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Linear shrinkage estimators

• Often interested in estimating effects θi for many individuals/units i .

• Value-added of teacher/school/hospital/neighborhood/politician/patient.
Jacob & Lefgren (2008); Kane & Staiger (2008); Chetty, Friedman & Rockoff (2014); Angrist, Hull,
Pathak & Walters (2017); Finkelstein, Gentzkow, Hull & Williams (2017); Chetty & Hendren (2018);
Hull (2020); Easterly & Pennings (2021)

• Subgroup analysis: split results by countries, sectors, occupations, etc.

• Common to (linearly) shrink noisy unbiased estimates toward baseline values.

• Empirical Bayes (EB) motivation: Bayesian/random-effects model with θi ∼ N.

• MSE gain over unshrunk estimate robust to failure of Bayesian model. James & Stein (1961)
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Neighborhood effects: unshrunk estimates and 90% CIs
(replicates Chetty & Hendren, 2018, Fig. 1, for NY CZ)
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Neighborhood effects: shrinkage estimates
(replicates Chetty & Hendren, 2018, Fig. 2, for NY CZ)
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This paper: How to construct CIs for linear shrinkage estimates?

• Parametric empirical Bayes confidence interval (EBCI) (Morris 1983a,b): Bayesian
credible set, treating estimated normal distribution of θi ’s as prior.

• Existing theoretical justification requires correct distribution for θi ’s.

• In contrast, for point estimation, get MSE improvement even if θi ’s non-random.

Questions

1 Is parametric EBCI robust to failure of assumption on distribution of θi ’s?

2 If not, can we “robustify” it (and keep it short)?

3 Does robust EBCI have frequentist coverage properties (nonrandom θi ’s)?
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Question 1: Is parametric EBCI robust to failure of θi ∼ N assumption?

• In general, no: Coverage of 95% parametric EBCI can be as low as 74% under
repeated sampling of (θi , datai).

Question 2: Can we robustify parametric EBCI while keeping it short?
• Yes, we provide critical values. Only input is moment estimates already used to

compute shrinkage estimator.

• Idea: Use estimated moments of bias to bound non-coverage.

• Guaranteed coverage under repeated sampling of (θi , datai).

• If in fact θi ∼ N, then robust EBCI is not much wider than parametric EBCI.
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Neighborhood effects: shrunk estimates and 90% CIs
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Question 3: Does robust EBCI have frequentist coverage properties (nonrandom θi ’s)?

• Yes, controls average coverage as n → ∞:

1
n

n∑
i=1

P(θi ∈ CIi | θ) ≥ 1 − α.

• Usual CI centered at unshrunk estimate also has this property, but is wider.

• Improvement in CI length possible because average coverage is weaker requirement
than usual frequentist coverage for each i separately.

• Intuition: Easier to estimate the average effect of shrinkage bias on coverage (using
moments) than to estimate bias for each i separately.

8



Related literature

• Our paper: robust uncertainty quantification for linear shrinkage estimator; near-efficient
when θi ∼ N. (Also give extensions to non-linear shrinkage.)

• Do not attempt to recover full distribution of θi to improve estimator/CI.

• “Flexible parametric” and nonparametric EB literature focuses on point estimation. Robbins
(1951); Jiang & Zhang (2009); Koenker & Mizera (2014); Efron (2016)

• EB in econometrics: Hansen (2016); Abadie & Kasy (2019); Cheng, Liao & Shi (2019); Fessler &
Kasy (2019); Bonhomme & Weidner (2021); Ignatiadis & Wager (2021); Liu, Moon & Schorfheide (2021)

• Average coverage in nonparam. regression: Wahba (1983); Nychka (1988); Wasserman (2006);
Cai, Low & Ma (2014)

• Shrinkage confidence balls: Casella & Hwang (2012)
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Empirical Bayes set-up and notation

• Observe initial estimates Y1, . . . , Yn of unknown scalar parameters θ1, . . . , θn.

• Treat θ as random throughout. P(·): probability under joint distribution of {(θi , Yi)}n
i=1.

• Statements involving P(· | θ) don’t actually require θ = (θ1, . . . , θn) to be random, but we
maintain conditioning for notational clarity.

• Linear shrinkage estimator: θ̂i = (1 − w)a + wYi .

• w : tuning parameter, chosen based on data.

• a: baseline value or pooled estimate.

