Robust Empirical Bayes Confidence Intervals

Timothy B. Armstrong University of Southern California Michal Kolesár Princeton University Mikkel Plagborg-Møller Princeton University

November 2, 2021

Linear shrinkage estimators

- Often interested in estimating effects θ_i for many individuals/units *i*.
 - Value-added of teacher/school/hospital/neighborhood/politician/patient.
 Jacob & Lefgren (2008); Kane & Staiger (2008); Chetty, Friedman & Rockoff (2014); Angrist, Hull, Pathak & Walters (2017); Finkelstein, Gentzkow, Hull & Williams (2017); Chetty & Hendren (2018); Hull (2020); Easterly & Pennings (2021)
 - Subgroup analysis: split results by countries, sectors, occupations, etc.
- Common to (linearly) shrink noisy unbiased estimates toward baseline values.
 - Empirical Bayes (EB) motivation: Bayesian/random-effects model with $\theta_i \sim N$.
 - MSE gain over unshrunk estimate robust to failure of Bayesian model. James & Stein (1961)

Mean rank of children of perm. residents at p = 25

Neighborhood effects: unshrunk estimates and 90% CIs (replicates Chetty & Hendren, 2018, Fig. 1, for NY CZ)

Mean rank of children of perm. residents at p = 25

Neighborhood effects: shrinkage estimates (replicates Chetty & Hendren, 2018, Fig. 2, for NY CZ)

This paper: How to construct CIs for linear shrinkage estimates?

- Parametric empirical Bayes confidence interval (EBCI) (Morris 1983a,b): Bayesian credible set, treating estimated normal distribution of θ_i 's as prior.
- Existing theoretical justification requires correct distribution for θ_i 's.
- In contrast, for point estimation, get MSE improvement even if θ_i 's non-random.

Questions

1 Is parametric EBCI robust to failure of assumption on distribution of θ_i 's?

2 If not, can we "robustify" it (and keep it short)?

3 Does robust EBCI have frequentist coverage properties (nonrandom θ_i 's)?

Question 1: Is parametric EBCI robust to failure of $\theta_i \sim N$ assumption?

 In general, no: Coverage of 95% parametric EBCI can be as low as 74% under repeated sampling of (θ_i, data_i).

Question 2: Can we robustify parametric EBCI while keeping it short?

- Yes, we provide critical values. Only input is moment estimates already used to compute shrinkage estimator.
 - Idea: Use estimated moments of bias to bound non-coverage.
- Guaranteed coverage under repeated sampling of $(\theta_i, \text{data}_i)$.
- If in fact $\theta_i \sim N$, then robust EBCI is not much wider than parametric EBCI.

Neighborhood effects: shrunk estimates and 90% CIs

Question 3: Does robust EBCI have frequentist coverage properties (nonrandom θ_i 's)?

• Yes, controls average coverage as $n \to \infty$:

$$\frac{1}{n}\sum_{i=1}^{n} P(\theta_i \in CI_i \mid \theta) \geq 1 - \alpha.$$

- Usual CI centered at unshrunk estimate also has this property, but is wider.
- Improvement in CI length possible because average coverage is weaker requirement than usual frequentist coverage for each *i* separately.
 - Intuition: Easier to estimate the average effect of shrinkage bias on coverage (using moments) than to estimate bias for each *i* separately.

Related literature

- Our paper: robust uncertainty quantification for linear shrinkage estimator; near-efficient when $\theta_i \sim N$. (Also give extensions to non-linear shrinkage.)
- Do not attempt to recover full distribution of θ_i to improve estimator/Cl.
 - "Flexible parametric" and nonparametric EB literature focuses on point estimation. Robbins (1951); Jiang & Zhang (2009); Koenker & Mizera (2014); Efron (2016)
- EB in econometrics: Hansen (2016); Abadie & Kasy (2019); Cheng, Liao & Shi (2019); Fessler & Kasy (2019); Bonhomme & Weidner (2021); Ignatiadis & Wager (2021); Liu, Moon & Schorfheide (2021)
- Average coverage in nonparam. regression: Wahba (1983); Nychka (1988); Wasserman (2006); Cai, Low & Ma (2014)
- Shrinkage confidence balls: Casella & Hwang (2012)

