly well centered around the true function (thick curve), as is expected
given the accurate inference about β depicted in Figure 2. In contrast, the right panel
shows that macro-only posterior draws are less well centered and exhibit higher variance,

10Figure C.1 in Supplemental Appendix C.2 plots the policy function for unemployed households.
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Heterogeneous household model: Consumption policy function, employed

Figure 3: Estimated steady state consumption policy function for employed households, either
using both micro and macro data (left panel) or only using macro data (right panel). The thick black
curve is computed under the true parameters. The thin lines are 900 posterior draws (computed
using every 10th MCMC draw after burn-in). X-axes are normalized asset holdings ai,t.

especially for households with high or low current asset holdings. The added precision
afforded by efficient use of the micro data translates into more precise estimates of the
marginal propensity to consume (the derivative of the consumption policy function) at the
extremes of the asset distribution. This is potentially useful when analyzing the two-way
feedback effect between macroeconomic policies and redistribution (Auclert, 2019).

The extra precision afforded by micro data also sharpens inference on the impulse re-
sponse function of the asset distribution with respect to an aggregate productivity shock.
Figure 4 shows full-information (left panel) and macro-only (right panel) posterior draws of
the impulse response function of employed households’ asset holding density, in the periods
following a 5% aggregate productivity shock.11 Once again, the full-information results have
substantially lower variance. Following the shock, there is a noticeable movement of the as-
set distribution computed under the true parameters (black solid curve). At horizon h = 8,
the mean increases by 0.16 relative to the steady state (black dashed curve), the variance
increases by 0.10, and the third central moment decreases by 0.06. However, the true move-

11For unemployed households, see Figure C.2 in Supplemental Appendix C.2.
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Het. household model: Impulse responses of asset distribution, employed

Figure 4: Estimated impulse response function of employed households’ asset distribution with
respect to an aggregate productivity shock, either using both micro and macro data (left panel)
or only using macro data (right panel). The thin lines are 900 posterior draws (computed using
every 10th MCMC draw after burn-in). X-axes are normalized asset holdings ai,t. The four rows in
each panel are the asset densities at impulse response horizons 0 (impact), 2, 4, and 8. The black
dashed and black solid curves are the steady state density and the impulse response, respectively,
computed under the true parameters. On impact the true impulse response equals the steady state
density, since households’ portfolio choice is predetermined.

ment in the asset distribution is not so large relative to the estimation uncertainty. This
further motivates the use of an efficient inference method that validly takes into account all
estimation uncertainty.

The previous qualitative conclusions hold up in repeated simulations from the calibrated
model. We repeat the MCMC estimation exercise on 10 different simulated data sets.12 Fig-
ure 5 plots all 10 full-information and macro-only posterior densities for the three parameters
on the same plot. Notice that the full-information densities for β systematically concentrate
closer to the true value than the macro-only posteriors do, as in Figure 2.

Our inference approach is valid in the usual Bayesian sense no matter how small the
sample size is. In Figure C.3 of Supplemental Appendix C.2 we show that the full-information
approach still yields useful inference about the model parameters if we only observe N = 100

12Computational constraints preclude a full Monte Carlo study.
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Heterogeneous household model: Posterior density, multiple simulations

Figure 5: Posterior densities with (blue curves) and without (gray curves) conditioning on the
micro data, for 10 different simulated data sets. See also caption for Figure 2.

observations every ten periods (instead of N = 1000 as above).

4.4 Comparison with moment-based methods

In this subsection, we compare the above full-information results with a moment-based in-
ference approach, to shed light on the theoretical comparison in Section 3.3. Due to the
unobserved individual heterogeneity parameter λi, fixed-dimensional sufficient statistics do
not exist in this model with the given observables.13 Hence, we follow empirical practice
and compute an ad hoc selection of cross-sectional moments, including the sample mean,
variance, and third central moment of household after-tax income. We compute the mo-
ments separately for the groups of employed and unemployed households, in each period
t = 10, 20, . . . , 100 where micro data is observed. We consider three moment-based ap-
proaches with different numbers of observables: The “1st Moment” approach only incorpo-
rates time series of sample means, the “2nd Moment” approach incorporates both sample
means and variances, and the “3rd Moment” approach incorporates sample moments up to

13The unobserved individual heterogeneity is observationally equivalent to micro measurement error given
repeated cross sections of micro data.

