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Abstract

This dissertation consists of three independent chapters on econometric methods for

macroeconomic analysis.

In the first chapter, I propose to estimate structural impulse response functions from

macroeconomic time series by doing Bayesian inference on the Structural Vector Moving

Average representation of the data. This approach has two advantages over Structural Vector

Autoregression analysis: It imposes prior information directly on the impulse responses in a

flexible and transparent manner, and it can handle noninvertible impulse response functions.

The second chapter, which is coauthored with B. J. Bates, J. H. Stock, and M.W.Watson,

considers the estimation of dynamic factor models when there is temporal instability in the

factor loadings. We show that the principal components estimator is robust to empirically

large amounts of instability. The robustness carries over to regressions based on estimated

factors, but not to estimation of the number of factors.

In the third chapter, I develop shrinkage methods for smoothing an estimated impulse

response function. I propose a data-dependent criterion for selecting the degree of smoothing

to optimally trade off bias and variance, and I devise novel shrinkage confidence sets with

valid frequentist coverage.
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Preface

This dissertation consists of three independent chapters on econometric methods for macro-

economic analysis.

In the first chapter, I propose to estimate structural impulse responses from macro-

economic time series by doing Bayesian inference on the Structural Vector Moving Average

representation of the data. This approach has two advantages over Structural Vector Autore-

gressions. First, it imposes prior information directly on the impulse responses in a flexible

and transparent manner. Second, it can handle noninvertible impulse response functions,

which are often encountered in applications. To rapidly simulate from the posterior of the

impulse responses, I develop an algorithm that exploits the Whittle likelihood. The impulse

responses are partially identified, and I derive the frequentist asymptotics of the Bayesian

procedure to show which features of the prior information are updated by the data. I demon-

strate the usefulness of my method in a simulation study and in an empirical application

that estimates the effects of technological news shocks on the U.S. business cycle.

The second chapter, which is joint work with B. J. Bates, J. H. Stock, and M. W. Watson,

considers the estimation of approximate dynamic factor models when there is temporal

instability in the factor loadings. We characterize the type and magnitude of instabilities

under which the principal components estimator of the factors is consistent and find that

these instabilities can be larger than earlier theoretical calculations suggest. We also discuss

implications of our results for the robustness of regressions based on the estimated factors and
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of estimates of the number of factors in the presence of parameter instability. Simulations

calibrated to an empirical application indicate that instability in the factor loadings has a

limited impact on estimation of the factor space and diffusion index forecasting, whereas

estimation of the number of factors is more substantially affected.

In the third chapter, I develop a method for optimally smoothing an estimated impulse

response function. The degree of smoothing can be selected based on an unbiased estimate

of the mean squared error, thus trading off bias and variance. The smoothing procedure is a

member of a flexible and computationally convenient class of shrinkage estimators applicable

to both time series and panel data. I give conditions under which the smoothed estimator

dominates the initial non-smooth estimator in terms of mean squared error. I develop novel

shrinkage confidence sets with valid frequentist coverage in a finite-sample normal location

model with arbitrary known covariance structure. The finite-sample results imply uniform

asymptotic validity of the confidence sets even when normality fails.
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Chapter 1

Bayesian Inference on Structural Impulse Re-

sponse Functions

1.1 Introduction

Since Sims (1980), Structural Vector Autoregression (SVAR) analysis has been the most

popular method for estimating the impulse response functions (IRFs) of observed macro

variables to unobserved shocks without imposing a specific equilibrium model structure.

However, the SVAR model has two well-known drawbacks. First, the under-identification of

the parameters requires researchers to exploit prior information to estimate unknown features

of the IRFs. Existing inference methods only exploit certain types of prior information, such

as zero or sign restrictions, and these methods tend to implicitly impose unacknowledged

restrictions. Second, the SVAR model does not allow for noninvertible IRFs. These can arise

when the econometrician does not observe all variables in economic agents’ information sets,

as in models with news shocks or noisy signals.

I propose a new method for estimating structural IRFs: Bayesian inference on the Struc-

tural Vector Moving Average (SVMA) representation of the data. The parameters of this

model are the IRFs, so prior information can be imposed by placing a flexible Bayesian

prior distribution directly on the parameters of scientific interest. My SVMA approach thus
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overcomes the two drawbacks of SVAR analysis. First, researchers can flexibly and transpar-

ently exploit all types of prior information about IRFs. Second, the SVMA model does not

restrict the IRFs to be invertible a priori, so the model can be applied to a wider range of

empirical questions than the SVAR model. To take the SVMA model to the data, I develop

a posterior simulation algorithm that uses the Whittle likelihood approximation to speed up

computations. As the IRFs are partially identified, I derive the frequentist asymptotic limit

of the posterior distribution to show which features of the prior are dominated by the data.

The first key advantage of the SVMA model is that prior information about IRFs –

the parameters of scientific interest – can be imposed in a direct, flexible, and transparent

manner. In standard SVAR analysis the mapping between parameters and IRFs is indirect,

and the IRFs are estimated by imposing zero or sign restrictions on short- or long-run impulse

responses. In the SVMA model the parameters are the IRFs, so all types of prior information

about IRFs may be exploited by placing a prior distribution on the parameters. While many

prior choices are possible, I propose a multivariate Gaussian prior that facilitates graphical

prior elicitation: Sketch the prior means for each impulse response in a plot, then place

prior confidence bands around the means, and finally specify prior information about the

smoothness (i.e., prior correlation) of the IRFs. In particular, researchers can easily and

transparently exploit valuable prior information about the shapes and smoothness of IRFs.

The second key advantage of the SVMA model is that, unlike SVARs, it does not restrict

IRFs to be invertible a priori, which broadens the applicability of the method. The IRFs are

said to be invertible if the current shocks can be recovered as linear functions of current and

past – but not future – data. As shown in the literature, noninvertible IRFs can arise when

the econometrician does not observe all variables in the economic agents’ information sets,

such as in macro models with news shocks or noisy signals. A long-standing problem for

standard SVARmethods is that they cannot consistently estimate noninvertible IRFs because

the SVARmodel implicitly assumes invertibility. Proposed fixes in the SVAR literature either
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exploit restrictive model assumptions or proxy variables for the shocks, which are not always

available. In contrast, the SVMA model is generally applicable since its parametrization

does not impose invertibility on the IRFs a priori.

I demonstrate the practical usefulness of the SVMA method through a simulation exer-

cise and an empirical application. The simulations show that prior information about the

smoothness of IRFs can sharpen posterior inference about unknown features of the IRFs, since

smoother IRFs have fewer effective free parameters. Prior information about smoothness has

not been explicitly exploited in the SVAR literature, because the shapes and smoothness of

SVAR IRFs are complicated functions of the underlying SVAR parameters.

My empirical application estimates the effects of technological news shocks on the U.S.

business cycle, using data on productivity, output, and the real interest rate. Technological

news shocks – signals about future productivity increases – have received much attention in

the recent macro literature. My analysis is the first to fully allow for noninvertible IRFs with-

out dogmatically imposing a particular Dynamic Stochastic General Equilibrium (DSGE)

model. I use the sticky-price DSGE model in E. Sims (2012) to guide prior elicitation. My

results overwhelmingly indicate that the IRFs are noninvertible, implying that no SVAR can

consistently estimate the IRFs in this dataset; nevertheless, most IRFs are precisely esti-

mated by the SVMA procedure. The news shock is found to be unimportant for explaining

movements in TFP and GDP, but it is an important driver of the real interest rate.

To conduct posterior inference about the IRFs, I develop a posterior simulation algorithm

that exploits the Whittle (1953) likelihood approximation. Inference in the SVMA model

is challenging due to the flexible parametrization, which explains the literature’s preoccupa-

tion with the computationally convenient SVAR alternative. I overcome the computational

challenges of the SVMA model by simulating from the posterior using Hamiltonian Monte

Carlo (HMC), a Markov Chain Monte Carlo method that is well-suited to high-dimensional

models (Neal, 2011). HMC evaluates the likelihood and score 100,000s of times in realistic
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applications, so approximating the exact likelihood with the Whittle likelihood drastically

reduces computation time. The resulting algorithm is fast, asymptotically efficient, and easy

to apply, while allowing for both invertible and noninvertible IRFs.

Having established a method for computing the posterior, I derive its frequentist large-

sample limit to show how the data updates the prior information. Because the IRFs are

partially identified, some aspects of the prior information are not dominated by the data in

large samples.1 I establish new results on the frequentist limit of the posterior distribution

for a large class of partially identified models under weaker conditions than assumed by

Moon & Schorfheide (2012). I then specialize the results to the SVMA model with a non-

dogmatic prior, allowing for noninvertible IRFs and non-Gaussian structural shocks. I show

that, asymptotically, the role of the data is to pin down the true autocovariances of the data,

which in turn pins down the reduced-form (Wold) impulse responses; all other information

about structural impulse responses comes from the prior. Furthermore, I prove that the

approximation error incurred by using the Whittle likelihood is negligible asymptotically.

