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Linear shrinkage estimators

e Often interested in estimating effects §; for many individuals/units i.

® Value-added of teacher/school/hospital /neighborhood/politician/patient.
Jacob & Lefgren (2008); Kane & Staiger (2008); Chetty, Friedman & Rockoff (2014); Angrist, Hull,
Pathak & Walters (2017); Finkelstein, Gentzkow, Hull & Williams (2017); Chetty & Hendren (2018);
Hull (2020); Easterly & Pennings (2021)
® Subgroup analysis: split results by countries, sectors, occupations, etc.
e Common to (linearly) shrink noisy unbiased estimates toward baseline values.

® Empirical Bayes (EB) motivation: Bayesian/random-effects model with §; ~ N.

® MSE gain over unshrunk estimate robust to failure of Bayesian model. James & Stein (1961)
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This paper: How to construct Cls for linear shrinkage estimates?
® Parametric empirical Bayes confidence interval (EBCI) (Morris 1983a,b): Bayesian
credible set, treating estimated normal distribution of 6;'s as prior.
® Existing theoretical justification requires correct distribution for 6;'s.

® In contrast, for point estimation, get MSE improvement even if 6;'s non-random.

@ Is parametric EBCI robust to failure of assumption on distribution of ;'s?
@® If not, can we “robustify” it (and keep it short)?

©® Does robust EBCI have frequentist coverage properties (nonrandom 6;'s)?



Question 1: Is parametric EBCI robust to failure of ; ~ N assumption?

® |n general, no: Coverage of 95% parametric EBCI can be as low as 74% under
repeated sampling of (6;,data;).

Question 2: Can we robustify parametric EBCI while keeping it short?

® Yes, we provide critical values. Only input is moment estimates already used to
compute shrinkage estimator.

® |dea: Use estimated moments of bias to bound non-coverage.
® Guaranteed coverage under repeated sampling of (6;,data;).

e |fin fact 6; ~ N, then robust EBCI is not much wider than parametric EBCI.
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Question 3: Does robust EBCI have frequentist coverage properties (nonrandom 6;'s)?

® Yes, controls average coverage as n — o<:
1 n
=N PO €Cli|0)>1—q.
iz

® Usual CI centered at unshrunk estimate also has this property, but is wider.

® Improvement in Cl length possible because average coverage is weaker requirement
than usual frequentist coverage for each i separately.

® Intuition: Easier to estimate the average effect of shrinkage bias on coverage (using
moments) than to estimate bias for each / separately.



Related literature

Our paper: robust uncertainty quantification for linear shrinkage estimator; near-efficient
when 6; ~ N. (Also give extensions to non-linear shrinkage.)

Do not attempt to recover full distribution of 6; to improve estimator/Cl.

® “Flexible parametric” and nonparametric EB literature focuses on point estimation. Robbins
(1951); Jiang & Zhang (2009); Koenker & Mizera (2014); Efron (2016)

EB in econometrics: Hansen (2016); Abadie & Kasy (2019); Cheng, Liao & Shi (2019); Fessler &
Kasy (2019); Bonhomme & Weidner (2021); Ignatiadis & Wager (2021); Liu, Moon & Schorfheide (2021)

Average coverage in nonparam. regression: Wahba (1983); Nychka (1988); Wasserman (2006);
Cai, Low & Ma (2014)

Shrinkage confidence balls: Casella & Hwang (2012)
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Empirical Bayes set-up and notation

® Observe initial estimates Y7,..., Y, of unknown scalar parameters 61, ...,0,.
® Treat ¢ as random throughout. P(-): probability under joint distribution of {(¢;, Yi)}7_;.

® Statements involving P(- | #) don't actually require = (61,...,60,) to be random, but we
maintain conditioning for notational clarity.

e Linear shrinkage estimator: 0; = (I —w)a+ wY,.
® w: tuning parameter, chosen based on data.
® a: baseline value or pooled estimate.

e We will later allow: (i) heteroskedastic Y;'s; (ii) a and w that depend on covariates and
i, (iii) asymptotic (rather than exact) normality. For now, consider simple setting. ..
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Simple empirical Bayes model
® Homoskedastic normal location model with known o
(Yi|6) ~ N6;,0%), i=1,...,n
* Shrinkage estimator §; = wY; (shrink toward 0).
® How to choose shrinkage constant w?