23



the third order.
Once we compute the time series of cross-sectional moments on the simulated data, we

treat them as additional time series observables and proceed as in the “Macro Only” approach
considered earlier. To account for the sampling uncertainty in the cross-sectional moments,
we appeal to a Central Limit Theorem and treat the moments as jointly Gaussian, which is
equivalent to adding measurement error in those state space equations that correspond to
the moments. A natural and practical way to construct the variance-covariance matrix of the
measurement error is to estimate its elements using higher-order sample moments of micro
data. The variance-covariance matrix is actually time-varying according to the structural
model, but since this would be challenging to account for, we treat it as fixed over the
sample.14 Supplemental Appendix B provides the details of how we estimate the variance-
covariance matrix. The computation time of the moment-based likelihood functions is not
much faster than our full-information approach, since the evaluation of the micro likelihood
(which is specific to the full-information method) takes approximately the same amount of
time as the calculation of the model’s steady state (which is common to all methods), when
implemented on a research cluster with 20 parallel workers.

We compare the shape and location of the likelihood functions for the full-information
and moment-based methods.15 For graphical clarity, we vary a single parameter at a time,
keeping the other parameters at their true values. Figure 6 plots the univariate log likelihood
functions of all inference approaches based on one typical simulated data set.16 Since we are
interested in the curvature of the likelihood functions near their maxima, and not the overall
level of the functions, we normalize each curve by subtracting its maximum.

Figure 6 shows that the moment-based likelihoods do not approximate the efficient full-
information likelihood well, with the “3rd Moment” likelihood being particularly inaccurately
centered. There are two reasons for this. First, as discussed in Section 3.3, there is no the-
oretical sufficient statistics in this setup, so all the moment-based approaches incur some
efficiency loss. Second, the sampling distributions of higher-order sample moments are not

14Higher-order sample moments are less accurate approximations to their population counterparts. Given
an empirically relevant cross-sectional sample size, the resulting variance-covariance matrix would be even
more imprecise if inferred period by period.

15We omit full posterior inference results for the moment-based methods, as they were more prone to
MCMC convergence issues than our full-information method.

16We compute the full-information likelihood function by averaging across J = 500 smoothing draws. For
a clearer comparison of the plotted likelihood functions, we fix the random numbers used to draw from
the smoothing distribution across parameter values. Note that we do not fix these random numbers in the
MCMC algorithm, as required by the Andrieu, Doucet, and Holenstein (2010) argument.
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Heterogeneous household model: Likelihood comparison
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Figure 6: Comparison of log likelihoods across inference methods, based on one typical simulated
data set. Each panel depicts univariate deviations of a single parameter while keeping all other
parameters at their true values. The maximum of each likelihood curve is normalized to be zero.
Vertical dashed lines indicate true parameter values. The “1st Moment” and “Macro Only” curves
are flat on the right panel, since µλ is not identified from this data alone. For results across 10
different simulated data sets, see Figure 9 in Appendix A.4.

well approximated by Gaussian distributions in finite samples, and the measurement error
variance-covariance matrix depends on even higher-order moments, which are poorly esti-
mated. A separate issue is that the individual heterogeneity parameter µλ cannot even
be identified using the “1st Moment” approach, since this parameter does not influence
first moments of the micro data. The “2nd Moment” likelihood is not entirely mislead-
ing but nevertheless differs meaningfully from the full-information likelihood.17 Figure 9 in
Appendix A.4 confirms that the aforementioned qualitative conclusions hold up across 10
different simulated data sets.

To summarize, even in this relatively simple model, the moment-based methods we con-
sider lead to a poor approximation of the full-information likelihood, and the inference can
be highly sensitive to the choice of which moments to include. It is possible that other im-

17The “Full Info” and “Macro Only” likelihoods are consistent with the posterior densities plotted in
Section 4.3. For β, the “Macro Only” likelihood has a smaller curvature around the peak and a wider range
of peaks across simulated data sets, so the full information method helps sharpen the inference of β. For σe,
the “Macro Only” curves are close to their “Full Info” counterparts. The parameter µλ is not identified in
the “Macro Only” case, so the corresponding likelihood function is flat.
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plementations of the moment-based approach would work better in particular applications.
Nevertheless, any moment-based approach will require challenging ad hoc choices, such as
which moments to use and how to account for their sampling uncertainty. No such choices
are required by the efficient full-information approach developed in this paper.

5 Illustration: Heterogeneous firm model

As our second proof-of-concept example, we estimate a version of the heterogeneous firm
model of Khan and Thomas (2008). In addition to showing that our general inference ap-
proach can be applied outside the specific Krusell and Smith (1998) family of models, we use
this section to illustrate how sample selection or data censoring can easily be accommodated
in our method.