• We will later allow: (i) heteroskedastic Yi ’s; (ii) a and w that depend on covariates and
σ̂i ; (iii) asymptotic (rather than exact) normality. For now, consider simple setting. . .
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Simple empirical Bayes model

• Homoskedastic normal location model with known σ2:

(Yi | θ) ∼ N(θi , σ2), i = 1, . . . , n.

• Shrinkage estimator θ̂i = wYi (shrink toward 0).

• How to choose shrinkage constant w?

• Working model: θi ∼ N(0, µ2).

• MSE-optimal estimate: posterior mean θ̂i = wEBYi , where wEB = µ2/(σ2 + µ2).

• Feasible version: replace µ2 with consistent estimator µ̂2, e.g., µ̂2 = 1
n−2

∑n
i=1(Y 2

i − σ2).
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MSE of empirical Bayes point estimator

• MSE gain of EB estimator robust to failure of working assumption θi ∼ N(0, µ2).

• EB estimate θ̂i = µ̂2
µ̂2+σ2 Yi has lower “frequentist” compound MSE∑n

i=1 E [(θ̂i − θi)2 | θ]

than unshrunk estimate Yi whenever n ≥ 3. James & Stein (1961)

• Thus, MSE improvement holds even if θ is nonrandom. . .

• . . . or if θ is random, but working assumption is wrong.

• Intuition: MSE improvement only depends on E [θ2
i ] = µ2, not distribution of θi ’s.
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Empirical Bayes confidence intervals

• Following Morris (1983a) and Carlin & Louis (2000, Ch. 3.5), we say that CIi is 1 − α
empirical Bayes confidence interval (EBCI) if

P(θi ∈ CIi) ≥ 1 − α,

where P(·) denotes joint distribution of (θi , CIi). Ex post

• Parametric EBCI: Assume working model θi ∼ N(0, µ2) and use Bayesian credible interval
θ̂i ± z1−α/2

√wEBσ.

• Feasible version: plug in µ̂2 for µ2. Morris (1983b)

• We consider EB coverage as n → ∞, so assume µ2 = E [θ2
i ] known for now.

• Parametric EBCI valid if working model correct. Can we robustify it?
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Robust EBCI construction

• Consider CI centered at θ̂i = wEBYi , by inverting t-statistic(wEBYi − θi
wEBσ

∣∣∣∣ θ

)
∼ N(bi , 1), where bi = wEB − 1

wEBσ
θi is conditional (scaled) bias.

• With critical value χ, non-coverage given θ is

P (θi /∈ {wEBYi ± wEBσχ} | θ) = PZ∼N(0,1) (|Z + bi | > χ) ≡ r(bi , χ).

• Averaging over θ:
P (θi /∈ {wEBYi ± wEBσχ}) = E [r(bi , χ)].

• How to choose χ so that this is ≤ α?
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Robust EBCI construction: critical value

• Want to choose χ to bound non-coverage probability

E [r(bi , χ)], where bi = wEB − 1
wEBσ

θi .

• Since E [θ2
i ] = µ2, we have

E [b2
i ] = (wEB − 1)2

w2
EBσ2 µ2 = σ2

µ2
.

• Therefore non-coverage is bounded above by

ρ(σ2/µ2, χ) ≡ sup
F

Eb∼F [r(b, χ)] s.t. Eb∼F [b2] = σ2/µ2.

• Robust EB critical value: Choose χ so that ρ(σ2/µ2, χ) = α.

15



Robust EBCI

• Leads to robust EBCI:
θ̂i ± cvaα(σ2/µ2)wEBσ,

where cvaα(t) = ρ−1(t, α) (inverse is in second argument), and

ρ(t, χ) ≡ sup
F

Eb∼F [r(b, χ)] s.t. Eb∼F [b2] = t.

• Easy to compute ρ(t, χ): linear program in F .

• F that achieves the maximum (“least favorable distribution”) concentrates on three
points. Get closed-form formula for ρ(t, χ).

• Can tighten EBCI using higher moments of bias bi (more later).
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Average coverage

• Robust EBCI has frequentist (conditional on θ) average coverage property:

1
n

n∑
i=1

P(θi /∈ {θ̂i ± wEBσχ} | θ) = 1
n

n∑
i=1

r(bi , χ) ≤ α + o(1)

if we use the critical value χ = cvaα(σ2/µ2).