As a key step in the asymptotic analysis, I show that the posterior distribution for the

autocovariance function of essentially any covariance stationary time series is consistent for

the true value. While the posterior is computed under the working assumption that the

data is Gaussian and q-dependent, consistency obtains under general misspecification of

the Whittle likelihood. Existing time series results on posterior consistency assume well-

specified likelihood functions. The only assumptions I place on the data generating process

are nonparametric covariance stationarity and weak dependence conditions, and the prior is

unrestricted except its support must contain the true autocovariance function.

To aid readers who are familiar with SVAR analysis, I demonstrate how to transparently

impose standard SVAR identifying restrictions in the SVMA framework, if desired. The

1Consistent with Phillips (1989), I use the term “partially identified” in the sense that a nontrivial function
of the parameter vector is point identified, but the full parameter vector is not.
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SVMA approach can easily accommodate exclusion and sign restrictions on short- and long-

run (i.e., cumulative) impulse responses. The prior information can be imposed dogmatically

(i.e., with 100% certainty) or non-dogmatically. External instruments can be exploited in

the SVMA framework, as in SVARs, by expanding the vector of observed time series.

Literature. The SVMA estimation approach in this paper is more flexible than previous

attempts in the literature, and it appears to be the first method for conducting valid inference

about possibly noninvertible IRFs. Hansen & Sargent (1981) and Ito & Quah (1989) estimate

SVMA models without assuming invertibility by maximizing the Whittle likelihood, but

the only prior information they consider is a class of exact restrictions implied by rational

expectations. Barnichon & Matthes (2015) propose a Bayesian approach to inference in

SVMA models, but they restrict attention to recursively identified models and they center

the prior at SVAR-implied IRFs. None of these three papers develop valid procedures for

doing inference on IRFs that may be partially identified and noninvertible.2 Moreover, each

of the three papers impose parametric structures on the IRFs, while I show how to maintain

computational tractability with potentially unrestricted IRFs.

A few SVAR papers have attempted to exploit general types of prior information about

IRFs, but these methods are less flexible than the SVMA approach. Furthermore, by as-

suming an underlying SVAR model, they automatically rule out noninvertible IRFs. Dwyer

(1998) works with an inflexible trinomial prior on IRFs. Gordon & Boccanfuso (2001) trans-

late a prior on IRFs into a “best-fitting” prior on SVAR parameters, but Kocięcki (2010)

shows that their method neglects the Jacobian of the transformation. Kocięcki’s fix requires

the transformation to be one-to-one, which limits the ability to exploit prior information

2Standard errors in Hansen & Sargent (1981) are only valid when the prior restrictions point identify the
IRFs. Barnichon & Matthes (2015) approximate the SVMA likelihood using an autoregressive formula that
is explosive when the IRFs are noninvertible, causing serious numerical instability. Barnichon & Matthes
focus on invertible IRFs and extend the model to allow for asymmetric and state-dependent effects of shocks.
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about long-run responses, shapes, and smoothness. Baumeister & Hamilton (2015b), who

improve on the method of Sims & Zha (1998), persuasively argue for an explicit Bayesian

approach to imposing prior information on IRFs. Their Bayesian SVAR method allows for a

fully flexible prior on impact impulse responses, but they assume invertibility, and their prior

on longer-horizon impulse responses is implicit and chosen for computational convenience.

Outline. Section 1.2 reviews SVARs and then discusses the SVMA model, invertibility,

identification, and prior elicitation. Section 1.3 outlines the posterior simulation method.

Section 1.4 illustrates the SVMA approach through a small simulation study. Section 1.5

empirically estimates the role of technological news shocks in the U.S. business cycle. Sec-

tion 1.6 derives the large-sample limit of the posterior distribution for a large class of partially

identified models that includes the SVMA model. Section 1.7 shows that popular SVAR re-

strictions can be imposed in the SVMA framework. Section 1.8 suggests topics for future

research. Applied readers may want to focus on Sections 1.2 to 1.5. Technical details are

relegated to Appendix A.1; in particular, notation is defined in Appendix A.1.1. Proofs can

be found in Appendix B.1.

1.2 Model, invertibility, and prior elicitation

In this section I describe the SVMA model and my method for imposing priors on IRFs.

After reviewing the SVAR model and its shortcomings, I discuss the SVMA model, whose

parameters are the IRFs of observed variables to unobserved shocks. Because the SVMA

model does not restrict the IRFs to be invertible a priori, it can be applied to more empirical

settings than the SVAR approach. The IRFs are under-identified, as they are in SVAR

analysis. The lack of identification necessitates the use of prior information, which I impose

by placing a prior distribution on the IRFs that lets researchers flexibly and transparently
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exploit all types of prior information about IRFs.

1.2.1 SVARs and their shortcomings

I begin with a brief review of Structural Vector Autoregression (SVAR) estimation of im-

pulse response functions. The parametrization of the SVAR model makes it difficult to

transparently exploit certain types of valuable prior information about impulse responses.

Moreover, SVARs are ill-suited for empirical applications in which the econometrician has

less information than economic agents.

Modern dynamic macroeconomics is based on Frisch’s (1933) impulse-propagation para-

digm, which attaches primary importance to impulse response functions (IRFs). The econ-

omy is assumed to be driven by unpredictable shocks (impulses) whose effect on observable

macro aggregates is known as the propagation mechanism. It has long been recognized that –

in a linear setting – this paradigm is well captured by the Structural Vector Moving Average

(SVMA) model (Hansen & Sargent, 1981; Watson, 1994, Sec. 4)

yt = Θ(L)εt, Θ(L) =
∞∑
`=0

Θ`L
`, (1.1)

where L denotes the lag operator, yt = (y1,t, . . . , yn,t)′ is an n-dimensional vector of observed

macro variables, and the structural shocks εt = (ε1,t, . . . , εn,t)′ form a martingale difference

sequence with E(εtε′t) = diag(σ)2, σ = (σ1, . . . , σn)′. Most linearized discrete-time macro

models can be written in SVMA form. Θij,`, the (i, j) element of Θ`, is the impulse response

of variable i to shock j at horizon ` after the shock’s initial impact. The IRF (Θij,`)`≥0 is

thus a key object of scientific interest in macroeconomics (Ramey, 2016).

For computational reasons, most researchers follow Sims (1980) and estimate structural
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IRFs and shocks using a SVAR model

A(L)yt = Hεt, A(L) = In −
m∑
`=1

A`L
`, (1.2)

where m is a finite lag length, and the matrices A1, . . . , Am and H are each n × n. The

SVAR and SVMA models are closely related: If the SVAR is stable – i.e., the polynomial

A(L) has a one-sided inverse – the SVAR model (1.2) implies that the data has an SVMA

representation (1.1) with IRFs given by Θ(L) = ∑∞
`=0 Θ`L

` = A(L)−1H. The SVAR model

is computationally attractive because the parameters A` are regression coefficients.

The IRFs implied by the SVAR model are not identified from the data if the shocks

are unobserved, as is usually the case.3 While the VAR polynomial A(L) can be recov-

ered from a regression of yt on its lags, the impact matrix H and shock standard devi-

ations σ are not identified. Denote the reduced-form (Wold) forecast error by ut|t−1 =

yt−proj(yt | yt−1, yt−2, . . . ) = Hεt, where “proj” denotes population linear projection. Then

the only information available from second moments of the data to identify H and σ is that

E(ut|t−1u
′
t|t−1) = H diag(σ)2H ′.4 As knowledge of H is required to pin down the SVAR IRFs,

the latter are under-identified. Thus, the goal of the SVAR literature is to exploit weak prior

information about the model parameters to estimate unknown features of the IRFs.

One drawback of the SVAR model is that its parametrization makes it difficult to trans-

parently exploit certain types of prior information. The IRFs Θ(L) = A(L)−1H implied by

the SVAR model are nonlinear functions of the parameters (A(L), H), and impulse responses

Θij,` at long horizons ` are extrapolated from the short-run correlations of the data. Hence,

3If the structural shocks εt were known, the IRFs in the SVMA model (1.1) could be estimated by direct
regressions of yt on lags of εt (Jordà, 2005).

4Equivalently, if E(ut|t−1u
′
t|t−1) = JJ ′ is the (identified) Cholesky decomposition of the forecast error

covariance matrix, then all that the second moments of the data reveal aboutH and σ is thatH diag(σ) = JQ
for some unknown n× n orthogonal matrix Q (Uhlig, 2005, Prop. A.1).
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the overall shapes and smoothness of the model-implied IRFs depend indirectly on the SVAR

parameters, which impedes the use of prior information about such features of the IRFs.5 In-

stead, SVAR papers impose zero or sign restrictions on short- or long-run impulse responses

to sharpen identification.6 Because of the indirect parametrization of the IRFs, such SVAR

identification schemes are known to impose additional unintended and unacknowledged prior

information about IRFs.7

A second drawback of the SVAR model is the invertibility problem. The defining property

of the SVAR model (1.2) is that the structural shocks εt = (ε1,t, . . . , εn,t)′ can be recovered

linearly from the history (yt, yt−1, . . . ) of observed data, given knowledge of H and σ. This

invertibility assumption – that the time-t shocks can be recovered from current and past, but

not future, values of the observed data – is arbitrary and may be violated if the econome-

trician does not observe all variables relevant to the decisions of forward-looking economic

agents. Indeed, the literature has demonstrated that data generated by interesting mac-

roeconomic models, including models with news or noise shocks, cannot be represented as

a SVAR for this reason. Section 1.2.3 discusses invertibility in greater detail and provides

references.