Outline

Overview of results

- **2** Practical implementation
- Simulation study
- 4 Application
- **5** Extension: non-linear shrinkage
- 6 Summary

Empirical Bayes set-up and notation

- Observe initial estimates Y_1, \ldots, Y_n of unknown scalar parameters $\theta_1, \ldots, \theta_n$.
 - Treat θ as random throughout. $P(\cdot)$: probability under joint distribution of $\{(\theta_i, Y_i)\}_{i=1}^n$.
 - Statements involving $P(\cdot | \theta)$ don't actually require $\theta = (\theta_1, \dots, \theta_n)$ to be random, but we maintain conditioning for notational clarity.
- Linear shrinkage estimator: $\hat{\theta}_i = (1 w)a + wY_i$.
 - w: tuning parameter, chosen based on data.
 - *a*: baseline value or pooled estimate.
- We will later allow: (i) heteroskedastic Y_i 's; (ii) a and w that depend on covariates and $\hat{\sigma}_i$; (iii) asymptotic (rather than exact) normality. For now, consider simple setting...

Simple empirical Bayes model

• Homoskedastic normal location model with known σ^2 :

$$(Y_i \mid \theta) \sim N(\theta_i, \sigma^2), \quad i = 1, \ldots, n.$$

- Shrinkage estimator $\hat{\theta}_i = wY_i$ (shrink toward 0).
- How to choose shrinkage constant w?
 - Working model: $\theta_i \sim N(0, \mu_2)$.
 - MSE-optimal estimate: posterior mean $\hat{\theta}_i = w_{EB}Y_i$, where $w_{EB} = \mu_2/(\sigma^2 + \mu_2)$.
 - Feasible version: replace μ_2 with consistent estimator $\hat{\mu}_2$, e.g., $\hat{\mu}_2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i^2 \sigma^2)$.

MSE of empirical Bayes point estimator

- MSE gain of EB estimator robust to failure of working assumption $\theta_i \sim N(0, \mu_2)$.
 - EB estimate $\hat{\theta}_i = \frac{\hat{\mu}_2}{\hat{\mu}_2 + \sigma^2} Y_i$ has lower "frequentist" compound MSE

 $\sum_{i=1}^{n} E[(\hat{\theta}_i - \theta_i)^2 \mid \theta]$

than unshrunk estimate Y_i whenever $n \ge 3$. James & Stein (1961)

- Thus, MSE improvement holds even if θ is nonrandom...
- ... or if θ is random, but working assumption is wrong.
- Intuition: MSE improvement only depends on $E[\theta_i^2] = \mu_2$, not distribution of θ_i 's.

Empirical Bayes confidence intervals

• Following Morris (1983a) and Carlin & Louis (2000, Ch. 3.5), we say that Cl_i is $1 - \alpha$ empirical Bayes confidence interval (EBCI) if

$$P(\theta_i \in CI_i) \geq 1 - \alpha,$$

where $P(\cdot)$ denotes joint distribution of (θ_i, Cl_i) .

- Parametric EBCI: Assume working model $\theta_i \sim N(0, \mu_2)$ and use Bayesian credible interval $\hat{\theta}_i \pm z_{1-\alpha/2} \sqrt{w_{EB}} \sigma$.
 - Feasible version: plug in $\hat{\mu}_2$ for μ_2 . Morris (1983b)
- We consider EB coverage as $n \to \infty$, so assume $\mu_2 = E[\theta_i^2]$ known for now.
- Parametric EBCI valid if working model correct. Can we robustify it?