5.1 Model, data, and prior

A continuum of heterogeneous firms are subject to both idiosyncratic and aggregate pro-
ductivity shocks. Investment is subject to non-convex adjustment costs. Specifically, firm
i’s investment Ii,t is free if |Ii,t/ki,t| ≤ a, where ki,t is the firm-specific capital stock, and
a ≥ 0 is a parameter. Otherwise, firms pay a fixed adjustment cost of ξi,t in units of labor.
ξi,t is drawn at the beginning of every period from a uniform distribution on the interval
[0, ξ̄], independently across firms and time. Here ξ̄ ≥ 0 is another parameter. In addition
to the aggregate productivity shock, there is a second aggregate shock that affects invest-
ment efficiency. The representative household has additively separable preferences over log
consumption and (close to linear) leisure time. For brevity, we relegate the details of the
model to Supplemental Appendix D.1, which entirely follows Winberry’s (2018) version of
the Khan and Thomas (2008) model.

We aim to estimate the adjustment cost parameters ξ̄ and a. Khan and Thomas (2008)
showed that these parameters have little impact on the aggregate macro implications of the
model in their preferred calibration; hence, micro data is needed. We keep all other parame-
ters fixed at their true values for simplicity. Supplemental Appendix D.3 provides results for
an alternative exercise where we instead estimate the parameters of the firms’ idiosyncratic
productivity process; the key messages are qualitatively similar to those presented below.

We adopt the annual calibration of Winberry (2018), which in turn follows Khan and
Thomas (2008), see Supplemental Appendix D.2. However, we make an exception in setting
the firm’s idiosyncratic log productivity AR(1) parameter ρϵ = 0.53, following footnote 5

26



in Khan and Thomas (2008).18 We then adjust the log productivity innovation standard
deviation σϵ = 0.0364, so that the variance of the idiosyncratic log productivity process is
unchanged from the baseline calibration in Khan and Thomas (2008) and Winberry (2018).
The macro implications of our calibration are virtually identical to the baseline in Khan and
Thomas (2008), as those authors note.

We assume that the econometrician observes time series on aggregate output and invest-
ment, as well as repeated cross sections of micro data on firms’ capital and labor inputs. We
simulate macro data with sample size T = 50, while micro cross sections of size N = 1000 are
observed at each point in time t = 1, . . . , 50. Unlike in Section 4, we do not add measurement
error to the macro observables.

The prior on (ξ̄, a) is chosen to be flat in the natural parameter space.

5.2 Computation

As in Section 4, we solve and simulate the model using the Winberry (2018) Dynare solution
method. We follow Winberry (2018) and approximate the cross-sectional density of the firms’
micro state variables (log capital and idiosyncratic productivity) with a multivariate normal
distribution. Computation of the micro sampling density is simple, since – conditional on
macro states – the micro observables (capital and labor) are log-linear transformations of
these micro state variables. We use J = 500 smoothing draws to compute the unbiased
likelihood estimate. The MCMC routine is the same as in Section 4. The starting values
are selected by a rough grid search on the simulated data. We generate 10,000 draws and
discard the first 1,000 as burn-in. Likelihood evaluation using 20 parallel cores is several
times faster than computing the model’s steady state.

5.3 Results

Despite the finding in Khan and Thomas (2008) that macro data is essentially uninforma-
tive about the firms’ adjustment cost parameters, these are accurately estimated when the
micro data is used also. Figure 7 shows the posterior densities of ξ̄ and a computed on 10
different simulated data sets. The posterior distribution of each parameter is systematically
concentrated close to the true parameter values. We refrain from visually comparing these
results with inference that relies only on macro data, since the macro likelihood is almost

18This avoids numerical issues that arise when solving the model for high degrees of persistence, as required
in the estimation exercise in Supplemental Appendix D.3.
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Heterogeneous firm model: Posterior density, multiple simulations

Figure 7: Posterior densities across 10 simulated data sets. Vertical dashed lines indicate true
parameter values. Posterior density estimates from the 9,000 retained MCMC draws using Matlab’s
ksdensity function with default settings.

entirely flat as a function of (ξ̄, a), consistent with Khan and Thomas (2008).19 Thus, micro
data is essential to inference about these parameters. This finding is broadly consistent with
Bachmann and Bayer (2014), who show that the dynamics of the cross-sectional dispersion
of firm investment are very informative about the nature of firm-level frictions.

5.4 Correcting for imperfect sampling of micro data

One advantage of the likelihood approach adopted in this paper is that standard techniques
can be applied to correct for sample selection or censoring in the micro data. This is highly
relevant for applied work, since household or firm surveys are often subject to known data
imperfections, even beyond measurement error.