To overcome the drawbacks of the SVAR model, I return to the basics and infer IRFs

directly from the SVMA representation (1.1) of the data. The SVMA parameters are under-

identified, so prior information must be imposed to learn about unknown features of the

IRFs. Conveniently, the parameters of the SVMA model are the IRFs themselves, so all

5The shapes of the IRFs are governed by the magnitudes and imaginary parts of the roots of the VAR
lag polynomial A(L), and the roots are in turn complicated functions of the lag matrices A1, . . . , Am. See
Geweke (1988, Sec. 2) for an illustration in the univariate case.

6Ramey (2016), Stock & Watson (2016), and Uhlig (2015) review SVAR identification schemes.

7See Arias, Rubio-Ramírez & Waggoner (2014, Sec. 5) and Baumeister & Hamilton (2015b, Sec. 3). For
a trivial example, consider the AR(1) model yt = A1yt−1 + εt with n = 1 and |A1| < 1. The IRF is Θ` = A`1,
so imposing the sign restriction Θ1 ≥ 0 implicitly also restricts Θ` ≥ 0 for all ` ≥ 2.
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types of prior information about IRFs can be imposed easily and transparently. Moreover,

because the IRFs Θ(L) are unrestricted, the structural shocks εt need not be recoverable from

only current and past values of the data. Hence, the SVMA model can handle applications

in which the data may not have a SVAR representation, as in the examples described above.

1.2.2 SVMA model

I now discuss the SVMA model assumptions in detail and show that its parameters can be

interpreted as IRFs. Then I illustrate the natural parametrization by example.

The SVMA model assumes the observed time series yt = (y1,t, . . . , yn,t)′ are driven by

current and lagged values of unobserved, unpredictable shocks εt = (ε1,t, . . . , εn,t)′ (Hansen

& Sargent, 1981). Although the shocks are unobserved, the researcher must have some

degree of prior knowledge about their nature in order to estimate the SVMA parameters,

as described in Section 1.2.5. For simplicity, I follow the SVAR literature in assuming that

the number n of shocks is known and equals the number of observed series. However, most

methods in this paper generalize to the case with more shocks than variables, cf. Section 1.8.

Assumption 1.1 (SVMA model).

yt = Θ(L)εt, t ∈ Z, Θ(L) =
q∑
`=0

Θ`L
`, (1.3)

where L is the lag operator, q is the finite MA lag length, and Θ0,Θ1, . . . ,Θq are each n× n

coefficient matrices. The shocks are serially and mutually unpredictable: For each t and j,

E(εj,t | {εk,t}k 6=j, {εs}−∞<s<t) = 0 and E(ε2
j,t) = σ2

j , where σj > 0.

For simplicity, I assume that the moving average (MA) lag length q is finite and known,

but it is of course possible to estimate q using information criteria or Box-Jenkins meth-

ods. To fit persistent data q must be relatively large, which my computational strategy in

Section 1.3 is well-suited for. The assumption that yt has mean zero is made for notational
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convenience and can easily be relaxed. Unlike in reduced-form Vector Autoregressive Moving

Average (VARMA) modeling, the SVMA model allows Θ0 6= In.

The SVMA and SVARmodels are related but not equivalent. If the matrix lag polynomial

Θ(L) has a one-sided inverse D(L) = ∑∞
`=0D`L

` = Θ(L)−1, the SVMA structure (1.3) is

compatible with an underlying SVAR modelD(L)yt = εt (with lag lengthm =∞). However,

the fact that I do not constrain Θ(L) to have a one-sided inverse is key to allowing for

noninvertible IRFs, as explained in Section 1.2.3. Assumption 1.1 imposes stationary, linear

dynamics with time-invariant parameters, which is restrictive but standard in the SVAR

literature.8 The condition that εt form a martingale difference sequence with mutually

unpredictable components is also standard and operationalizes the interpretation of εt as a

vector of conceptually independent structural shocks.9

Unlike in SVARs, the parameters of the SVMA model have direct economic interpreta-

tions as impulse responses. Denote the (i, j) element of matrix Θ` by Θij,`. The index `

will be referred to as the horizon. For each j ∈ {1, . . . , n}, choose an ij ∈ {1, . . . , n} and

normalize the impact response of variable ij to shock j: Θijj,0 = 1. Then the parameter Θij,`

is the expected response at horizon ` of variable i to shock j, where the size of the shock is

of a magnitude that raises variable ij by one unit on impact:10

Θij,` = E(yi,t+` | εj,t = 1)− E(yi,t+` | εj,t = 0). (1.4)

The impulse response function (IRF) of variable i to shock j is the (q+1)-dimensional vector

(Θij,0,Θij,1, . . . ,Θij,q)′. In addition to the impulse response parameters Θij,`, the model

8I briefly discuss nonstationarity, nonlinearity, and time-varying parameters in Section 1.8.

9See Leeper, Sims & Zha (1996, pp. 6–15) and Sims & Zha (2006, p. 252). They emphasize that the
assumption of mutually unpredictable shocks deliberately departs from standard practice in classical linear
simultaneous equation models due to the different interpretation of the error terms.

10Henceforth, moments of the data and shocks are implicitly conditioned on the parameters (Θ, σ).
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Figure 1.1: Hypothetical IRFs of two observed variables (along rows) to two unobserved shocks
(along columns). The upper right display, say, shows the IRF of the FFR to the demand shock.
The horizontal axes represent the impulse response horizon ` = 0, 1, . . . , q, where q = 10. IRFs in
the left column are normalized so a positive monetary policy (MP) shock yields a 100 basis point
increase in the FFR on impact; IRFs in the right column are normalized so a positive demand shock
yields a 1 percentage point increase in the output gap on impact.

contains the shock standard deviation parameters σj, which govern the overall magnitudes

of the responses to one-standard-deviation impulses to εj,t.

The parameters are best understood through an example. Figure 1.1 plots a hypothetical

set of impulse responses for a bivariate application with two observed time series, the federal

funds rate (FFR) y1,t and the output gap y2,t, and two unobserved shocks, a monetary policy

shock ε1,t and a demand shock ε2,t. The figure imposes the normalizations i1 = 1 and i2 = 2,

so that Θ21,3, say, is the horizon-3 impulse response of the output gap to a monetary policy

shock that raises the FFR by 1 unit (100 basis points) on impact. As the figure shows, the

impulse response parameters Θij,` can be visualized jointly in a format that is familiar from

theoretical macro modeling. Each impulse response (the crosses in the figure) corresponds

to a distinct IRF parameter Θij,`. In contrast, the parameters in the SVAR model are only
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indirectly related to IRFs and do not carry graphical intuition in and of themselves. The

natural and flexible parametrization of the SVMA model facilitates the incorporation of prior

information about IRFs, as described below.

Because I wish to estimate the IRFs using parametric Bayesian methods, it is necessary

to strengthen Assumption 1.1 by assuming a specific distribution for the shocks εt. For

concreteness I impose the working assumption that they are i.i.d. Gaussian.

Assumption 1.2 (Gaussian shocks).

εt
i.i.d.∼ N(0, diag(σ2

1, . . . , σ
2
n)), t ∈ Z. (1.5)

The Gaussianity assumption places the focus on the unconditional second-order properties

of the data yt, as is standard in the SVAR literature, but the assumption is not central to

my analysis. Section 1.6 shows that if the Bayesian posterior distribution for the IRFs is

computed under Assumption 1.2 and a non-dogmatic prior distribution, the large-sample

limit of the posterior is robust to violations of the Gaussianity assumption. Moreover, the

method for sampling from the posterior in Section 1.3 is readily adapted to non-Gaussian

and/or heteroskedastic likelihoods, as discussed in Section 1.8.

1.2.3 Invertibility

One advantage of the SVMA model is that it allows for noninvertible IRFs. These can arise

in applications in which the econometrician does not observe all variables in economic agents’

information sets. Here I review the prevalence of noninvertible IRFs in macroeconomics and

the SVAR model’s inability to consistently estimate such IRFs. Because the SVMA model

does not restrict IRFs to be invertible a priori, it is applicable to a broader set of empirical

settings than the SVAR model.

The IRF parameters are invertible if the current shock εt can be recovered as a linear
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function of current and past – but not future – values (yt, yt−1, . . . ) of the observed data,

given knowledge of the parameters.11 In this sense, noninvertibility is caused by economically

important variables being omitted from the econometrician’s information set.12 Invertibil-

ity is a property of the collection of n2 IRFs, and an invertible collection of IRFs can be

rendered noninvertible by removing or adding observed variables or shocks. See Hansen &

Sargent (1981, 1991) and Lippi & Reichlin (1994) for extensive mathematical discussions of

invertibility in SVMAs and SVARs.