• Holds because
1
n

∑n
i=1 b2

i = Eb∼Fn [b2] = σ2/µ2 + oP(1),
where Fn is the empirical distribution of the bi ’s. Holds in finite samples if 1

n
∑n

i=1 θ2
i = µ2.

• In fact, can show 1
n

∑n
i=1 1(θi /∈ {θ̂i ± wEBσχ}) ≤ α + oP(·|θ)(1).

• Unshrunk CI Yi ± σz1−α/2 also satisfies avg. coverage property, but is wider (next slide).
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Average coverage versus usual coverage notion

• Usual frequentist coverage stronger, cannot use shrinkage to tighten CI.
Pratt (1961); Armstrong & Kolesár (2018)

simultaneous coverage︸ ︷︷ ︸
P(∀i : θi ∈CIi |θ)≥1−α

=⇒ usual coverage︸ ︷︷ ︸
∀i : P(θi ∈CIi |θ)≥1−α

=⇒ average coverage︸ ︷︷ ︸
1
n

∑n
i=1 P(θi ∈CIi |θ)≥1−α

• Avg. coverage allows us to borrow strength from other i : Can’t get accurate data-driven
bound on each bi , but can bound “average effect” of bi on coverage, using moments.

• Is average coverage a sensible criterion?

1 We already agreed on compound loss for estimation (want small MSE on average). Worries
about undercoverage for particular i analogous to worries about bad MSE for particular i .

2 Easy interpretation, even to a layperson: 100 × (1 − α)% of the n EBCIs contain true θi .
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Undercoverage of parametric EBCI

• Parametric EBCI (Bayesian credible interval with θi ∼ N(0, µ2) prior)

θ̂i ± √wEBσz1−α/2

has no robust coverage guarantee. How bad can EB coverage get?

• Corresponds to EBCI with critical value χ = z1−α/2/
√wEB. Hence, the worst-case EB

coverage consistent with E [θ2
i ] = µ2 is given by

ρ(σ2/µ2, z1−α/2/
√wEB).

• Rule of thumb: Coverage at least 90% for nominal 95% CI when wEB ≥ 0.3 (next slide).

• Proposition: Worst-case coverage over all wEB is 1 − 1/ max{z2
1−α/2, 1}. Equals 74% for

nominal 95% EBCI. Obtains as wEB → 0 (i.e., µ2/σ2 → 0).
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Undercoverage of parametric EBCI
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Baseline model
• Allow for covariates and heteroskedasticity:

(Yi | θi , Xi , σi) ∼ N(θi , σ2
i ).

• Working assumption (not actually imposed later):

(θi | Xi , σi) ∼ N(µ1,i , µ2), where µ1,i = X ′
i δ.

• Suggests posterior mean shrinkage estimator

θ̂i = X ′
i δ + wEB,i(Yi − X ′

i δ), where wEB,i = µ2
µ2 + σ2

i
.

• Assume moment independence (also needed for MSE gain): Xie, Kou & Brown (2012)

E [(θi − X ′
i δ)2 | Xi , σi ] = µ2, E [(θi − X ′

i δ)4 | Xi , σi ] = κµ2
2.

In paper: relax using nonparametrics.
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Practical implementation of robust EBCI

• Tighter coverage bound by also imposing kurtosis of cond’l bias bi = (1−wEB,i )(θi −X ′
i δ)

wEB,i σi
:

ρ(m2, κ, χ) = sup
F

Eb∼F [r(b, χ)] s.t. Eb∼F [b2] = m2, Eb∼F [b4] = κm2
2.

• Linear program in F . Optimum has 5 support points. Recast as 2 nested univariate optimiz’s.

• Critical value cvaα(m2,i , κ) = ρ−1(m2,i , κ, α) (inverse is in last argument), with
m2,i = E [b2

i | Xi , σi ] = σ2
i /µ2.

• Robust EBCI with 1 − α EB coverage, conditional on (Xi , σi):

θ̂i ± wEB,iσi cvaα(m2,i , κ).

• Feasible version: Replace δ with OLS, (µ2, κ) with (trimmed) moment estimates.
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Comparison of critical values (α = 0.05)
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Critical value when bi has 2nd moment m2 and kurtosis κ. cvaP,0.05 assumes θi ∼ N.
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Efficiency of robust EBCI

• Efficiency relative to unshrunk CI:

• Already showed efficiency gain for κ = ∞.