Valid inference about structural parameters merely requires that the micro sampling
density p(yi,t | zt, θ) introduced in Section 2.1 accurately reflects the sampling mechanism,

19On average across the 10 simulated data sets, the standard deviation (after burn-in) of the macro log
likelihood log p(x | θ) across all Metropolis-Hastings proposals of the parameters is only 0.14, while it is 18.7
for the micro log likelihood log p(y | x, θ).
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including the effects of selection or censoring. Hence, if it is known, say, that an observed
variable such as household income is top-coded (i.e., censored) at the threshold ȳ, then the
functional form of the density p(yi,t | zt, θ) should take into account that the observed data
equals a transformation yi,t = min{ỹi,t, ȳ} of the theoretical household income ỹi,t in the
DSGE model. The likelihood functions of such limited dependent variable sampling models
are well known and readily looked up, see for example Wooldridge (2010, chapters 17 and
19).20 We provide one illustration below.

Other approaches to estimating heterogeneous agent models do not handle data imper-
fections as easily or efficiently. For example, inference based on cross-sectional moments
of micro observables may require lengthy derivations to adjust the moment formulas for
selection or censoring, especially for higher moments. Moreover, even in models where low-
dimensional sufficient statistics exist for the underlying micro variables, cf. Section 3.3, the
imperfectly observed micro data may not afford such sufficient statistics. In contrast, our
likelihood-based approach is automatically efficient, and the adjustments needed to account
for common types of data imperfections can be looked up in microeconometrics textbooks.

Illustration: Selection on outcomes. We illustrate the previous points by adding
an endogenous selection mechanism to the sampled micro data in the heterogeneous firm
model. Assume that instead of observing a representative sample of firms every period, we
observe the draws for those firms whose employment in that period exceeds the 90th per-
centile of the steady-state cross-sectional distribution of employment. To make the effective
micro sample size comparable to that in Section 5.3, we here set the per-period micro sam-
ple size before selection equal to N = 10000. That is, out of 10000 potential draws in a
period, we only observe the capital and labor inputs of the approximately 1000 largest firms.
Though stylized, this sampling mechanism is intended to mimic the real-world phenomenon
that databases such as Compustat tend to only cover the largest active firms in the economy.

To adjust the likelihood for selection, we combine the model-implied cross-sectional dis-
tribution of the idiosyncratic state variables with the functional form of the selection mech-
anism. Let gt(ϵ, k) be the cross-sectional distribution of idiosyncratic log productivity ϵi,t

and log capital ki,t at time t, implied by the model (this density is approximated using an

20If the nature of the data imperfection is only partially known, it may be possible to estimate the sampling
mechanism from the data. For example, if the data is suspected to be subject to endogenous sample selection,
one could specify a Heckman-type selection model and estimate the parameters of the selection model as part
of the likelihood framework (Wooldridge, 2010, chapter 19). It is outside the scope of this paper to consider
nonparametric approaches or to analyze the consequences of misspecification of the sampling mechanism.

29



Heterogeneous firm model: Posterior densities with selection

Figure 8: Posterior densities across 10 simulated data sets subject to selection. Vertical dashed
lines indicate true parameter values. Posterior density estimates from the 9,000 retained MCMC
draws using Matlab’s ksdensity function with default settings.

exponential family of densities, as in Winberry, 2018). In the model, log employment is
given by ni,t = (log ν + ζt − log(wt) + ϵi,t + αki,t)/(1 − ν), where wt is the aggregate wage,
ζt is log aggregate TFP, and ν and α are the output elasticities of labor and capital in the
firm production function (ν+α < 1). Since observations yi,t = (ni,t, ki,t)′ are observed if and
only if ni,t ≥ n̄, the micro sampling density is given by the truncation formula21

p(ni,t, ki,t | zt, θ) =
(1 − ν)gt

(
(1 − ν)ni,t − αki,t − log ν − ζt + log(wt), ki,t

)
∫∞

−∞
∫∞

−∞ 1

(
log ν + ζt − log(wt) + ϵ+ αk ≥ (1 − ν)n̄

)
gt(ϵ, k) dϵ dk

.

The selection threshold n̄ is given by the true 90th percentile of the steady-state distribution
of log employment. We assume this threshold is known to the econometrician for simplicity.22

Figure 8 shows the posterior distribution of the adjustment cost parameters (ξ̄, a) in
the model with selection, across 10 simulated data sets. All settings are the same as in

21The integral in the denominator can be computed in closed form if the density gt(ϵ, k) is multivariate
Gaussian, which is the approximation we use in our numerical experiments, following Winberry (2018).