Robust EBCI construction

• Consider CI centered at $\hat{\theta}_i = w_{EB}Y_i$, by inverting t-statistic

$$\left(\frac{w_{EB}Y_i - \theta_i}{w_{EB}\sigma} \mid \theta \right) \sim N(b_i, 1), \quad \text{where} \quad b_i = \frac{w_{EB} - 1}{w_{EB}\sigma} \theta_i \quad \text{is conditional (scaled) bias.}$$

• With critical value χ , non-coverage given θ is

$$P(\theta_i \notin \{w_{EB}Y_i \pm w_{EB}\sigma\chi\} \mid \theta) = P_{Z \sim N(0,1)}(|Z + b_i| > \chi) \equiv r(b_i, \chi).$$

• Averaging over θ :

$$P(\theta_i \notin \{w_{EB}Y_i \pm w_{EB}\sigma\chi\}) = E[r(b_i, \chi)].$$

• How to choose χ so that this is $\leq \alpha$?

Robust EBCI construction: critical value

• Want to choose χ to bound non-coverage probability

$$E[r(b_i, \chi)],$$
 where $b_i = rac{w_{EB} - 1}{w_{EB}\sigma} heta_i.$

• Since $E[\theta_i^2] = \mu_2$, we have

$$E[b_i^2] = rac{(w_{EB} - 1)^2}{w_{EB}^2 \sigma^2} \mu_2 = rac{\sigma^2}{\mu_2}.$$

• Therefore non-coverage is bounded above by

$$\rho(\sigma^2/\mu_2,\chi) \equiv \sup_F E_{b\sim F}[r(b,\chi)] \quad \text{s.t.} \quad E_{b\sim F}[b^2] = \sigma^2/\mu_2.$$

• Robust EB critical value: Choose χ so that $\rho(\sigma^2/\mu_2, \chi) = \alpha$.

Robust EBCI

• Leads to robust EBCI:

$$\hat{ heta}_i \pm \operatorname{cva}_{lpha}(\sigma^2/\mu_2) w_{EB}\sigma,$$

where $cva_{\alpha}(t) = \rho^{-1}(t, \alpha)$ (inverse is in second argument), and

$$\rho(t,\chi) \equiv \sup_{F} E_{b\sim F}[r(b,\chi)] \quad \text{s.t.} \quad E_{b\sim F}[b^2] = t.$$

- Easy to compute $\rho(t, \chi)$: linear program in F.
- F that achieves the maximum ("least favorable distribution") concentrates on three points. Get closed-form formula for ρ(t, χ).
- Can tighten EBCI using higher moments of bias *b_i* (more later).

Average coverage

• Robust EBCI has frequentist (conditional on θ) average coverage property:

$$\frac{1}{n}\sum_{i=1}^{n} P(\theta_i \notin \{\hat{\theta}_i \pm w_{EB}\sigma\chi\} \mid \theta) = \frac{1}{n}\sum_{i=1}^{n} r(b_i, \chi) \le \alpha + o(1)$$

if we use the critical value $\chi = cva_{\alpha}(\sigma^2/\mu_2)$.

Holds because

$$rac{1}{n}\sum_{i=1}^{n}b_{i}^{2}=E_{b\sim F_{n}}[b^{2}]=\sigma^{2}/\mu_{2}+o_{P}(1),$$

where F_n is the empirical distribution of the b_i 's. Holds in finite samples if $\frac{1}{n} \sum_{i=1}^n \theta_i^2 = \mu_2$.

- In fact, can show $\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(\theta_i \notin \{\hat{\theta}_i \pm w_{EB}\sigma\chi\}) \le \alpha + o_{P(\cdot|\theta)}(1).$
- Unshrunk CI $Y_i \pm \sigma z_{1-\alpha/2}$ also satisfies avg. coverage property, but is wider (next slide).

Efficiency of robust EBCI relative to unshrunk CI

Average coverage versus usual coverage notion

• Usual frequentist coverage stronger, cannot use shrinkage to tighten CI. Pratt (1961); Armstrong & Kolesár (2018)

$$\underbrace{\underset{P(\forall i: \ \theta_i \in Cl_i | \theta) \ge 1 - \alpha}{\text{simultaneous coverage}}} \implies \underbrace{\underset{\forall i: \ P(\theta_i \in Cl_i | \theta) \ge 1 - \alpha}{\text{suball coverage}} \implies \underbrace{\underset{\frac{1}{n} \sum_{i=1}^{n} P(\theta_i \in Cl_i | \theta) \ge 1 - \alpha}{\text{suball coverage}}$$

- Avg. coverage allows us to borrow strength from other *i*: Can't get accurate data-driven bound on each *b_i*, but can bound "average effect" of *b_i* on coverage, using moments.
- Is average coverage a sensible criterion?
 - We already agreed on compound loss for estimation (want small MSE on average). Worries about undercoverage for particular i analogous to worries about bad MSE for particular i.
 - **2** Easy interpretation, even to a layperson: $100 \times (1 \alpha)\%$ of the *n* EBCIs contain true θ_i .