® Working model: 6; ~ N(0, u2).

® MSE-optimal estimate: posterior mean é,- = wegY;, where weg = 1o /(02 + o).

* Feasible version: replace 1, with consistent estimator fip, e.g., o = =15 >7_; (Y7 — 0?).
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MSE of empirical Bayes point estimator

e MSE gain of EB estimator robust to failure of working assumption 6; ~ N(0, p2).
* EB estimate §; = ﬁ% has lower “frequentist” compound MSE
Y21 E(6: = 0:)% | 0]
than unshrunk estimate Y; whenever n > 3. James & Stein (1961)
® Thus, MSE improvement holds even if € is nonrandom. ..

® .. orif #is random, but working assumption is wrong.

® Intuition: MSE improvement only depends on E[#?] = u2, not distribution of §;'s.
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Empirical Bayes confidence intervals

Following Morris (1983a) and Carlin & Louis (2000, Ch. 3.5), we say that Cljis 1 — «
empirical Bayes confidence interval (EBCI) if

P(H,' S C/,') >1—a,
where P(-) denotes joint distribution of (6;, Cl;).

Parametric EBCI: Assume working model 6; ~ N(0, p2) and use Bayesian credible interval
0i + 2102/ WEBO.

® Feasible version: plug in fip for pp. Morris (1983b)
We consider EB coverage as n — oo, so assume up = E[6?] known for now.

Parametric EBCI valid if working model correct. Can we robustify it?

13



Robust EBCI construction

Consider Cl centered at HA,- = wgegY;, by inverting t-statistic

-1
0) ~ N(bj,1), where b;= WEB ; is conditional (scaled) bias.
WEBO

(WEB Yi — 0;
WEBO

With critical value , non-coverage given 0 is
P(0i ¢ {wesYi £ wegox} | 0) = Pz.n(o,1) (I1Z + bi| > x) = r(bi, x).

Averaging over 0:
P(0; ¢ {wegY; £ wegox}) = E[r(bi, x)]-

How to choose x so that this is < «a?
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Robust EBCI construction: critical value

Want to choose x to bound non-coverage probability

-1
E[r(bi,x)], where b;= WEE 2y,
WEBO
Since E[0?] = uo, we have
_ 1)2 0_2
E[b?] = (wes —1)° _ o°
[ ] W%BOQ H2 11

Therefore non-coverage is bounded above by
p(0? /2, %) = SLI{_p Epe[r(b,X)] st. Epp[b?] =02/ pa.

Robust EB critical value: Choose x so that p(c2/u2,x) = a.
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Robust EBCI

Leads to robust EBCI: R
0; + cvan (02 /o) wego,

where cva,(t) = p~1(t, a) (inverse is in second argument), and
p(t, x) = sup Ep~rlr(b,x)] st Epur[b’] =t.

Easy to compute p(t, x): linear program in F.

F that achieves the maximum (“least favorable distribution”) concentrates on three
points. Get closed-form formula for p(t, x).

Can tighten EBCI using higher moments of bias b; (more later).
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Average coverage

® Robust EBCI has frequentist (conditional on 6) average coverage property:

n

LS P ¢l wesox) 10) = - 3 (i) < a4 o(1)
i—1 i=1

if we use the critical value x = cvan (02 /o).

® Holds because
IS b? = Eper, [b?] = 0%/ 2 + op(1),

where F, is the empirical distribution of the b;'s. Holds in finite samples if % DI 0? = po.