22In principle, n̄ could be treated as another parameter to be estimated from the available data.
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Section 5.3, except for (i) the selection mechanism in the simulated micro data and the
requisite adjustment to the functional form of the micro likelihood function, and (ii) the pre-
selection micro sample size N = 10000 (as discussed above). The posterior distributions of
the parameters of interest remain centered close to the true parameter values, with no appre-
ciable increase in posterior uncertainty relative to Figure 7. This example demonstrates that
data imperfections can be handled in a valid and efficient manner using standard likelihood
techniques.

6 Extension to panel data

While our baseline procedure in Section 3 assumes the micro data to be given by repeated
cross sections, we now consider settings where the micro data has a panel dimension – that
is, the same cross-sectional units are observed over two or more consecutive time periods.
For tractability, we focus on panel data sets where the time dimension per unit is short
(similar to Papp and Reiter, 2020). One example is rotating panel survey data, where each
unit is observed for a few consecutive time periods, after which it is replaced by a new,
representatively sampled unit (as in the Bureau of Labor Statistics’ Consumer Expenditure
Survey). Panel data sets with a large time dimension, such as detailed administrative data
sets, are computationally challenging and beyond the scope of this paper.

6.1 Challenges and solutions

The main challenge in handling panel data is the need to integrate out any unobserved
individual-specific state variables (such as idiosyncratic productivity or asset holdings) that
influence agents’ dynamic decision rules. If the structural model directly implies a simple
functional form for the one-step-ahead predictive density p(yi,t | yi,t−1, yi,t−2, . . . , z, θ) of
the observed data yi,t for individual i, then evaluating the micro likelihood is trivial (as in
reduced-form dynamic panel data models). Unfortunately, in most settings this predictive
density is not available in closed form, and must instead be computed as the integral

∫
p(yi,t |

si,t, z, θ)p(si,t | yi,t−1, yi,t−2, . . . , z, θ) dsi,t over the latent micro state variables si,t. Whereas
the first density in the integrand may often be available in closed form, the second density
will typically not be (outside simple linear models). Hence, evaluating the integral for each i
and t appears to be computationally infeasible in many applications, especially if the number
of time periods is moderately large. Nevertheless, as we now show, it is often possible to
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evaluate the micro likelihood when the time dimension per unit is small, by avoiding direct
evaluation of the intractable predictive density.

Our proposal for exploiting panel data utilizes the model-implied relationship between (i)
the latent micro state variables si,ti

in the initial period ti for individual i and (ii) the micro
observables {yi,t}t in all observed time periods for that individual. This relation necessarily
involves iterating on the dynamic micro decision rules of the agents in the economy. In the
next subsection, we explain this approach by example, using the heterogeneous household
model from Section 2.2. Since the main focus of this paper is repeated cross-sectional micro
data, we leave a numerical exploration of the benefits of panel data for future work.

6.2 Example: Heterogeneous household model

Unlike in Section 2.2, we here assume that we observe two consecutive periods of yi,t =
(ϵi,t, ιi,t) for each household i, i.e., household employment and income. To implement the
likelihood estimate in Section 3, we must evaluate the conditional micro density

p(yi,t, yi,t−1 | z, θ) = p(ϵi,t, ϵi,t−1 | z, θ)︸ ︷︷ ︸
=p(ϵi,t−1,θ)p(ϵi,t|ϵi,t−1,θ)

p(ιi,t, ιi,t−1 | ϵi,t, ϵi,t−1, z, θ).

Employment ϵi,t evolves as a simple exogenous two-state Markov process, so the challenge is
to evaluate the last density on the right-hand side above.

Note that, by definition of household income,

ιi,t−1 = λi

(
wt−1[(1 − τ)ϵi,t−1 + b(1 − ϵi,t−1)] + (1 + rt−1)ai,t−2

)
,

and
ιi,t = λi

(
wt[(1 − τ)ϵi,t + b(1 − ϵi,t)] + (1 + rt)a′

t−1(ai,t−2, ϵi,t−1)
)
,

where a′
t−1(a, ϵ) is the model-implied micro policy function at period t − 1 for next-period

normalized assets given current normalized assets a and current employment ϵ, and given
the aggregate state zt−1.