Invertibility is not a compelling a priori restriction when estimating structural IRFs,

for two reasons. First, the definition of invertibility is statistically motivated and has little

economic content. For example, the reasonable-looking IRFs in Figure 1.1 happen to be

noninvertible, but minor changes to the lower left IRF in the figure render the IRFs invertible.

Second, interesting macro models generate noninvertible IRFs, such as models with news

shocks or noisy signals.13 Intuitively, upon receiving a signal about changes in policy or

economic fundamentals that will occur sufficiently far into the future, economic agents change

their current behavior much less than their future behavior. Thus, future – in addition to

current and past – data is needed to distinguish the signal from other concurrent shocks.

By their very definition, SVARs implicitly restrict IRFs to be invertible, as discussed in

Section 1.2.1. No SVAR identification strategy can therefore consistently estimate nonin-

vertible IRFs. This fact has spawned an extensive literature trying to salvage the SVAR

11Precisely, the IRFs are invertible if εt lies in the closed linear span of (yt, yt−1, . . . ). Invertible MA
representations are also referred to as “fundamental” in the literature.

12See Hansen & Sargent (1991), Sims & Zha (2006), Fernández-Villaverde, Rubio-Ramírez, Sargent &
Watson (2007), Forni, Giannone, Lippi & Reichlin (2009), Leeper, Walker & Yang (2013), Forni, Gambetti
& Sala (2014), and Lütkepohl (2014).

13See Alessi, Barigozzi & Capasso (2011, Sec. 4–6), Blanchard, L’Huillier & Lorenzoni (2013, Sec. II),
Leeper et al. (2013, Sec. 2), and Beaudry & Portier (2014, Sec. 3.2).
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approach. Some papers assume additional model structure,14 while others rely on the avail-

ability of proxy variables for the shocks, thus ameliorating the invertibility issue.15 These

methods only produce reliable results under additional assumptions or if the requisite data

is available, whereas the SVMA approach always yields correct inference about IRFs regard-

less of invertibility. If available, proxy variables can be incorporated in SVMA analysis to

improve identification.

The SVMA model (1.3) is parametrized directly in terms of IRFs and does not impose

invertibility a priori (Hansen & Sargent, 1981). In fact, the IRFs are invertible if and only if

the polynomial z 7→ det(Θ(z)) has no roots inside the unit circle.16 In general, the structural

shocks can be recovered from past, current, and future values of the observed data:17

εt = D(L)yt, D(L) =
∞∑

`=−∞
D`L

` = Θ(L)−1.

Under Assumption 1.1, the structural shocks can thus be recovered from multi-step forecast

errors: εt = ∑∞
`=0D`ut+`|t−1, where ut+`|t−1 = yt+` − proj(yt+` | yt−1, yt−2, . . . ) is the econo-

metrician’s (` + 1)-step error. Only if the IRFs are invertible do we have D` = 0 for ` ≥ 1,

in which case εt is a linear function of the one-step (Wold) error ut|t−1, as SVARs assume.

14Lippi & Reichlin (1994) and Klaeffing (2003) characterize the range of noninvertible IRFs consistent with
a given estimated SVAR, while Mertens & Ravn (2010) and Forni, Gambetti, Lippi & Sala (2013) select a
single such IRF using additional model restrictions. Lanne & Saikkonen (2013) develop asymptotic theory
for a modified VAR model that allows for noninvertibility, but they do not consider structural estimation.

15Sims & Zha (2006), Fève & Jidoud (2012), Sims (2012), Beaudry & Portier (2014, Sec. 3.2), and Beaudry,
Fève, Guay & Portier (2015) argue that noninvertibility need not cause large biases in SVAR estimation,
especially if forward-looking variables are available. Forni et al. (2009) and Forni et al. (2014) use information
from large panel data sets to ameliorate the omitted variables problem; based on the same idea, Giannone
& Reichlin (2006) and Forni & Gambetti (2014) propose tests of invertibility.

16That is, if and only if Θ(L)−1 is a one-sided lag polynomial, so that the SVAR representation Θ(L)−1yt =
εt obtains (Brockwell & Davis, 1991, Thm. 11.3.2 and Remark 1, p. 128).

17See for example Brockwell & Davis (1991, Thm. 3.1.3) and Lippi & Reichlin (1994, p. 312). The matrix
lag polynomial D(L) = Θ(L)−1 is not well-defined in the knife-edge case det(Θ(1)) = det(

∑q
`=0 Θ`) = 0.
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For illustration, consider a univariate SVMA model with n = q = 1:

yt = εt + Θ1εt−1, Θ1 ∈ R, E(ε2
t ) = σ2. (1.6)

If |Θ1| ≤ 1, the IRF Θ = (1,Θ1) is invertible: The shock has the SVAR representation εt =∑∞
`=0(−Θ1)`yt−`, so it can be recovered using current and past values of the observed data. On

the other hand, if |Θ1| > 1, no SVAR representation for εt exists: εt = −∑∞`=1(−Θ1)−`yt+`,

so future values of the data are required to recover the current structural shock. Clearly, the

latter possibility is fully consistent with the SVMA model (1.6) but inconsistent with any

SVAR model of the form (1.2).18

Bayesian analysis of the SVMA model can be carried out without reference to the in-

vertibility of the IRFs. The formula for the Gaussian SVMA likelihood function is the same

in either case, cf. Appendix A.1.3.1 and Hansen & Sargent (1981). Moreover, standard

state-space methods can always be used to estimate the structural shocks, as demonstrated

in Section 1.5. This contrasts sharply with SVAR analysis, where special tools are needed

to handle noninvertible specifications. Since invertibility is a rather arcane issue without

much economic content, it is helpful that the SVMA model allows the researcher to focus on

matters that do have economic significance.

1.2.4 Identification

As in SVAR analysis, the IRFs in the SVMA model are only partially identified. The

lack of identification arises because the model treats all shocks symmetrically and because

noninvertible IRFs are not ruled out a priori.

18If |Θ1| > 1, an SVAR (with m = ∞) applied to the time series (1.6) estimates the incorrect invertible
IRF (1, 1/Θ1) and (Wold) “shock” ut|t−1 = εt + (1 − Θ2

1)
∑∞
`=1(−Θ1)−`εt−`. This is because the SVMA

parameters (Θ1, σ) and (1/Θ1, σΘ1) are observationally equivalent, cf. Section 1.2.4.
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Because of the linearity of the SVMA model and the assumption of Gaussian shocks,

any two IRFs that give rise to the same autocovariance function (ACF) are observationally

equivalent. Under Assumption 1.1, the matrix ACF of the time series {yt} is given by

Γ(k) = E(yt+ky′t) =


∑q−k
`=0 Θ`+k diag(σ)2Θ′` if 0 ≤ k ≤ q,

0 if k > q.
(1.7)

Under Assumptions 1.1 and 1.2, the observed vector time series yt is a mean-zero strictly

stationary Gaussian process, so the distribution of the data is completely characterized by

the ACF Γ(·). The identified set S for the IRF parameters Θ = (Θ0,Θ1, . . . ,Θq) and shock

standard deviation parameters σ = (σ1, . . . , σn)′ is thus a function of the ACF:

S(Γ) =

(Θ̃0, . . . , Θ̃q) ∈ ΞΘ, σ̃ ∈ Ξσ :
q−k∑
`=0

Θ̃`+k diag(σ̃)2Θ̃′` = Γ(k), 0 ≤ k ≤ q

 ,
where ΞΘ = {(Θ̃0, . . . , Θ̃q) ∈ Rn×n(q+1) : Θ̃ijj,0 = 1, 1 ≤ j ≤ n} is the parameter space for

Θ, and Ξσ = {(σ̃1, . . . , σ̃n)′ ∈ Rn : σ̃j > 0, 1 ≤ j ≤ n} is the parameter space for σ.19 By

definition, two parameter configurations contained in the same identified set give rise to the

same value of the SVMA likelihood function under Gaussian shocks.

The identified set for the SVMA parameters is large in economic terms. Building on

Hansen & Sargent (1981) and Lippi & Reichlin (1994), Appendix A.1.2 provides a con-

structive characterization of S(Γ). I summarize the main insights here.20 The identified set

contains uncountably many parameter configurations if the number n of shocks exceeds 1.

The lack of identification is not just a technical curiosity but is of primary importance to

19If the shocks εt were known to have a non-Gaussian distribution, the identified set would change due to
the additional information provided by higher-order moments of the data, cf. Section 1.6.3.

20The identification problem is not easily cast in the framework of interval identification, as S(Γ) is of
strictly lower dimension than the parameter space ΞΘ × Ξσ. Still, expression (1.7) for diag(Γ(0)) implies
that the identified set for scaled impulse responses Ψij,` = Θij,`σj is bounded.
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economic conclusions. For example, as in SVARs, for any observed ACF Γ(·), any horizon

`, any shock j, and any variable i 6= ij, there exist IRFs in the identified set S(Γ) with

Θij,` = 0.

One reason for under-identification, also present in SVARs (cf. Section 1.2.1), is that

the assumptions so far treat the n shocks symmetrically: Without further restrictions, the

model and data offer no way of distinguishing the first shock from the second shock, say,

and consequently no way of separately identifying the IRFs to the first and second shocks.