® In fact, can show X S°7, 1(¢; ¢ {0; £ wegox}) < a+ op(.g)(1)-

® Unshrunk Cl Y; £ 02z _,/, also satisfies avg. coverage property, but is wider (next slide).
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Average coverage versus usual coverage notion

® Usual frequentist coverage stronger, cannot use shrinkage to tighten Cl.
Pratt (1961); Armstrong & Kolesar (2018)

simultaneous coverage — usual coverage == average coverage
—_———
P(Vi: 6;€Clj|0)>1—« Vi: P(6,€Cli|0)>1—« % zl’_’:l P(0;€Cl;|0)>1—a

® Avg. coverage allows us to borrow strength from other j: Can't get accurate data-driven
bound on each b;, but can bound “average effect” of b; on coverage, using moments.

® |s average coverage a sensible criterion?

@ We already agreed on compound loss for estimation (want small MSE on average). Worries
about undercoverage for particular i analogous to worries about bad MSE for particular i.

® Easy interpretation, even to a layperson: 100 x (1 — «)% of the n EBCls contain true 6;.
Yy
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Undercoverage of parametric EBCI

Parametric EBCI (Bayesian credible interval with 6; ~ N(0, u2) prior)
T WEBOZ1 /2
has no robust coverage guarantee. How bad can EB coverage get?

Corresponds to EBCI with critical value xy = zl_a/2/‘/WEB. Hence, the worst-case EB
coverage consistent with E[0?] = i, is given by

p(0% /12, 21— 02/ \/WEB).-
Rule of thumb: Coverage at least 90% for nominal 95% CI when wgg > 0.3 (next slide).

Proposition: Worst-case coverage over all wgg is 1 —1/ max{zlz_a/27 1}. Equals 74% for
nominal 95% EBCI. Obtains as weg — 0 (i.e., pu2/0? — 0).
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Undercoverage of parametric EBCI

Max. non-coverage probability

wes,i = pi2/(p2 + 07)

Maximal non-coverage probability of parametric EBCI. Vertical line: rule of thumb wgg = 0.3.
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Baseline model

Allow for covariates and heteroskedasticity:
(Y: | 6;, Xi, 1) ~ N(6;,0?).
Working assumption (not actually imposed later):
(0i | Xi,07) ~ N(p,i, p2), where pq ;= Xjé.
Suggests posterior mean shrinkage estimator

0; = X6+ weg (Vi — X[6), where wgg; = Lz
Mo + o}

Assume moment independence (also needed for MSE gain): Xie, Kou & Brown (2012)
E[(0; — X{8)* | Xy o] = pa,  E(0; — X{8)* | Xi, 0] = kpi.

In paper: relax using nonparametrics.
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Practical implementation of robust EBCI

(l—WEBJ)(G,'—X,-/d)

Tighter coverage bound by also imposing kurtosis of cond’l bias b; = s o

p(my, k, x) = SL'JEp Epr[r(b,X)] st. Epwp[b?] = ma, Epp[b?] = km3.

® Linear program in F. Optimum has 5 support points. Recast as 2 nested univariate optimiz's.

Critical value cva,(myj, k) = pfl(m2,,-, K, ) (inverse is in last argument), with
myj = E[b? | Xi,0/] = 07/ po.
Robust EBCI with 1 — o EB coverage, conditional on (Xj, 0}):

9,’ + WEB,iO i cvaa(mz,,-, K).

Feasible version: Replace ¢ with OLS, (u2, k) with (trimmed) moment estimates.
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Critical value

Comparison of critical values (o = 0.05)
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Critical value when b; has 2nd moment m» and kurtosis k. cvap g g5 assumes §; ~ N.



Efficiency of robust EBCI

e Efficiency relative to unshrunk Cl:
® Already showed efficiency gain for Kk = oo.
® Even greater gain when k < 00.
e Efficiency relative to parametric EBCI:
® Robust EBCI not much wider than parametric EBCI when indeed 6; ~ N.
® To verify claim, compare lengths when x = 3 (kurtosis of normal distribution) — next slide.

® Extension: Gain additional efficiency by optimizing shrinkage coefficient w for EBCI length
rather than MSE.
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Efficiency relative to parametric EBCI (a = 0.05)
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Length of robust EBCI and length-optimal robust EBCI relative to parametric EBCI.
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Simulation study

Panel data model: W;; = 0; + Uj, U i.i.d. mean zero, i=1,...,n, t=1,...,T.