Conditional on (ϵi,t, ϵi,t−1) and the macro states z in all periods, the observation (ιi,t, ιi,t−1)
is therefore a known transformation of the initial micro state vector si,t−1 = (λi, ai,t−2).23

We can then derive p(ιi,t, ιi,t−1 | ϵi,t, ϵi,t−1, z, θ) by applying the change-of-variables formula

23Strictly speaking, employment ϵi,t−1 is also a micro state variable. However, since it follows an exogenous
Markov process, our derivations above condition on it, and we can therefore disregard it in si,t−1.
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to the density p(λi, ai,t−2 | ϵi,t, ϵi,t−1, z, θ) = f(λi | µλ)gϵi,t−1(ai,t−2 | ψt−1), where ψt−1 denotes
the parameters governing the cross-sectional distribution and is part of the aggregate state
zt−1, and the density gϵi,t−1(ai,t−2 | ψt−1) is directly available from the output of the model
solution procedure, as discussed in Section 2.2.24 Computing the Jacobian term in the
change-of-variables formula requires us to evaluate the derivative ∂a′

t−1(a, ϵ)/∂a, for example
by applying finite differences to the function a′

t−1(a, ϵ) that is outputted by the numerical
model solution method.25

6.3 Summary and discussion

In general terms, our proposal is to express the consecutive micro observations in terms of
the latent micro state variables si,ti

in the initial observed period ti for individual i. We can
then “invert” this relation and evaluate the micro likelihood using the model-implied cross-
sectional density of si,ti

(which we also exploited previously in the repeated cross section
setup). This strategy is highly context-specific as it exploits the structure of the observables
and iterates on the model-implied dynamic decision rules of the agents. Though we have
only illustrated the strategy for the case of two-period panel data, the idea could in principle
be applied to longer panels by further iterating on the decision rules; however, this could
become cumbersome when the time dimension is moderately large. As a side note, it is
straightforward to allow for measurement error in the micro observables by simply adding
independent noise to the density of the noise-less observables using the convolution formula.26

In some models the dynamic relationship between micro states and micro observables
may be sufficiently convoluted to render the above approach impractical. For such cases, we
propose an alternative approach in Supplemental Appendix E based on artificially adding
lagged state variables to the micro state vector in the numerical model solution procedure.
Though this alternative approach is conceptually simple to implement, the increase in the
dimension of the effective micro state vector may require more time to be spent on computing
an accurate numerical solution of the model. We therefore recommend that researchers first
attempt the baseline approach illustrated in the previous subsection, which does not require
any modification of the numerical model solution method.

24Note that assets are predetermined, so the subscript for the distribution parameters is t − 1.
25If the solution method uses an approximate, discrete grid for this function, one possibility is to compute

the derivative of a smooth interpolation of the discretized rule.
26Unlike the repeated cross section case, in the case of panel data, unobserved individual heterogeneity

and micro measurement error are not observationally equivalent.
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7 Conclusion

The literature on heterogeneous agent models has hitherto relied on estimation approaches
that exploit ad hoc choices of micro moments and macro time series for estimation. This
contrasts with the well-developed framework for full-information likelihood inference in rep-
resentative agent models (Herbst and Schorfheide, 2016). We develop a method to exploit
the full information content in macro and micro data when estimating heterogeneous agent
models. As we demonstrate through economic examples, the joint information content avail-
able in micro and macro data is often much larger than in either of the two separate data
sets. Our inference procedure can loosely be interpreted as a two-step method: First we
estimate the underlying macro states from macro data, and then we evaluate the likelihood
by plugging into the cross-sectional sampling densities given the estimated states. However,
our method delivers finite-sample valid and fully efficient Bayesian inference that takes into
account all sources of uncertainty about parameters and states. The computation time of our
procedure scales well with the size of the data set, as the method lends itself to parallel com-
puting. Unlike estimation approaches based on tracking a small number of cross-sectional
moments over time, our full-information method is automatically efficient and can easily ac-
commodate unobserved individual heterogeneity, micro measurement error, as well as data
imperfections such as censoring or selection.

For clarity, we have limited ourselves to numerical illustrations with small-scale models in
this paper, leaving full-scale empirical applications to future work. Our approach is compu-
tationally most attractive when the model is solved using some version of the Reiter (2009)
linearization approach, since this yields simple formulas for evaluating the macro likelihood
and drawing from the smoothing distribution of the latent macro states, cf. Section 3. To
estimate large-scale quantitative models it would be necessary to apply now-standard dimen-
sion reduction techniques or other computational shortcuts to the linearized representation
of the macro dynamics (Ahn, Kaplan, Moll, Winberry, and Wolf, 2017; Auclert, Bardóczy,
Rognlie, and Straub, 2021), and we leave this to future research. Nevertheless, we empha-
size that our method is in principle generally applicable, as long as there exists some way
to evaluate the macro likelihood, draw from the smoothing distribution of the macro states,
and evaluate the micro sampling density given the macro states.

