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PRIORS AND MODEL SELECTION

A1. Hyper-priors

Here we describe the remaining parts of the prior not specified in the main text. We incorporate
time fixed effects δt by adding T − 1 dummies in the covariate vector X t , so the parameter vector θ
includes these parameters. We impose the following priors, all mutually independent:

α ∼ Cauchy(0, 5), θ j ∼ Cauchy(0, 5),

σ ∼ HalfCauchy(0, 1), τ ∼ HalfCauchy(0, 1).

Cauchy(0, a) is the centered Cauchy distribution with interquartile range 2a. HalfCauchy(0, a) is the
restriction of the Cauchy(0, a) distribution to the positive real line. Since the units of our outcome
variables Yi j,t are log points, the above priors are highly diffuse. As for the MGLR prior, we assume1

ωk ∼ HalfCauchy(0, 2),
(
µ0,k
µ1,k

)
| ωk ∼ N

(
0,
(
ω2

k 0
0 ω2

k

))
, k = 1, . . . , K ,

ζ k(·) ∼ G P(0,C(·; Ak)), Ak ∼ Exponential(1), k = 1, . . . , K − 1,

independently across k. Here G P(0,C(·; A)) denotes a Gaussian process with Gaussian radial co-
variance kernel

C(s1, s2; A) = exp{−A(s1 − s2)
2
} + 0.0001× 1(s1 = s2), s1, s2 ∈ [0, 1].

The second term on the right-hand side above helps avoid numerical issues in the warm-up phase of
the MCMC algorithm, but it is small enough to negligibly affect the final output (the dollar invoicing
share S j is measured as a fraction between 0 and 1).

A2. Bayesian leave-one-out cross-validation

The Bayesian Leave-One-Out (LOO) cross-validation criterion of (Gelfand, Dey and Chang 1992)
is given by the cross-sectional sum of leave-one-out predictive densities

LOO =
∑

i j

log f (Yi j | Ri j , X i j , Y−(i j), R−(i j), X−(i j))

=

∑
i j

log
∫

f (Yi j | Ri j , X i j , ϑ) f (ϑ | Ri j , X i j , Y−(i j), R−(i j), X−(i j)) dϑ.

Here ϑ collects all model parameters. Yi j = (Yi j,1, . . . , Yi j,T ) collects all observed outcomes for
dyad (i, j) across time, and similarly for the covariates Ri j and X i j .2 The notation Y−(i j) means
all observed outcomes for dyads other than (i, j), and similarly for R−(i j) and X−(i j). The LOO
criterion is large when the model yields good (leave-one-out) out-of-sample fit, given knowledge of
the covariates. This is similar in spirit to the well-known non-Bayesian leave-one-out cross-validation
criterion. We use a Pareto-smoothed importance sampling estimate of LOO, as developed by (Vehtari,
Gelman and Gabry 2017) and implemented in Stan.

1Because the mixture component labels are not identified, we additionally impose the normalization µ0,1 < µ0,2 < · · · < µ0,K .
Stan accomplishes this by reparametrizing the vector (µ0,1, . . . , µ0,K )

′ into an unconstrained parameter, while adjusting for the
Jacobian of the transformation in the posterior density.

2Since we have an unbalanced panel, the dimension of Yi j , Ri j , Xi j actually varies across dyads.
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FIGURE B1. DENSITY OF DOLLAR TRADE ELASTICITY GIVEN DOLLAR INVOICING SHARE

Note: Model-implied conditional density f (γ i j | S j ) plotted at the dollar import invoicing shares S j of Switzerland (top), Turkey
(middle), and Argentina (bottom). Solid lines are posterior medians, dashed lines are 95% pointwise equal-tailed posterior credible
intervals.

SUPPLEMENTARY RESULTS

This section provides supplementary results and implementation details for the Bayesian model.

B1. Trade elasticity

Similar to the price pass-through results, we find that the cross-dyad heterogeneity of the elasticity
of trade quantities with respect to the dollar exchange rate is related to the dollar invoicing share.
However, the results in this subsection generally come attached with higher posterior uncertainty.
Section B.B2 provides additional results on parameters not highlighted below.