Unshrunk estimator of §;: Y; = T~! Zthl Wiz, with usual unbiased squared s.e. &

Effect distributions 8; 4.

(i) normal (k = 3) (i) scaled x? (k = 15)
(iii) two-point (k ~ 8.11) (iv) three-point (k = 2)
(v) LFD for robust EBCI (u2 only)  (vi) LFD for parametric EBCI

For all distributions, consider o/ Var(Y; | 6;) € {0.1,0.5,1,2}.
Covariates: X; = 1 (shrinkage towards grand mean).

Compare “oracle” EBCI (uses true values for o}, up, k) to our baseline procedure.

2

i
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Monte Carlo results (nominal o = 0.05)

Robust, uy only Robust, uy & & Parametric

T 10 20 00 ora 10 20 o0 ora 10 20 00 ora
Panel A: Average coverage (%), minimum across 24 DGPs

n=100 921 937 940 950 918 932 932 946 792 797 793 86.9
n=200 919 934 929 950 91.8 933 929 948 80.7 803 810 86.3
n=500 919 936 948 950 919 935 943 949 842 851 851 856
Panel B: Relative average length, average across 24 DGPs

n=100 109 110 1.11 116 1.03 102 1.02 100 081 0.82 0.83 0.86
n=200 109 1.10 112 116 1.02 1.02 101 100 0.81 0.82 0.84 0.86
n=500 110 111 113 116 1.04 103 1.01 100 082 083 0.84 0.86

Normally distributed errors Uj;. In paper: U; ~ x2.

28



Outline

® Overview of results

® Practical implementation

© Simulation study

O Application

@ Extension: non-linear shrinkage

® Summary



Neighborhood effects

Chetty & Hendren (2018): EB estimates of effects of neighborhoods on intergenerational
mobility.

0;: effect on adult income of living in commuting zone (CZ) i for one year as child
(relative to average CZ).

Y;: fixed effect estimate of 6;, unbiased under as’n that timing of a move is exogenous.

® Essentially only uses data on families that move between CZs (“movers”), so it is noisy.

To lower MSE, Chetty & Hendren regress Y; on income X; for permanent residents, and
shrink Y; toward this regression estimate.

We construct robust EBCls centered at these estimates for children in 25th percentile of
household income.

29



Effect of 1 year of exposure on income rank
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Neighborhood effects: efficiency gain

Ep[half-length;]

Robust EBCI 0.195
Optimal robust EBCI 0.149
Parametric EBCI 0.123
Unshrunk CI 0.786

® Robustification widens the parametric EBCI, but still much shorter than unshrunk CI.

e Effect of one childhood year spent in given location, using $818 income per percentile:
Chetty & Hendren (2018, p. 1183)

® Robust EBCI: +$818 x 0.195 = +$160.

® Unshrunk Cl: £$818 x 0.786 = +-$643.
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Neighborhood effects: fragility of parametric EBCI

Summary statistics

K 7785
Enlp2/07] 0.142
Enlwes,] 0.093
En[Wopt.i] 0.191

Ep[non-cov of parametric EBCI;] 0.227

® |arge x and small w = large potential undercoverage of parametric EBCI.

® Average of 77.3% worst-case EB coverage for nominal 90% Cl.

¢ Consistent with “rule of thumb" (wgg < 0.3).
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Local vs. global efficiency

e Our EBCl is globally valid and locally nearly efficient (when 6; ~ N).

® Analogous to robust standard errors for OLS: only efficient under normal homoskedastic errors.

® In our model, all moments of 6; are identified. Can in principle use to further tighten Cl
and center at more efficient estimator.

® Analogous to OLS: WLS more efficient under heteroskedasticity.