Our research suggests several additional avenues for future research. First, it would be
useful to go beyond our extension to short panel data sets in Section 6 and develop methods
that are computationally feasible when the time dimension of the panel is large. Second, since
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our method works for a wide range of generic MCMC posterior sampling procedures, it would
be interesting to investigate the scope for improving on the simple Random Walk Metropolis-
Hastings algorithm that we use for conceptual clarity in our examples. Third, the goal of
this paper has been to fully exploit all aspects of the assumed heterogeneous agent model
when doing statistical inference; we therefore ignore the consequences of misspecification.
Since model misspecification potentially affects the entire macro equilibrium and thus cannot
be addressed using off-the-shelf tools from the microeconometrics literature, we leave the
development of robust inference approaches to future work.
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A Appendix

A.1 Proofs

A.1.1 Proof of Theorem 1

Let m̂t ≡ (m̂1,t, . . . , m̂Q,t)′ denote the set of sufficient statistics in period t. According to the
Fisher-Neyman factorization theorem, there exists a function h(·) such that the likelihood
of the micro data in period t, conditional on zt, can be factorized as

Nt∏
i=1

p(yi,t | zt, θ) = h(yt)p(m̂t | Nt, zt, θ). (10)

Let h(y) = ∏
t∈T h(yt), N = {Nt}t∈T , and m̂ = {m̂t}t∈T , where T is the subset of time

points with observed micro data. Then the micro likelihood, conditional on the observed
macro data, can be decomposed as

p(y | x, θ) =
∫
p(y | z, θ)p(z | x, θ) dz

= h(y)
∫
p(m̂ | N, z, θ)p(z | x, θ) dz (11)

= h(y)p(m̂ | N,x, θ). (12)

The expression (12) implies that m̂ is a set of sufficient statistics for θ, based again on the
Fisher-Neyman factorization theorem.

A.1.2 Proof of Corollary 1

Let mt be a vector of population counterparts of the cross-sectional sufficient statistics of
the micro states si,t. We may view mt as part of the macro state vector zt. According to the
exponential polynomial setup,

p(si,t | zt, θ) = p(si,t | mt)

= exp
φ̃0(mt) +

Q∑
ℓ=1

φ̃ℓ(mt)m̃ℓ(si,t)
 .

m̃ℓ(si,t) takes the form sp1
i,t,1s

p2
i,t,2 · · · spds

i,t,ds
with pk being positive integers and 1 ≤ ∑ds

k=1 pk ≤ q,
where q is the order of the exponential polynomial. The potential number of sufficient statis-
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tics Q equals
(

q+ds

q

)
− 1, i.e., the number of complete homogeneous symmetric polynomials.

Making the change of variables in (9), we have

p(yi,t | zt, θ) = exp
φ̃0(mt) +

Q∑
ℓ=1

φ̃ℓ(mt)m̃ℓ

(
B1(zt, θ)Υ(yi,t) +B0(zt, θ)

)
×
∣∣∣∣∣det

(
B1(zt, θ)

∂Υ(yi,t)
∂yi,t

)∣∣∣∣∣
≡ exp

φ0(zt, θ) + m0(yi,t) +
Q∑

ℓ=1
φℓ(zt, θ)mℓ(yi,t)

 .
Given assumptions 2.a and 2.b, the potential number of sufficient statistics Q remains the
same. Now the sufficient statistics can be expressed as mℓ(yi,t) ≡ m̃ℓ(Υ(yi,t)) and the corre-
sponding φℓ(zt, θ) can be obtained by rearranging terms and collecting coefficients on mℓ(yi,t).
For the determinant of the Jacobian, condition 2 implies that both B1(zt, θ) and ∂Υ(yi,t)

∂yi,t
are

non-singular square matrices, so det
(
B1(zt, θ)∂Υ(yi,t)

∂yi,t

)
= det (B1(zt, θ)) det

(
∂Υ(yi,t)

∂yi,t

)
. Hence,

both log |det (B1(zt, θ))| and log
∣∣∣det

(
∂Υ(yi,t)

∂yi,t

)∣∣∣ are finite and can be absorbed into φ0(zt, θ)
and m0(yi,t), respectively.

Thus, the micro likelihood fits into the general form in Theorem 1, and the sufficient
statistics are given by

m̂ℓ,t = 1
Nt

Nt∑
i=1

mℓ(yi,t) = 1
Nt

Nt∑
i=1

m̃ℓ(Υ(yi,t)), ℓ = 1, . . . , Q.