Undercoverage of parametric EBCI

• Parametric EBCI (Bayesian credible interval with $\theta_i \sim N(0, \mu_2)$ prior)

$$\hat{ heta}_{i} \pm \sqrt{ extsf{w}_{ extsf{EB}}} \sigma extsf{z}_{1-lpha/2}$$

has no robust coverage guarantee. How bad can EB coverage get?

• Corresponds to EBCI with critical value $\chi = z_{1-\alpha/2}/\sqrt{w_{EB}}$. Hence, the worst-case EB coverage consistent with $E[\theta_i^2] = \mu_2$ is given by

$$ho(\sigma^2/\mu_2, z_{1-lpha/2}/\sqrt{w_{EB}}).$$

- Rule of thumb: Coverage at least 90% for nominal 95% CI when $w_{EB} \ge 0.3$ (next slide).
- Proposition: Worst-case coverage over all w_{EB} is 1 − 1/max{z²_{1−α/2}, 1}. Equals 74% for nominal 95% EBCI. Obtains as w_{EB} → 0 (i.e., μ₂/σ² → 0).

Undercoverage of parametric EBCI

Maximal non-coverage probability of parametric EBCI. Vertical line: rule of thumb $w_{EB} = 0.3$.

Outline

- 1 Overview of results
- **2** Practical implementation
- Simulation study
- 4 Application
- **5** Extension: non-linear shrinkage
- 6 Summary

Baseline model

• Allow for covariates and heteroskedasticity:

 $(Y_i \mid \theta_i, X_i, \sigma_i) \sim N(\theta_i, \sigma_i^2).$

• Working assumption (not actually imposed later):

 $(\theta_i \mid X_i, \sigma_i) \sim N(\mu_{1,i}, \mu_2), \quad \text{where} \quad \mu_{1,i} = X'_i \delta.$

• Suggests posterior mean shrinkage estimator

$$\hat{\theta}_i = X'_i \delta + w_{EB,i} (Y_i - X'_i \delta), \quad \text{where} \quad w_{EB,i} = \frac{\mu_2}{\mu_2 + \sigma_i^2}.$$

Assume moment independence (also needed for MSE gain): Xie, Kou & Brown (2012)

$$\mathsf{E}[(\theta_i - X_i'\delta)^2 \mid X_i, \sigma_i] = \mu_2, \quad \mathsf{E}[(\theta_i - X_i'\delta)^4 \mid X_i, \sigma_i] = \kappa \mu_2^2$$

In paper: relax using nonparametrics.

Practical implementation of robust EBCI

• Tighter coverage bound by also imposing kurtosis of cond'l bias $b_i = \frac{(1-w_{EB,i})(\theta_i - X'_i \delta)}{w_{EB,i}\sigma_i}$:

$$\rho(m_2, \kappa, \chi) = \sup_F E_{b \sim F}[r(b, \chi)] \quad \text{s.t.} \quad E_{b \sim F}[b^2] = m_2, \ E_{b \sim F}[b^4] = \kappa m_2^2.$$

- Linear program in F. Optimum has 5 support points. Recast as 2 nested univariate optimiz's.
- Critical value $\operatorname{cva}_{\alpha}(m_{2,i},\kappa) = \rho^{-1}(m_{2,i},\kappa,\alpha)$ (inverse is in last argument), with $m_{2,i} = E[b_i^2 \mid X_i, \sigma_i] = \sigma_i^2/\mu_2$.
- Robust EBCI with 1α EB coverage, conditional on (X_i, σ_i) :

 $\hat{\theta}_i \pm w_{EB,i}\sigma_i \operatorname{cva}_{\alpha}(m_{2,i},\kappa).$

• Feasible version: Replace δ with OLS, (μ_2, κ) with (trimmed) moment estimates.