• Even greater gain when κ < ∞.

• Efficiency relative to parametric EBCI:

• Robust EBCI not much wider than parametric EBCI when indeed θi ∼ N.

• To verify claim, compare lengths when κ = 3 (kurtosis of normal distribution) – next slide.

• Extension: Gain additional efficiency by optimizing shrinkage coefficient w for EBCI length
rather than MSE.
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Efficiency relative to parametric EBCI (α = 0.05)
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Simulation study

• Panel data model: Wit = θi + Uit , Uit i.i.d. mean zero, i = 1, . . . , n, t = 1, . . . , T .

• Unshrunk estimator of θi : Yi = T −1 ∑T
t=1 Wit , with usual unbiased squared s.e. σ̂2

i .

• Effect distributions θi
i .i .d .∼ Π:

(i) normal (κ = 3) (ii) scaled χ2
1 (κ = 15)

(iii) two-point (κ ≈ 8.11) (iv) three-point (κ = 2)
(v) LFD for robust EBCI (µ2 only) (vi) LFD for parametric EBCI

• For all distributions, consider µ2/ Var(Yi | θi) ∈ {0.1, 0.5, 1, 2}.

• Covariates: Xi = 1 (shrinkage towards grand mean).

• Compare “oracle” EBCI (uses true values for σi , µ2, κ) to our baseline procedure.
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Monte Carlo results (nominal α = 0.05)

Robust, µ2 only Robust, µ2 & κ Parametric

T 10 20 ∞ ora 10 20 ∞ ora 10 20 ∞ ora

Panel A: Average coverage (%), minimum across 24 DGPs

n = 100 92.1 93.7 94.0 95.0 91.8 93.2 93.2 94.6 79.2 79.7 79.3 86.9
n = 200 91.9 93.4 92.9 95.0 91.8 93.3 92.9 94.8 80.7 80.3 81.0 86.3
n = 500 91.9 93.6 94.8 95.0 91.9 93.5 94.3 94.9 84.2 85.1 85.1 85.6
Panel B: Relative average length, average across 24 DGPs

n = 100 1.09 1.10 1.11 1.16 1.03 1.02 1.02 1.00 0.81 0.82 0.83 0.86
n = 200 1.09 1.10 1.12 1.16 1.02 1.02 1.01 1.00 0.81 0.82 0.84 0.86
n = 500 1.10 1.11 1.13 1.16 1.04 1.03 1.01 1.00 0.82 0.83 0.84 0.86

Normally distributed errors Uit . In paper: Uit ∼ χ2.
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Neighborhood effects

• Chetty & Hendren (2018): EB estimates of effects of neighborhoods on intergenerational
mobility.

• θi : effect on adult income of living in commuting zone (CZ) i for one year as child
(relative to average CZ).

• Yi : fixed effect estimate of θi , unbiased under as’n that timing of a move is exogenous.

• Essentially only uses data on families that move between CZs (“movers”), so it is noisy.

• To lower MSE, Chetty & Hendren regress Yi on income Xi for permanent residents, and
shrink Yi toward this regression estimate.

• We construct robust EBCIs centered at these estimates for children in 25th percentile of
household income.
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Neighborhood effects for NY CZs with 90% robust EBCIs
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Neighborhood effects: efficiency gain

En[half-lengthi ]

Robust EBCI 0.195
Optimal robust EBCI 0.149
Parametric EBCI 0.123
Unshrunk CI 0.786

• Robustification widens the parametric EBCI, but still much shorter than unshrunk CI.

• Effect of one childhood year spent in given location, using $818 income per percentile:
Chetty & Hendren (2018, p. 1183)

• Robust EBCI: ±$818 × 0.195 = ±$160.

• Unshrunk CI: ±$818 × 0.786 = ±$643.
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Neighborhood effects: fragility of parametric EBCI

Summary statistics

κ 778.5
En[µ2/σ2

i ] 0.142
En[wEB,i ] 0.093
En[wopt,i ] 0.191
En[non-cov of parametric EBCIi ] 0.227

• Large κ and small w ⇒ large potential undercoverage of parametric EBCI.

• Average of 77.3% worst-case EB coverage for nominal 90% CI.

• Consistent with “rule of thumb” (wEB < 0.3).
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Local vs. global efficiency

• Our EBCI is globally valid and locally nearly efficient (when θi ∼ N).