A.2 Non-existence of sufficient statistics: Details

Can we generalize beyond the sufficient conditions in Corollary 1? The key is that in (7),
the terms inside the exponential should be additive and each term should take the form
φℓ(zt, θ)mℓ(yi,t), which ensures that the cross-sectional moments can be calculated using
micro data as in equation (8) and the multiplicative term h(y) can be taken out of the
integral in equation (11). Building on the analysis of Section 3.3, here are more details
regarding cases where there are no sufficient statistics in general.

i) si,t = B1(zt, θ)Υ(yi,t, zt) +B0(zt, θ), i.e., yi,t and zt are neither additively nor multiplica-
tively separable.

ii) The model features unobserved individual heterogeneity and/or micro measurement er-
ror. Since these two cases are observationally equivalent in a repeated cross section
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framework, we focus on the the former. Letting λi denote the unobserved individual
heterogeneity, we can extend (9) to si,t = Υ̃(yi,t, λi, zt, θ) ≡ B1(λi, zt, θ)Υ(yi,t, λi) +
B0(λi, zt, θ), which is the most general setup allowing λi to affect all terms in the ex-
pression. If λi is independent of si,t conditional on (zt, θ), we have p(si,t, λi | zt, θ) =
p(si,t | mt)p(λi | θ) (recall the notation in the proof of Corollary 1). Accordingly,

p(yi,t | zt, θ) =
∫
p(Υ̃(yi,t, λi, zt, θ) | mt)

∣∣∣∣∣det
(
B1(λi, zt, θ)

∂Υ(yi,t, λi)
∂yi,t

)∣∣∣∣∣ p(λi | θ) dλi.

If λi appears in B1, B0, or Υ, then p(yi,t | zt, θ) may not belong to the exponential
family after integrating out λi. That said, we can construct special cases where sufficient
statistics do exist. For example, if si,t = B1(zt, θ)Υ(yi,t) + B0(zt, θ) + B2(zt, θ)λi and
both p(si,t | mt) and p(λi | θ) follow Gaussian distributions.

iii) ds > dy: For example, suppose si,t is two-dimensional whereas yi,t is one-dimensional,
say yi,t = s1,i,t, yi,t = s1,i,t + s2,i,t, or yi,t = s1,i,ts2,i,t. We can first expand the yi,t in
(9) to ỹi,t = (yi,t, s2,i,t)′ and then integrate out s2,i,t. However, after the integration, the
resulting micro likelihood as a function of yi,t may not take the exponential family form
anymore.

A.3 Sampling distribution of cross-sectional moments: Example

As alluded to in Section 3.3, here is a simple example demonstrating that p(m̂t | Nt, zt, θ)
is not linear Gaussian in finite samples, and therefore neither is p(m̂ | N,x, θ). Suppose
yi,t = si,t is a scalar and p(si,t | mt) is Gaussian, i.e., a second-order exponential polynomial.
Let m̂1,t = 1

Nt

∑Nt
i=1 si,t and m̂2,t = 1

Nt

∑Nt
i=1(si,t − m̂1,t)2 with m1,t and m2,t being their

population counterparts. Then standard calculations yield

p(m̂t | Nt, zt, θ) = p(m̂t | mt) = ϕ
(
m̂1,t; m1,t,

m2,t

Nt

)
pχ2

(
Ntm̂2,t

m2,t

; Nt − 1
)
,

where ϕ(x;µ, σ2) represents the probability distribution function (pdf) of a Gaussian distri-
bution with mean µ and variance σ2, and pχ2(x; ν) is the pdf of a chi-squared distribution
with ν degrees of freedom. We can see that the latter is not linear Gaussian. Moreover,
when p(si,t | mt) follows a higher order exponential polynomial, the characterization of
p(m̂t | Nt, zt, θ) would be even more complicated without a closed-form expression.
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A.4 Heterogeneous household model: Likelihood comparison

Complementing the results for a single simulated data set in Section 4.4, Figure 9 compares
log likelihoods for the different inference methods across 10 different simulated data sets.
Here different inference methods are exhibited in different rows. Similar to Figure 6, each
column depicts univariate deviations of a single parameter while keeping all other parameters
at their true values. There are 10 likelihood curves in each panel, corresponding to the 10
simulated data sets. The maximum of each likelihood curve is normalized to be zero. Vertical
dashed lines indicate true parameter values. The “1st Moment” and “Macro Only” curves
are flat on the right panels of the second and the last rows, since µλ is not identified from this
data alone. We conclude from the figure that the full-information likelihood is systematically
well-centered and tightly concentrated around the true parameter values, whereas the various
moment-based likelihoods are poorly centered, exhibit less curvature, and/or shift around
substantially across simulations.
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Het. household model: Likelihood comparison, multiple simulations
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Figure 9: Comparison of log likelihood functions across 10 different simulated data sets. See the
description in Appendix A.4.
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