Mathematically, the two parameter configurations (Θ, σ) and (Θ̃, σ̃) lie in the same identified

set if there exists an orthogonal n× n matrix Q such that Θ̃ diag(σ̃)Q = Θ diag(σ).

The second source of under-identification is that the SVMA model, unlike SVARs, does

not arbitrarily restrict the IRFs to be invertible. For any noninvertible set of IRFs there

always exists an observationally equivalent invertible set of IRFs (if n > 1, there exist

several). If nq > 1, there are also several other observationally equivalent noninvertible

IRFs. This identification issue arises even if, say, we impose exclusion restrictions on the

elements of Θ0 to exactly identify the correct orthogonal matrix Q in the previous paragraph.

Figure 1.2 illustrates the identification problem due to noninvertibility for a univariate

model with n = 1 and q = 4: yt = εt + ∑4
`=1 Θ`εt−`, Θ` ∈ R, E(ε2

t ) = σ2. The ACF in

the left panel of the figure is consistent with the four IRFs shown in the right panel. The

invertible IRF (drawn with a thick line) is the one that would be estimated by a SVAR (with

lag length m =∞). However, there exist three other IRFs that have very different economic

implications but are equally consistent with the observed ACF.21 If n > 1, the identification

problem is even more severe, as described in Appendix A.1.2.

As the data alone does not suffice to distinguish between IRFs that have very different

21Similarly, in the special case n = q = 1, the parameters (Θ1, σ) imply the same ACF as the parameters
(Θ̃1, σ̃), where Θ̃1 = 1/Θ1 and σ̃ = σΘ1. If |Θ1| ≤ 1, an SVAR would estimate the invertible IRF (1,Θ1) for
which most of the variation in yt is due to the current shock εt. But the data would be equally consistent
with the noninvertible IRF (1, Θ̃1) for which yt is mostly driven by the previous shock εt−1.
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Figure 1.2: Example of IRFs that generate the same ACF, based on a univariate SVMA model
with n = 1 and q = 4. The right panel shows the four IRFs that generate the particular ACF in
the left panel; associated shock standard deviations are shown in the figure legend.

economic implications, it is necessary to leverage additional prior information.22 In SVAR

analysis the prior information is often referred to as the identification scheme, cf. Section 1.7.

The next subsection describes the flexible and transparent approach to prior specification I

adopt for the SVMA model.

1.2.5 Prior specification and elicitation

In addition to handling noninvertible IRFs, the other key advantage of the SVMA model is

its natural parametrization, which allows prior information to be imposed directly on the

IRFs through a transparent and flexible Bayesian prior distribution. Researchers often have

access to more prior information about IRFs than what SVAR methods exploit. I explain

how such information helps distinguish between observationally equivalent IRFs. Then I

propose a prior elicitation procedure that imposes all types of prior information about IRFs

22Kline & Tamer (2015) develop methods for conducting Bayesian inference about the identified set in
general models. Unfortunately, as argued above, hypotheses that only concern the identified set S(Γ) are
rarely interesting in the context of estimating structural impulse responses Θij,` because such hypotheses
must treat all types of shocks symmetrically.
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in a unified way. I highlight a Gaussian prior family that is convenient to visualize, but as

Gaussianity is not essential for my approach, I discuss other choices of priors as well.

To impose prior information, the researcher must have some knowledge about the identity

and effects of the unobserved shocks. As in the SVAR approach, the researcher postulates

that, say, the first shock ε1,t is a monetary policy shock, the second shock ε2,t is a demand

shock, etc.23 Then prior information about the effects of the shocks, i.e., the IRFs, must

be imposed. Prior information can be imposed dogmatically (with 100% certainty, as is

common in SVAR analysis) or non-dogmatically (with less than 100% certainty).

Types and sources of prior information. Because the SVMA model is parametrized

in terms of IRFs, it is possible to exploit many types of prior information. Researchers often

have fairly weak – but not agnostic – prior information about magnitudes of certain impulse

responses. For example, the impact response of the output gap to a monetary policy shock

that lowers the FFR by 100 basis points is unlikely to exceed 2 percent. Researchers typically

have more informative priors about the signs of certain impulse responses, e.g., the impact

response of the output gap to a monetary policy shock that raises the federal funds rate.

Researchers may also have quite informative beliefs about the shapes of IRFs, e.g., whether

they are likely to be monotonic or hump-shaped (i.e., the effect gradually builds up and then

peters out). Finally, researchers often have strong beliefs about the smoothness of IRFs, due

to adjustment costs, time to build, and information frictions.

Prior information may arise from several sources, all of which can be integrated in the

graphical prior elicitation procedure introduced below. First, researchers may be guided by

structural macroeconomic models whose deep parameters have been calibrated to microe-

conometric data. Parameter and model uncertainty forbid treating model-implied IRFs as

23The order of the shocks is immaterial.
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truth, but these may nevertheless be judged to be a priori likely, as in the empirical ap-

plication in Section 1.5. Second, economic intuition and stylized models yield insight into

the likely signs, shapes, and smoothness of the IRFs. Third, microeconometric evidence or

macroeconometric studies on related datasets may provide relevant information.

Bayesian approach. Bayesian inference is a unified way to exploit all types of prior

information about the IRFs Θ. In this approach an informative joint prior distribution is

placed on the SVMA model parameters, i.e., the IRFs Θ and shock standard deviations

σ.24 Since there is no known flexible conjugate prior for MA models, I place a flexible

multivariate prior distribution on the IRFs and shock standard deviations. The generality of

this approach necessitates the use of simulation methods for conducting posterior inference

about the structural parameters. The simulation method I propose in Section 1.3 works with

any prior distribution for which the log density and its gradient can be computed, giving the

researcher great flexibility.

The information in the prior and the data is synthesized in the posterior density, which is

proportional to the product of the prior density and the likelihood function. As discussed in

Section 1.2.4, the likelihood function does not have a unique maximum due to partial identifi-

cation. The role of the prior is to attach weights to parameter values that are observationally

equivalent based on the data but distinguishable based on prior information, as sketched in

Figure 1.3.25 The SVMA analysis thus depends crucially on the prior information imposed,

just as SVAR analysis depends on the identification scheme. The frequentist asymptotics in

24Alternatively, one could specify a prior on the ACF Γ and a conditional prior for (Θ, σ) given Γ. This
approach has the conceptual advantage that the data asymptotically dominates the prior for Γ but does
not provide information about (Θ, σ) given Γ (cf. Section 1.6). However, in applications, prior information
typically directly concerns the IRFs Θ, and it is unclear how to select a meaningful prior for Θ given Γ.

25From a subjectivist Bayesian perspective, as long as the prior is a proper probability distribution, the
validity of posterior inference is unaffected by the under-identification of the parameters (Poirier, 1998).
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Figure 1.3: Conceptual illustration of how the likelihood function and the prior density combine
to yield the posterior density. Even though the likelihood has multiple peaks of equal height, the
posterior may be almost unimodal, depending on the strength of prior information.

Section 1.6 show formally that only some features of the prior information can be updated

and falsified by the data. This is unavoidable due to the lack of identification, but it does

underscore the need for a transparent and flexible prior elicitation procedure.

Gaussian prior. While many priors are possible, I first discuss an especially convenient

multivariate Gaussian prior distribution. The assumption of Gaussianity means that the

prior hyperparameters are easily visualized, as illustrated by example below. However, I

stress that neither the overall SVMA approach nor the numerical methods in this paper rely

on Gaussianity of the prior. I describe other possible prior choices below.

The multivariate Gaussian joint prior distribution on the impulse responses is given by

Θij,` ∼ N(µij,`, τ 2
ij,`), 0 ≤ ` ≤ q,

Corr(Θij,`+k,Θij,`) = ρkij, 0 ≤ ` ≤ `+ k ≤ q, (1.8)

for each (i, j). This correlation structure means that the prior smoothness of IRF (i, j) is

governed by ρij, as illustrated below.26 For simplicity, the IRFs (Θij,0,Θij,1, . . . ,Θij,q) are

26The prior has the equivalent autoregressive representation (Θij,`+1 − µij,`+1)/τij,`+1 = ρij(Θij,` −
µij,`)/τij,` + (1 − ρ2

ij)ζij,`+1, where ζij,` is i.i.d. N(0, 1). That is, if the true impulse response at hori-
zon ` is above its prior mean, then we also find it likely that the true impulse response at horizon ` + 1 is
above its prior mean, and more likely the higher ρij is.
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a priori independent across (i, j) pairs. The normalized impulse responses have µijj,0 = 1

and τijj,0 = 0 for each j. The shock standard deviations σ1, . . . , σn are a priori mutually

independent and independent of the IRFs, with prior marginal distribution

log σj ∼ N(µσj , (τσj )2)

for each j.27 In practice, the prior variances (τσj )2 for the log shock standard deviations

can be chosen to be a large number. Because the elements of σ scale the ACF, which is

identified, the data will typically be quite informative about the standard deviations of the

shocks, provided that the prior on the IRFs is sufficiently informative.