Comparison of critical values ($\alpha = 0.05$)

Critical value when b_i has 2nd moment m_2 and kurtosis κ . $cva_{P,0.05}$ assumes $\theta_i \sim N$.

Efficiency of robust EBCI

- Efficiency relative to unshrunk CI:
 - Already showed efficiency gain for $\kappa = \infty$.
 - Even greater gain when $\kappa < \infty$.
- Efficiency relative to parametric EBCI:
 - Robust EBCI not much wider than parametric EBCI when indeed $\theta_i \sim N$.
 - To verify claim, compare lengths when $\kappa = 3$ (kurtosis of normal distribution) next slide.
 - Extension: Gain additional efficiency by optimizing shrinkage coefficient w for EBCI length rather than MSE.

Efficiency relative to parametric EBCI ($\alpha = 0.05$)

Length of robust EBCI and length-optimal robust EBCI relative to parametric EBCI.

Outline

- 1 Overview of results
- **2** Practical implementation
- **3** Simulation study
- 4 Application
- **5** Extension: non-linear shrinkage
- 6 Summary

Simulation study

- Panel data model: $W_{it} = \theta_i + U_{it}$, U_{it} i.i.d. mean zero, i = 1, ..., n, t = 1, ..., T.
- Unshrunk estimator of θ_i : $Y_i = T^{-1} \sum_{t=1}^{T} W_{it}$, with usual unbiased squared s.e. $\hat{\sigma}_i^2$.
- Effect distributions $\theta_i \overset{i.i.d.}{\sim} \Pi$:
 - (i) normal ($\kappa = 3$)(ii) scaled χ_1^2 ($\kappa = 15$)(iii) two-point ($\kappa \approx 8.11$)(iv) three-point ($\kappa = 2$)(v) LFD for robust EBCI (μ_2 only)(vi) LFD for parametric EBCI
- For all distributions, consider $\mu_2 / \operatorname{Var}(Y_i \mid \theta_i) \in \{0.1, 0.5, 1, 2\}$.
- Covariates: $X_i = 1$ (shrinkage towards grand mean).
- Compare "oracle" EBCI (uses true values for σ_i, μ_2, κ) to our baseline procedure.

Monte Carlo results (nominal $\alpha = 0.05$)

	R	obust,	μ_2 only	,	R	obust,	μ2 & κ	;		Param	etric	
Т	10	20	∞	ora	10	20	∞	ora	10	20	∞	ora
Panel A:	Averag	e cover	age (%), miniı	num ac	cross 24	DGPs					
n = 100	92.1	93.7	94.0	95.0	91.8	93.2	93.2	94.6	79.2	79.7	79.3	86.9
<i>n</i> = 200	91.9	93.4	92.9	95.0	91.8	93.3	92.9	94.8	80.7	80.3	81.0	86.3
<i>n</i> = 500	91.9	93.6	94.8	95.0	91.9	93.5	94.3	94.9	84.2	85.1	85.1	85.6
Panel B:	Relativ	e avera	ge leng	th, ave	rage ac	ross 24	DGPs					
n = 100	1.09	1.10	1.11	1.16	1.03	1.02	1.02	1.00	0.81	0.82	0.83	0.86
<i>n</i> = 200	1.09	1.10	1.12	1.16	1.02	1.02	1.01	1.00	0.81	0.82	0.84	0.86
<i>n</i> = 500	1.10	1.11	1.13	1.16	1.04	1.03	1.01	1.00	0.82	0.83	0.84	0.86

Normally distributed errors U_{it} . In paper: $U_{it} \sim \chi^2$.