Our empirical specification again follows (Boz, Gopinath and Plagborg-Møller 2017). We use
the log growth rate of bilateral trade volume 1yi j,t as the outcome variable, but otherwise follow
Equation (1) of the main text. We control for one lag of bilateral and dollar exchange rates, as well
as the contemporaneous value and lag of importer log real GDP growth. The sample of dyad-year
observations is the same as for the price pass-through results.

We report results for K = 4 mixture components. The LOO model selection criterion strongly
favors K = 3, 4, 5 against either K ≤ 2 or K = 6, 7, 8. K = 4 has a slightly higher LOO score
than K = 3, 5. However, we remark again that the results presented below are little changed across
specifications with K ≥ 3. We report results for K = 8 in Section B.B3.

Figure B1 shows that the conditional density of the dollar trade elasticity (expected to be a negative
number, as also estimated in (Boz, Gopinath and Plagborg-Møller 2017)) shifts leftward when the
importer’s country-level dollar invoicing share increases. That is, the higher the dollar invoicing
share, the larger in magnitude is the dollar trade elasticity, on average. Notice, however, that the
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FIGURE B2. CONDITIONAL MEAN AND STANDARD DEVIATION OF DOLLAR TRADE ELASTICITY

Note: Model-implied conditional mean (left) and standard deviation (right) of γ i j given S j . Solid lines are posterior medians, dashed
lines are 95% pointwise equal-tailed posterior credible intervals. Circles indicate observed S j values.

credible bands are much wider here than for the price pass-through results. This is consistent with
the larger standard errors on the interaction terms in the trade elasticity panel regressions in (Boz,
Gopinath and Plagborg-Møller 2017). Figure B2 shows the conditional mean and standard deviation.
While the posterior medians indicate that the conditional mean function is downward-sloping over
most of the range of S j , the function is estimated with substantial uncertainty.

Figure B3 summarizes the posterior of the sample distribution of γ i j . The median γ i j is in line
with the panel regression results in (Boz, Gopinath and Plagborg-Møller 2017) (posterior median of
median: −0.11), but the heterogeneity is substantial (posterior median of IQR: 0.09). Again we find a
strong (here: negative, as expected) correlation between γ i j and S j (posterior median of correlation:
−0.41), after winsorizing γ i j at 5% in each tail. Thus, trade elasticities with respect to the dollar are
highly heterogeneous, but dyads with the largest-in-magnitude dollar elasticities tend to be the dyads
with the highest importer dollar invoicing share. The 95% equal-tailed posterior credible interval for
the R2 in a cross-dyad regression of (winsorized) dollar elasticity on the importer’s dollar invoicing
share is [2.6%, 34.0%].

B2. Additional model parameters

For completeness, we now report posterior summaries of the model parameters that are not of
primary interest to us.

First we report results for the price pass-through model with K = 2. Figure B4 reports the pos-
terior distribution of the cross-sectionally constant regression coefficients. The results are consistent
with the panel regressions in (Boz, Gopinath and Plagborg-Møller 2017). In particular, the lagged
exchange rate changes are economically insignificant. The posterior for the parameter γ̄ (the sum
of the dollar and bilateral pass-throughs) is concentrated close to 1, indicating near-complete total
pass-through within a year. Figure B5 reports the posterior of the mean α and standard deviation τ of
the random effects distribution for the dyad-specific effects λi j , as well as the idiosyncratic standard
error σ .

Figures B6 and B7 provide the same posterior summaries for the trade elasticity model with K = 4.
Again, these results are consistent with the panel regressions from (Boz, Gopinath and Plagborg-
Møller 2017).
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FIGURE B3. SAMPLE DISTRIBUTION OF DOLLAR TRADE ELASTICITY

Note: Histogram of posterior draws of the sample median of γ i j (left), the sample interquartile range of γ i j (middle), and winsorized
correlation of γ i j and S j (right). That is, for each posterior draw, we compute the sample median, IQR, and winsorized correlation
across the 1856 dyads in our sample. Vertical lines mark the 2.5, 50, and 97.5 posterior percentiles.