The key hyperparameters in this Gaussian prior are the prior means µij,` and variances

τ 2
ij,` of each impulse response, and the prior smoothness hyperparameter ρij for each IRF.

The prior means and variances can be elicited graphically by drawing a figure with a “best

guess” for each IRF and then placing a 90% (say) prior confidence band around each IRF.

Once these hyperparameters have been elicited, the prior smoothness ρij of each IRF can be

elicited by trial-and-error simulation from the multivariate Gaussian prior.28

The prior elicitation process is illustrated in Figures 1.4 and 1.5, which continue the

bivariate example from Figure 1.1. The figures show a choice of prior means and 90% prior

confidence bands for each of the impulse responses, directly implying suitable values for the

µij,` and τ 2
ij,` hyperparameters.29 The prior distributions in the figures embed many different

27Alternatively, the prior on σ could be derived from a prior on the forecast error variance decomposition,
cf. definition (1.9) in Section 1.5. I leave this possibility to future research.

28In principle, the ρij values could be chosen by an empirical Bayes method. For each possible choice of
ρij , one could compute the marginal likelihood of the data (Chib, 2001, Sec. 10.2) and select the value of
ρij that maximizes the marginal likelihood. I leave this possibility to future research.

29The prior confidence bands in Figures 1.4 and 1.5 are pointwise bands that consider each horizon sepa-
rately. This is the most common way to express uncertainty about impulse responses. Sims & Zha (1999,
Sec. 6) recommend quantifying uncertainty about entire impulse response functions, i.e., uniform bands.
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Figure 1.4: A choice of prior means (thick lines) and 90% prior confidence bands (shaded) for
the four IRFs (Θ) in the bivariate example in Figure 1.1. Brightly colored lines are four draws
from the multivariate Gaussian prior distribution with these mean and variance parameters and a
smoothness hyperparameter of ρij = 0.9 for all (i, j).
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Figure 1.5: See caption for Figure 1.4. Here the smoothness parameter is ρij = 0.3 for all (i, j).
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kinds of prior information. For example, the IRF of the FFR to a positive demand shock

is believed to be hump-shaped with high probability, and the IRF of the output gap to a

contractionary monetary policy shock is believed to be negative at horizons 2–8 with high

probability. Yet the prior expresses substantial uncertainty about features such as the sign

and magnitude of the impact response of the output gap to a monetary policy shock.

After having elicited the prior means and variances, the smoothness hyperparameters

can be chosen by trial-and-error simulations. Figure 1.4 also depicts four IRF draws from

the multivariate Gaussian prior distribution with ρij = 0.9 for all (i, j), while Figure 1.5

shows four draws with ρij = 0.3. The latter draws are more jagged and erratic than the

former draws, and many economists would agree that the jaggedness of the ρij = 0.9 draws

are more in line with their prior information about the smoothness of the true IRFs in this

application.

The flexible and graphical SVMA prior elicitation procedure contrasts with prior speci-

fication in standard SVARs. As discussed in Sections 1.2.1 and 1.7, SVAR analyses exploit

zero or sign restrictions on individual impulse responses or linear combinations thereof, while

information about the shapes and smoothness of IRFs is neglected. Furthermore, prior re-

strictions on short- or long-run responses implicitly restrict other features of the IRFs, since

the VAR model structure subtly constrains the possible shapes of the IRFs.

Bayesian analysis in the SVMA model is explicit about the prior restrictions on IRFs,

and researchers can draw on standard Bayesian tools for conducting sensitivity analysis and

model validation. The entire set of prior beliefs about IRFs is easily expressed graphically,

unlike in SVAR analysis. The sensitivity of posterior inference with respect to features of

the prior can be assessed using tools from the comprehensive Bayesian literature (Lopes &

Tobias, 2011; Müller, 2012). Model validation and comparison can be carried out through

the flexible framework of prior and posterior predictive checks and computation of Bayes
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factors.30 I give examples of prior sensitivity and model validation checks in the empirical

application in Section 1.5. In contrast, robustness checks in SVAR analyses are typically

limited to considering a small set of alternative identifying restrictions.

Other priors. The multivariate Gaussian prior distribution is flexible and easy to vi-

sualize but other prior choices are feasible as well. My inference procedure does not rely

on Gaussianity of the prior, as the simulation method in Section 1.3 only requires that the

log prior density and its gradient are computable. Hence, it is straight-forward to impose

a different prior correlation structure than (1.8), or to impose heavy-tailed or asymmetric

prior distributions on certain impulse responses. Section 1.7 gives examples of priors that

transparently impose well-known identifying restrictions from the SVAR literature.

1.3 Bayesian computation

In this section I develop an algorithm to simulate from the posterior distribution of the

IRFs. Because of the flexible and high-dimensional prior distribution placed on the IRFs,

standard Markov Chain Monte Carlo (MCMC) methods are very cumbersome.31 I employ a

Hamiltonian Monte Carlo algorithm that uses the Whittle (1953) likelihood approximation

to speed up computations. The algorithm is fast, asymptotically efficient, and easy to apply,

and it allows for both invertible and noninvertible IRFs. If desired, a reweighting step can

undo the Whittle approximation at the end.

I first define the posterior density of the structural parameters. Let T be the sample

30See Chib (2001, Ch. 10), Geweke (2010, Ch. 2), and Gelman et al. (2013, Ch. 6).

31Chib & Greenberg (1994) estimate univariate reduced-form Autoregressive Moving Average models by
MCMC, but their algorithm is only effective in low-dimensional problems. Chan, Eisenstat & Koop (2015,
see also references therein) perform Bayesian inference in possibly high-dimensional reduced-form VARMA
models, but they impose statistical parameter normalizations that preclude structural estimation of IRFs.

26



size and YT = (y′1, y′2, . . . , y′T )′ the data vector. Denote the prior density for the SVMA

parameters by πΘ,σ(Θ, σ). The likelihood function of the SVMA model (1.3) depends on the

parameters (Θ, σ) only through the scaled impulse responses Ψ = (Ψ0,Ψ1, . . . ,Ψq), where

Ψ` = Θ` diag(σ) for ` = 0, 1, . . . , q. Let pY |Ψ(YT | Ψ(Θ, σ)) denote the likelihood function,

where the notation indicates that Ψ is a function of (Θ, σ). The posterior density is then

pΘ,σ|Y (Θ, σ | YT ) ∝ pY |Ψ(YT | Ψ(Θ, σ))πΘ,σ(Θ, σ).

Hamiltonian Monte Carlo. To draw from the posterior distribution, I use a variant

of MCMC known as Hamiltonian Monte Carlo (HMC). HMC is known to offer superior

performance over other generic MCMC methods when the dimension of the parameter vector

is high. In the SVMA model, the dimension of the full parameter vector is n2(q + 1), which

can easily be well into the 100s in realistic applications. Nevertheless, the HMC algorithm

has no trouble producing draws from the posterior of the SVMA parameters.

HMC outperforms standard Random Walk Metropolis-Hastings algorithms because it

exploits information contained in the gradient of the log posterior density to systematically

explore the posterior distribution. See Neal (2011) for a very readable overview of HMC.

I use the modified HMC algorithm by Hoffman & Gelman (2014), called the No-U-Turn

Sampler (NUTS), which adaptively sets the HMC tuning parameters while still provably

delivering draws from the posterior distribution.

As with other MCMC methods, the HMC algorithm delivers parameter draws from a

Markov chain whose long-run distribution is the posterior distribution. After discarding

a burn-in sample, the output of the HMC algorithm is a collection of parameter draws

(Θ(1), σ(1)), . . . , (Θ(N), σ(N)), each of which is (very nearly) distributed according to the pos-
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terior distribution.32 The number N of draws is chosen by the user. The draws are not

independent, and plots of the autocorrelation functions of the draws are useful for gauging

the reduction in effective sample size relative to the ideal of i.i.d. sampling (Chib, 2001,

pp. 3579, 3596). In my experience, the proposed algorithm for the SVMA model yields

autocorrelations that drop off to zero after only a few lags.

Likelihood, score and Whittle approximation. HMC requires that the log poste-

rior density and its gradient can be computed quickly at any given parameter values. The

gradient of the log posterior density equals the gradient of the log prior density plus the

gradient of the log likelihood (the latter is henceforth referred to as the score). In most

cases, such as with the Gaussian prior in Section 1.2.5, the log prior density and its gradient

are easily computed. The log likelihood and the score are the bottlenecks. In the simula-

tion study in the next section a typical full run of the HMC procedure requires 100,000s of

evaluations of the likelihood and the score.

With Gaussian shocks (Assumption 1.2), the likelihood of the SVMA model (1.3) can

be evaluated using the Kalman filter, cf. Appendix A.1.3.1, but a faster alternative is to

use the Whittle (1953) approximation to the likelihood of a stationary Gaussian process.

Appendix A.1.3.2 shows that both the Whittle log likelihood and the Whittle score for the

SVMA model can be calculated efficiently using the Fast Fourier Transform.33 When the

MA lag length q is large, as in most applications, the Whittle likelihood is noticeably faster

to compute than the exact likelihood, and massive computational savings arise from using

32Gelman et al. (2013, Ch. 11) discuss methods for checking that the chain has converged.