Outline

- 1 Overview of results
- **2** Practical implementation
- Simulation study
- Application
- **5** Extension: non-linear shrinkage
- 6 Summary

Neighborhood effects

- Chetty & Hendren (2018): EB estimates of effects of neighborhoods on intergenerational mobility.
- θ_i : effect on adult income of living in commuting zone (CZ) *i* for one year as child (relative to average CZ).
- Y_i : fixed effect estimate of θ_i , unbiased under as'n that timing of a move is exogenous.
 - Essentially only uses data on families that move between CZs ("movers"), so it is noisy.
- To lower MSE, Chetty & Hendren regress Y_i on income X_i for permanent residents, and shrink Y_i toward this regression estimate.
- We construct robust EBCIs centered at these estimates for children in 25th percentile of household income.

Neighborhood effects for NY CZs with 90% robust EBCIs

Neighborhood effects: efficiency gain

$E_n[half-length_i]$	
Robust EBCI	0.195
Optimal robust EBCI	0.149
Parametric EBCI	0.123
Unshrunk Cl	0.786

- Robustification widens the parametric EBCI, but still much shorter than unshrunk CI.
- Effect of one childhood year spent in given location, using \$818 income per percentile: Chetty & Hendren (2018, p. 1183)
 - Robust EBCI: \pm \$818 × 0.195 = \pm \$160.
 - Unshrunk CI: \pm \$818 × 0.786 = \pm \$643.

Neighborhood effects: fragility of parametric EBCI

Summary statistics

κ	778.5
$E_n[\mu_2/\sigma_i^2]$	0.142
$E_n[w_{EB,i}]$	0.093
$E_n[w_{opt,i}]$	0.191
E_n [non-cov of parametric EBCI _i]	0.227

- Large κ and small $w \Rightarrow$ large potential undercoverage of parametric EBCI.
 - Average of 77.3% worst-case EB coverage for nominal 90% Cl.
- Consistent with "rule of thumb" (*w*_{EB} < 0.3).

Outline

- 1 Overview of results
- **2** Practical implementation
- Simulation study
- 4 Application
- **G** Extension: non-linear shrinkage
- 6 Summary

Local vs. global efficiency

- Our EBCI is globally valid and locally nearly efficient (when $\theta_i \sim N$).
 - Analogous to robust standard errors for OLS: only efficient under normal homoskedastic errors.
- In our model, all moments of θ_i are identified. Can in principle use to further tighten CI and center at more efficient estimator.
 - Analogous to OLS: WLS more efficient under heteroskedasticity.
 - Several nonparametric EB point estimators available. Kiefer and Wolfowitz (1956); Brown and Greenshtein (2009); Jiang and Zhang (2009); Koenker and Mizera (2014); Efron (2019)
- Challenging to achieve global optimality while allowing for (i) covariates, (ii) heteroskedasticity, and (iii) potential dependence across *i*, and (iv) maintaining good finite-sample performance.

Non-linear shrinkage

- Instead of going fully nonparametric, our approach can be adapted to non-linear shrinkage settings that are motivated by a specific (non-normal) effects distribution.
- Example: soft thresholding in the normal model $(Y_i | \theta) \sim N(\theta_i, \sigma^2)$.
 - $\hat{\theta}_i = \operatorname{sign}(Y_i) \max\{|Y_i| \sqrt{2\sigma^2/\mu_2}, 0\}$ is the MAP estimator under Laplace prior.
 - Obtain corresponding EBCI by calibrating HPD set

$$\mathcal{S}(Y_i; \chi) = \{ \theta_i : \log \underbrace{\pi(\theta_i \mid Y_i)}_{\text{posterior under Laplace prior}} + \log \chi \ge 0 \}.$$

• For robust EB coverage, choose χ such that $\rho(\mu_2, \chi) = \alpha$, where

$$\rho(\mu_2, \chi) = \sup_F E_F \left[P(\theta_i \notin \mathcal{S}(Y_i; \chi) \mid \theta_i) \right] \quad \text{s.t.} \quad E_F[\theta_i^2] = \mu_2.$$

Approximate with finely discretized linear program.

General shrinkage

- In paper: When θ_i ~ Laplace, robust soft thresholding EBCI has shorter average length than (i) unshrunk CI and (ii) robust linear EBCI.
- General idea on previous slide applicable even to non-normal sampling models $(Y_i | \theta)$.
 - Given some choice of family of EBCIs S(Y_i; χ), just need a way to evaluate conditional non-coverage probability

 $P(\theta_i \notin \mathcal{S}(Y_i; \chi) \mid \theta_i),$

potentially by numerical integration or simulation.