B3. Robustness to number of mixture components

Here we show that the results in the main text are robust to varying the number K of components
in the MGLR prior for the cross-sectional distribution of dollar pass-through. Specifically, we here
report results for K = 8. Figures B8 and B9 are the K = 8 analogues of the price pass-through
Figures 1 and 3 in the main text, while Figures B10 and B11 are the K = 8 analogues of the trade
elasticity Figures B1 and B3 (which had K = 4). Clearly, the additional mixture components in the
K = 8 specifications receive very low posterior probability.

B4. MCMC settings and diagnostics

We execute Stan through Matlab R2016b using MatlabStan 2.7.0.0, which in turn calls CmdStan
2.14.0. For each model specification, we run Stan’s No U-Turn Sampler for 2,500 iterations after
discarding 1,000 warm-up iterations, storing every 5th draw. The MCMC routine is initialized at
parameter values drawn uniformly at random (after the parameters have been transformed to uncon-
strained support). We use Stan’s default settings for adaptively tuning the MCMC routine in the
warm-up phase. Our results are completely insensitive to the initialization.

The sampler robustly delivers near-independent draws from the posterior distribution in reasonable
time. The stored posterior draws of most model parameters exhibit essentially zero serial correlation
after a handful of lags. The only parameters that do not exhibit rapid mixing are those MGLR
parametersµ0,k, µ1,k, ωk, Ak that correspond to mixture components k with low posterior probability
πk(·) in model specifications with large K , but these parameters negligibly influence the features of
the posterior that we care about. Depending on K and the random initial parameter draw, it takes
2–60 hours to run the MCMC routine for each specification on a personal laptop with a 2.30 GHz
processor and 8 GB RAM (no parallel computing is involved). In our experience, it is often sufficient
to run the algorithm for 2–4 hours to get a sense of the results.

*
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FIGURE B4. POSTERIOR OF CONSTANT REGRESSION COEFFICIENTS, PRICE PASS-THROUGH

Note: Histogram of posterior draws of elements in θ , the regression coefficients that are assumed constant across dyads. The top left
display shows the parameter γ̄ in Equation 1 in the main text. The remaining displays show the coefficients on the indicated exogenous
covariates. Vertical lines mark the 2.5, 50, and 97.5 percentiles. For brevity, we do not show the time fixed effects.

FIGURE B5. POSTERIOR OF OTHER PARAMETERS, PRICE PASS-THROUGH

Note: Histogram of posterior draws of α (left), σ (middle), and τ (right). Vertical lines mark the 2.5, 50, and 97.5 percentiles.
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FIGURE B6. POSTERIOR OF CONSTANT REGRESSION COEFFICIENTS, TRADE ELASTICITY

Note: See caption for Figure B4.

FIGURE B7. POSTERIOR OF OTHER PARAMETERS, TRADE ELASTICITY

Note: See caption for Figure B5.
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FIGURE B8. DENSITY OF DOLLAR PRICE PASS-THROUGH GIVEN DOLLAR INVOICING SHARE, K = 8

Note: Model-implied conditional density f (γ i j | S j ) plotted at the dollar import invoicing shares S j of Switzerland (top), Turkey
(middle), and Argentina (bottom). Solid lines are posterior medians, dashed lines are 95% pointwise equal-tailed posterior credible
intervals.

FIGURE B9. SAMPLE DISTRIBUTION OF DOLLAR PRICE PASS-THROUGH, K = 8

Note: Histogram of posterior draws of the sample median of γ i j (left), the sample interquartile range of γ i j (middle), and winsorized
correlation of γ i j and S j (right). That is, for each posterior draw, we compute the sample median, IQR, and winsorized correlation
across the 1856 dyads in our sample. Vertical lines mark the 2.5, 50, and 97.5 posterior percentiles.
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FIGURE B10. DENSITY OF DOLLAR TRADE ELASTICITY GIVEN DOLLAR INVOICING SHARE, K = 8

Note: See caption for Figure B1.

FIGURE B11. SAMPLE DISTRIBUTION OF DOLLAR TRADE ELASTICITY, K = 8

Note: See caption for Figure B3.
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