33Hansen & Sargent (1981), Ito & Quah (1989), and Christiano & Vigfusson (2003) also employ the
Whittle likelihood for SVMA models. Qu & Tkachenko (2012a,b) and Sala (2015) use the Whittle likelihood
to perform approximate Bayesian inference on DSGE models, but their Random-Walk Metropolis-Hastings
simulation algorithm is less efficient than HMC. Moreover, the asymptotic theory in Qu & Tkachenko (2012b)
assumes identification, unlike Section 1.6.
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the Whittle approximation to the score.34

Numerical implementation. The HMC algorithm is easy to apply once the prior has

been specified. I give further details on the Bayesian computations in Appendix A.1.4.1.

As initial value for the HMC iterations I use a rough approximation to the posterior mode

obtained using the constructive characterization of the identified set in Appendix A.1.2. The

HMC algorithm I use adapts to the posterior standard deviations of individual parameters

in a warm-up phase; this speeds up computations in some applications.

Reweighting. Appendix A.1.4.2 describes an optional reweighting step that translates

the Whittle HMC draws into draws from the exact posterior pΘ,σ|Y (Θ, σ | YT ). If the HMC

algorithm is run with the Whittle likelihood and score replacing the exact likelihood and

score, the algorithm yields draws from the “Whittle posterior” density pWΘ,σ|Y (Θ, σ | YT ) ∝

pWY |Ψ(YT | Ψ(Θ, σ))πΘ,σ(Θ, σ), where pWY |Ψ(YT | Ψ(Θ, σ)) is the Whittle likelihood. Reweight-

ing can be used if the researcher seeks finite-sample optimal inference under the Gaussian

SVMAmodel. The reweighting step is fast and does not require computation of score vectors.

The asymptotic analysis in Section 1.6.3 shows that the reweighting step has negligible

effect in large samples, as the exact and Whittle posteriors converge to the same limit under

weak nonparametric conditions. However, in applications where the MA lag length q is large

relative to the sample size, the asymptotic distribution may not be a good approximation to

the finite-sample posterior, and reweighting may have a non-negligible effect.

34The exact score can be approximated using finite differences, but this is highly time-consuming. The
Koopman & Shephard (1992) analytical score formula is not applicable here due to the singular measurement
density in the state-space representation of the SVMA model, cf. Appendix A.1.3.1.
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1.4 Simulation study

To illustrate the workings of the SVMA approach, I conduct a small simulation study with

two observed variables and two shocks. I show that prior information about the smoothness

of the IRFs can substantially sharpen posterior inference. It is thus desirable to use an

approach, like the SVMA approach, for which prior information about smoothness is directly

controlled. I also illustrate the consequences of misspecifying the prior.

The illustration is based on the bivariate example from Section 1.2 with n = 2 and q = 10,

cf. Figure 1.1. The number of parameters is n2(q + 1) = 22(10 + 1) = 44, smaller than the

dimensionality of realistic empirical applications but sufficient to elucidate the flexibility,

transparency, and effectiveness of the SVAR approach.

Parameters and prior. I consider a single parametrization, with a prior that is correctly

centered but diffuse. The sample size is T = 200. The true IRF parameters Θ are the

noninvertible ones plotted in Figure 1.1. The true shock standard deviations are σ1 = 1

(monetary policy shock) and σ2 = 0.5 (demand shock). I first show results for the prior

specification in Figure 1.4 with ρij = 0.9 for all (i, j). The prior is centered at the true

values but it expresses significant prior uncertainty about the magnitudes of the individual

impulse responses. The prior on σ = (σ1, σ2) is median-unbiased for the true values but it is

very diffuse, with prior standard deviation of log σj equal to τσj = 2 for j = 1, 2.

Simulation settings. I simulate a single sample of artificial data from the Gaussian

SVMA model and then run the HMC algorithm using the Whittle likelihood (I do not

reweight the draws as in Appendix A.1.4.2). I take 10,000 MCMC steps, storing every 10th

step and discarding the first 3,000 steps as burn-in.35 The full computation takes less than 3

35The results are virtually identical in simulations with 100,000 MCMC steps.
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Figure 1.6: Summary of posterior IRF (Θ) draws for the bivariate SVMA model with prior
smoothness ρij = 0.9. The plots show true values and prior means (thick lines), prior 90% confidence
bands (shaded), posterior means (crosses), and posterior 5–95 percentile intervals (vertical bars).

hours in Matlab 8.6 on a personal laptop with 2.3 GHz Intel CPU. Appendix A.1.5.1 provides

graphical diagnostics on the convergence and mixing of the MCMC chain.

Baseline results. Figure 1.6 shows that the posterior for the IRFs accurately estimates

the true values and that the data serves to substantially reduce the prior uncertainty. The

posterior means are generally close to the truth, although the means for two of the IRFs are

slightly too low in this simulation. The 5–95 percentile posterior credible intervals are mostly

much narrower than the prior 90% confidence bands, so this prior specification successfully

allows the researcher to learn from the data about the magnitudes of the impulse responses.

Figure 1.7 shows the posterior draws for the shock standard deviations and compares them

with the prior distribution. The posterior draws are centered around the true values despite

the very diffuse prior on σ. Overall, the inference method for this choice of prior works well,
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Figure 1.7: Summary of posterior shock standard deviation (σ) draws for the bivariate SVMA
model with prior smoothness ρij = 0.9. The plots show the true value (thick vertical line), prior
density (curve), and histogram of posterior draws, for each σj , j = 1, 2.

despite the noninvertibility of the true IRFs.

Role of prior smoothness. To illustrate the importance of prior information about

the smoothness of the IRFs, I run the HMC algorithm with the same specification as above,

except that I set ρij = 0.3 for all (i, j) in the prior, as in Figure 1.5. Figure 1.8 summarizes

the posterior distribution of the IRFs corresponding to this alternative prior. Compared to

Figure 1.4, the posterior credible intervals are much wider and the posterior means are less

accurate estimates of the true IRFs.

The higher the degree of prior smoothness, the more do nearby impulse responses “learn

from each other”. Due to the prior correlation structure (1.8), any feature of the data that

is informative about the impulse response Θij,` is also informative about Θij,`+k; more so for

smaller values of |k|, and more so for larger values of the smoothness hyperparameter ρij.

Hence, a higher degree of prior smoothness reduces the effective number of free parameters

in the model. If the true IRFs are not smooth but the prior imposes a lot of smoothness,

posterior inference can be very inaccurate. It is therefore important to use a framework,
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Figure 1.8: Summary of posterior IRF (Θ) draws for the bivariate SVMA model with prior
smoothness ρij = 0.3. See caption for Figure 1.6.

like the SVMA approach, where prior smoothness is naturally parametrized and directly

controlled. SVAR IRFs also impose smoothness a priori, but the degree of smoothness is

implicitly controlled by the VAR lag length and restrictions on the VAR coefficients.

Misspecified priors. Appendix A.1.5.2 reports results for modifications of the baseline

simulation above, maintaining the prior distribution but substantially modifying the true

IRFs. I consider two such experiments: one in which the shocks have less persistent effects

than the prior indicates, and one in which the true IRF of the output gap to a monetary

policy shock is uniformly zero. In both cases, the inaccurate prior is overruled by the data,

delivering reasonably accurate posterior inference. This happens because the implied prior

distribution of the ACF is inconsistent with the true ACF. Since the data is informative

about the latter, the posterior distribution puts more weight than the prior on parameters
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that are consistent with the true ACF, as shown formally in Section 1.6.3.36

1.5 Application: News shocks and business cycles

I now use the SVMA method to infer the role of technological news shocks in the post-war

U.S. business cycle. Following the literature, I define a technological news shock to be a

signal about future productivity increases. My prior on IRFs is partially informed by a con-

ventional sticky-price DSGE model, without imposing the model restrictions dogmatically.

The analysis finds overwhelming evidence of noninvertible IRFs in my specification, yet most

of the IRFs are estimated precisely. Furthermore, news shocks are relatively unimportant

drivers of productivity and output growth, but more important for the real interest rate.

Graphical diagnostics show that the posterior inference is insensitive to moderate changes

in the prior; they also point to possible fruitful extensions of the model.

Technological news shocks have received great attention in the recent empirical and the-

oretical macro literature, but researchers have not yet reached a consensus on their impor-

tance, cf. the survey by Beaudry & Portier (2014). As explained in Section 1.2.3, theoretical

macro models with news shocks often feature noninvertible IRFs, giving the SVMA method

a distinct advantage over SVARs, as the latter assume away noninvertibility. My news shock

analysis is the first to fully allow for noninvertible IRFs while refraining from dogmatically

imposing a particular DSGE model structure (see the discussion at the end of this section).