• Analogous to robust standard errors for OLS: only efficient under normal homoskedastic errors.

• In our model, all moments of θi are identified. Can in principle use to further tighten CI
and center at more efficient estimator.

• Analogous to OLS: WLS more efficient under heteroskedasticity.

• Several nonparametric EB point estimators available. Kiefer and Wolfowitz (1956); Brown and
Greenshtein (2009); Jiang and Zhang (2009); Koenker and Mizera (2014); Efron (2019)

• Challenging to achieve global optimality while allowing for (i) covariates, (ii)
heteroskedasticity, and (iii) potential dependence across i , and (iv) maintaining good
finite-sample performance.
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Non-linear shrinkage

• Instead of going fully nonparametric, our approach can be adapted to non-linear
shrinkage settings that are motivated by a specific (non-normal) effects distribution.

• Example: soft thresholding in the normal model (Yi | θ) ∼ N(θi , σ2).

• θ̂i = sign(Yi) max{|Yi | −
√

2σ2/µ2, 0} is the MAP estimator under Laplace prior.

• Obtain corresponding EBCI by calibrating HPD set

S(Yi ; χ) = {θi : log π(θi | Yi)︸ ︷︷ ︸
posterior under Laplace prior

+ log χ ≥ 0}.

• For robust EB coverage, choose χ such that ρ(µ2, χ) = α, where

ρ(µ2, χ) = sup
F

EF [P(θi /∈ S(Yi ; χ) | θi)] s.t. EF [θ2
i ] = µ2.

Approximate with finely discretized linear program.
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General shrinkage

• In paper: When θi ∼ Laplace, robust soft thresholding EBCI has shorter average length
than (i) unshrunk CI and (ii) robust linear EBCI.

• General idea on previous slide applicable even to non-normal sampling models (Yi | θ).

• Given some choice of family of EBCIs S(Yi ; χ), just need a way to evaluate conditional
non-coverage probability

P(θi /∈ S(Yi ; χ) | θi),
potentially by numerical integration or simulation.

• Example in paper: EBCI for rate parameter θi in Poisson sampling model.
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Summary

• Construct robust empirical Bayes CIs: centered at usual EB estimator, critical value easy
to compute (Matlab/R/Stata code on GitHub).

• Coverage guarantees without strong assumptions on distribution of θi ’s:

1 Empirical Bayes coverage (repeated sampling of θi and data).

2 Frequentist average coverage (fixed θ).

• Narrower than usual unshrunk CI due to weaker – but sensible – coverage requirement.

• Robust EBCI not much wider than parametric EBCI (Morris, 1983b) when parametric
assumption holds.

Thank you!
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Appendix



Comparison to ex-post robust Bayes

• Robust EBCI has coverage across repeated samples of (θi , Yi), regardless of “prior” on θi .

• Instance of (asymptotically) ex-ante Γ-minimax:

Pθ∼π(θi ∈ CIi) ≥ 1 − α for all π ∈ Γ,

where Γ denotes all distributions with second moment µ2.

• Stronger requirement: ex-post Γ-minimax. Giacomini, Kitagawa & Uhlig (2019)

Pθ∼π(θi ∈ CIi | data) ≥ 1 − α for all π ∈ Γ and data realizations.

In our setting, this leads to reporting entire parameter space (up to moment bound).
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Moment estimates

• Trim moment estimates µ̂2 and κ̂ from below to avoid coverage problems when ŵEB,i ≈ 0.

• Defining ε̂i = Yi − X ′
i δ̂, we use

µ̂2 = max
{

En[ε̂2
i − σ̂2

i ], 2
n

En[σ̂4
i ]

En[σ̂2
i ]

}
, κ̂ = max

{
En[ε̂4

i − 6σ̂2
i ε̂2

i + 3σ̂4
i ]

µ̂2
2

, 1 + 32
nµ̂2

2

En[σ̂8
i ]

En[σ̂4
i ]

}
.

• Trimming interpretation: lower bound on posterior mean under flat prior on µ2 ∈ [0, ∞)
or µ4 − µ2

2 ∈ [0, ∞), in large samples when µ2 or κ small. Morris (1983a,b)

• Actual posterior mean estimates more complicated, perform similarly in simulations.
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Coverage and MSE conditional on θi
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Soft thresholding EBCI
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