® Several nonparametric EB point estimators available. Kiefer and Wolfowitz (1956); Brown and
Greenshtein (2009); Jiang and Zhang (2009); Koenker and Mizera (2014); Efron (2019)

¢ Challenging to achieve global optimality while allowing for (i) covariates, (ii)
heteroskedasticity, and (iii) potential dependence across i, and (iv) maintaining good
finite-sample performance.
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Non-linear shrinkage

® Instead of going fully nonparametric, our approach can be adapted to non-linear

shrinkage settings that are motivated by a specific (non-normal) effects distribution.

® Example: soft thresholding in the normal model (Y; | 6) ~ N(0;,52).
* 0; = sign(Y;) max{|Yj| — \/202/ 12,0} is the MAP estimator under Laplace prior.
® Obtain corresponding EBCI by calibrating HPD set

S(Yiix) = {0i: logn(6; | Yi)+logx > 0}.
——

posterior under Laplace prior

® For robust EB coverage, choose x such that p(u2, x) = «, where

plua,x) = sup Er [P(0; ¢ S(Yiix) | 0] s EF[67] = po.

Approximate with finely discretized linear program.
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General shrinkage

® In paper: When 6; ~ Laplace, robust soft thresholding EBCI has shorter average length
than (i) unshrunk Cl and (ii) robust linear EBCI.

® General idea on previous slide applicable even to non-normal sampling models (Y; | 6).

® Given some choice of family of EBCls S(Y;; x), just need a way to evaluate conditional
non-coverage probability
P(0: ¢ S(Yiix) | 65),

potentially by numerical integration or simulation.

® Example in paper: EBCI for rate parameter 6; in Poisson sampling model.
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Summary
Construct robust empirical Bayes Cls: centered at usual EB estimator, critical value easy
to compute (Matlab/R/Stata code on GitHub).
Coverage guarantees without strong assumptions on distribution of 6;'s:
@ Empirical Bayes coverage (repeated sampling of 6; and data).
@ Frequentist average coverage (fixed 6).
Narrower than usual unshrunk ClI due to weaker — but sensible — coverage requirement.

Robust EBCI not much wider than parametric EBCI (Morris, 1983b) when parametric
assumption holds.

36



Summary
Construct robust empirical Bayes Cls: centered at usual EB estimator, critical value easy
to compute (Matlab/R/Stata code on GitHub).
Coverage guarantees without strong assumptions on distribution of 6;'s:
@ Empirical Bayes coverage (repeated sampling of 6; and data).
@ Frequentist average coverage (fixed 6).
Narrower than usual unshrunk ClI due to weaker — but sensible — coverage requirement.

Robust EBCI not much wider than parametric EBCI (Morris, 1983b) when parametric
assumption holds.

Thank youl!
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Appendix



Comparison to ex-post robust Bayes

® Robust EBCI has coverage across repeated samples of (6;, Y;), regardless of “prior” on 6;.
® Instance of (asymptotically) ex-ante [-minimax:
Por(0i € Cli)>1—a forallmerl,
where [ denotes all distributions with second moment p».
® Stronger requirement: ex-post [-minimax. Giacomini, Kitagawa & Uhlig (2019)
Pyp(0; € Cl; | data) > 1 —« for all # € ' and data realizations.

In our setting, this leads to reporting entire parameter space (up to moment bound).
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Moment estimates

Trim moment estimates /i, and & from below to avoid coverage problems when Weg ; ~ 0.

Defining & = Y; — X!§, we use

2 E,[6% E, [ — 66282 + 364 2 E,[68
[Q:max{En[é?—@g], [U’]}, f%:max{ [67 — 657¢; +3U’],1—|— 3 [U’]}.

n Eq[67] i3 nfi3 En[67]

Trimming interpretation: lower bound on posterior mean under flat prior on p, € [0, 00)
or yig — p13 € [0,00), in large samples when pp or k small. Morris (1983a,b)

Actual posterior mean estimates more complicated, perform similarly in simulations.
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il/ /12

3

Coverage and MSE conditional on 6;

0 0.25 05 0.75 1
wes,i = p2/ (2 + 07)

Value of ¢; = 6; — X/4 such that conditional coverage of EBCI equals 0.95 or

such that conditional MSE of shrinkage estimator 0; equals that of MLE Y;. 2
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