• Example in paper: EBCI for rate parameter θ_i in Poisson sampling model.

Outline

- 1 Overview of results
- **2** Practical implementation
- Simulation study
- 4 Application
- **5** Extension: non-linear shrinkage
- 6 Summary

Summary

- Construct robust empirical Bayes CIs: centered at usual EB estimator, critical value easy to compute (Matlab/R/Stata code on GitHub).
- Coverage guarantees without strong assumptions on distribution of θ_i 's:
 - **1** Empirical Bayes coverage (repeated sampling of θ_i and data).
 - **2** Frequentist average coverage (fixed θ).
- Narrower than usual unshrunk CI due to weaker but sensible coverage requirement.
- Robust EBCI not much wider than parametric EBCI (Morris, 1983b) when parametric assumption holds.

Summary

- Construct robust empirical Bayes CIs: centered at usual EB estimator, critical value easy to compute (Matlab/R/Stata code on GitHub).
- Coverage guarantees without strong assumptions on distribution of θ_i 's:
 - **1** Empirical Bayes coverage (repeated sampling of θ_i and data).
 - **2** Frequentist average coverage (fixed θ).
- Narrower than usual unshrunk CI due to weaker but sensible coverage requirement.
- Robust EBCI not much wider than parametric EBCI (Morris, 1983b) when parametric assumption holds.

Thank you!

Appendix

Comparison to ex-post robust Bayes

- Robust EBCI has coverage across repeated samples of (θ_i, Y_i) , regardless of "prior" on θ_i .
- Instance of (asymptotically) ex-ante Γ-minimax:

$$P_{\theta \sim \pi}(\theta_i \in CI_i) \geq 1 - \alpha \quad \text{for all } \pi \in \Gamma,$$

where Γ denotes all distributions with second moment μ_2 .

• Stronger requirement: ex-post Γ-minimax. Giacomini, Kitagawa & Uhlig (2019)

 $P_{\theta \sim \pi}(\theta_i \in Cl_i \mid data) \geq 1 - \alpha$ for all $\pi \in \Gamma$ and data realizations.

In our setting, this leads to reporting entire parameter space (up to moment bound).

Moment estimates

- Trim moment estimates $\hat{\mu}_2$ and $\hat{\kappa}$ from below to avoid coverage problems when $\hat{w}_{EB,i} \approx 0$.
- Defining $\hat{\varepsilon}_i = Y_i X'_i \hat{\delta}$, we use

$$\hat{\mu}_{2} = \max\left\{E_{n}[\hat{\varepsilon}_{i}^{2} - \hat{\sigma}_{i}^{2}], \frac{2}{n}\frac{E_{n}[\hat{\sigma}_{i}^{4}]}{E_{n}[\hat{\sigma}_{i}^{2}]}\right\}, \ \hat{\kappa} = \max\left\{\frac{E_{n}[\hat{\varepsilon}_{i}^{4} - 6\hat{\sigma}_{i}^{2}\hat{\varepsilon}_{i}^{2} + 3\hat{\sigma}_{i}^{4}]}{\hat{\mu}_{2}^{2}}, 1 + \frac{32}{n\hat{\mu}_{2}^{2}}\frac{E_{n}[\hat{\sigma}_{i}^{8}]}{E_{n}[\hat{\sigma}_{i}^{4}]}\right\}$$

- Trimming interpretation: lower bound on posterior mean under flat prior on $\mu_2 \in [0, \infty)$ or $\mu_4 - \mu_2^2 \in [0, \infty)$, in large samples when μ_2 or κ small. Morris (1983a,b)
- Actual posterior mean estimates more complicated, perform similarly in simulations.

Coverage and MSE conditional on θ_i

Value of $\varepsilon_i = \theta_i - X'_i \delta$ such that conditional coverage of EBCI equals 0.95 or such that conditional MSE of shrinkage estimator $\hat{\theta}_i$ equals that of MLE Y_i .

Soft thresholding EBCI

41