Specification and data. I employ a SVMA model with three observed variables and

three unobserved shocks: Total factor productivity (TFP) growth, real gross domestic prod-

36By the same token, if the true parameter values were chosen to be observationally equivalent to the
prior medians in Figure 1.4 (i.e., they imply the same ACF), then the posterior would look the same as in
Figures 1.6 and 1.7 up to simulation noise, even though the true parameters could be very different from the
prior medians. Hence, not all misspecified priors can be corrected by the data, cf. Section 1.6.3.
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uct (GDP) growth, and the real interest rate are assumed to be driven by a productivity

shock, a technological news shock, and a monetary policy shock. I use quarterly data from

1954Q3–2007Q4, yielding sample size T = 213 (a quarter is lost when transforming to growth

rates). I exclude data from 2008 to the present as my analysis ignores financial shocks.

TFP growth equals 100 times the log growth rate of TFP and is taken from the data

appendix to Fernald (2014).37 The remaining data is from the St. Louis Federal Reserve’s

FRED database.38 Real GDP growth is given by 100 times the log growth rate of seasonally

adjusted GDP per capita in chained dollars, as measured by the Bureau of Economic Analysis

(NIPA Table 7.1, line 10). My real interest rate series equals the nominal policy interest rate

minus the contemporaneous inflation rate.39 The nominal policy rate is the average effective

federal funds rate, expressed as a quarterly rate. The inflation rate equals 100 times the

log growth rate in the seasonally adjusted implicit price deflator for the non-farm business

sector, as reported by the Bureau of Labor Statistics.

Before running the analysis, I detrend the three data series to remove secular level changes

that are arguably unrelated to the business cycle. Following Stock & Watson (2012a, Sec.

I.C), I estimate the trend in each series using a biweight kernel smoother with a bandwidth

of 100 quarters; the trends are then subtracted from the raw series. Figure 1.9 plots the raw

data and the estimated time-varying trends.

I pick a MA lag length of q = 16 quarters based on two considerations. First, the Akaike

Information Criterion (computed using the Whittle likelihood) selects q = 13. Second, the

37The TFP measure is based on a growth accounting method that adjusts for differing marginal products
of capital across sectors as well as changes over time in labor quality and labor’s share of income. Fernald
(2014) also estimates utilization-adjusted TFP, but the adjustment is model-based and reliant on estimates
from annual regressions on a separate dataset, so I prefer the simpler series. Data downloaded July 14, 2015.

38FRED series codes: A939RX0Q048SBEA (real GDP per capita), FEDFUNDS (effective federal funds
rate), and IPDNBS (implicit price deflator, non-farm business sector). Data downloaded August 13, 2015.

39If agents form inflation expectations under the presumption that quarterly inflation follows a random
walk, then my measure of the real interest rate equals the conventional ex ante real interest rate.
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Figure 1.9: Raw data on TFP growth, GDP growth, and the real interest rate (IR), along with
estimated time-varying trends (smooth curves). The final data used in the empirical analysis are
differences between the raw series and the trends.

autocorrelation of the real interest rate equals 0.17 at lag 13 but is close to zero at lag 16.

Prior. The prior on the IRFs is of the multivariate Gaussian type introduced in Sec-

tion 1.2.5, with hyperparameters informed by a conventional sticky-price DSGE model. The

DSGE model is primarily used to guide the choice of prior means, and the model restrictions

are not imposed dogmatically on the SVMA IRFs. Figure 1.10 plots the prior means and

variances for the impulse responses, along with four draws from the joint prior distribution.

The figure also shows the normalization that defines the scale of each shock.

The DSGE model used to inform the prior is the one developed by Sims (2012, Sec. 3). It

is built around a standard New Keynesian structure with monopolistically competitive firms

subject to a Calvo pricing friction, and the model adds capital accumulation, investment

adjustment costs, internal habit formation in consumption, and interest rate smoothing in

the Taylor rule. Within the DSGE model, the productivity and news shocks are, respectively,
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Figure 1.10: Prior means (thick lines), 90% prior confidence bands (shaded), and four random
draws (brightly colored lines) from the prior for IRFs (Θ), news shock application. The impact
impulse response is normalized to 1 in each IRF along the diagonal of the figure.

unanticipated and anticipated exogenous disturbances to the change in log TFP (cf. eq. 30–

33 in Sims, 2012). The monetary policy shock is an unanticipated disturbance term in

the Taylor rule (cf. eq. 35 in Sims, 2012). Detailed model assumptions and equilibrium

conditions are described in Sims (2012, Sec. 3), but I repeat that I only use the DSGE

model to guide the SVMA prior; the model restrictions are not imposed dogmatically.40

As prior means for the nine SVMA IRFs I use the corresponding IRFs implied by the log-

40My approach is distinct from IRF matching (Rotemberg & Woodford, 1997). In IRF matching, a SVAR
is identified using exclusion restrictions, and then the structural parameters of a DSGE model are chosen so
that the DSGE-implied IRFs match the estimated SVAR IRFs. In my procedure, the DSGE model informs
the choice of prior on IRFs, but then the data is allowed to speak through a flexible SVMA model. I do not
treat the DSGE model as truth, and I impose prior restrictions in a single stage. Ingram & Whiteman (1994)
and Del Negro & Schorfheide (2004) apply related ideas to VAR models. Geweke (2010, Ch. 4.4) proposes
a general method for letting DSGE models inform priors without imposing model restrictions dogmatically.
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linearized DSGE model, with one exception mentioned below.41 I use the baseline calibration

of Sims (2012, Table 1), which assumes that news shocks are correctly anticipated TFP

increases taking effect three quarters into the future. Because I am particularly uncertain

that an anticipation horizon of three quarters is correct, I modify the prior means for the

impulse responses of TFP growth to the news shock: The prior means smoothly increase

and then decrease over the interval ` ∈ [0, 6], with a maximum value at ` = 3 equal to half

the DSGE-implied impulse response.42

The prior variances for the IRFs are chosen by combining information from economic

intuition and DSGE calibration sensitivity experiments. For example, I adjust the prior

variances for the IRFs so that the DSGE-implied IRFs mostly fall within the 90% prior bands

when the anticipation horizon changes between nearby values. The 90% prior bands for the

IRFs that correspond to the news shock are chosen quite large, and they mostly contain

0. In contrast, the prior bands corresponding to the monetary policy shock are narrower,

expressing a strong belief that monetary policy shocks have a small (not necessarily zero)

effect on TFP growth but a persistent positive effect on the real interest rate. The prior

bands for the effects of productivity shocks on GDP growth and on the real interest rate

are fairly wide, since these IRFs should theoretically be sensitive to the degree of nominal

stickiness in the economy as well as to the Federal Reserve’s information set and policy rule.

The prior expresses a belief that the IRFs for GDP growth and the real interest rate

are quite smooth, while those for TFP growth are less smooth. Specifically, I set ρ1j = 0.5

and ρ2j = ρ3j = 0.9 for j = 1, 2, 3. These choices are based on economic intuition and are

consistent with standard calibrations of DSGE models. The ability to easily impose different

41The DSGE-implied IRFs for the real interest rate use the same definition of this variable as in the
construction of the data series, i.e., nominal interest rate minus contemporaneous inflation. The IRFs are
computed using Dynare 4.4.3 (Adjemian et al., 2011).

42A theoretically more satisfying way to deal with uncertainty about the anticipation horizon is to use a
Gaussian mixture prior, where the categorical component label is the anticipation horizon.
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degrees of prior smoothness across IRFs is unique to the SVMA approach; it would be much

harder to achieve in a SVAR set-up.

The prior on the shock standard deviations is very diffuse. For each shock j, the prior

mean µσj of log(σj) is set to log(0.5), while the prior standard deviation τσj is set to 2.43

These values should of course depend on the units of the observed series.

As a consistency check, Appendix A.1.6.1 shows that the Bayesian computation procedure

with the above prior accurately recovers the DSGE-implied IRFs from simulated data.

Results. Given my prior, the data is informative about most of the IRFs. Figure 1.11 sum-

marizes the posterior distribution of each impulse response. Figure 1.12 plots the posterior

distribution of long-run (i.e., cumulative) impulse responses∑q
`=0 Θij,` for each variable-shock

combination (i, j). Figure 1.13 shows the posterior distribution of the forecast error variance

decomposition (FEVD) of each variable i to each shock j at each horizon `, defined as44

FEVDij,` = Var(∑q
k=0 Θij,kεj,t+`−k | εt−1, εt−2, . . . )
Var(yi,t+` | εt−1, εt−2, . . . )

=
∑`
k=0 Θ2

ij,kσ
2
j∑n

b=1
∑`
k=0 Θ2

ib,kσ
2
b

. (1.9)

FEVDij,` is the fraction of the forecast error variance that would be eliminated if we knew

all future realizations of shock j when forming `-quarter-ahead forecasts of variable i at time

t using knowledge of the shocks up to time t− 1.

The posterior means for several IRFs differ substantially from the prior means, and the

posterior 90% intervals are narrower than the prior 90% bands. The effects of productivity

43The prior is agnostic about the relative importance of the three shocks: Due to the diffuse prior on shock
standard deviations, unreported simulations show that the prior 5th and 95th percentiles of the FEVD (cf.
(1.9)) are very close to 0 and 1, respectively, for almost all (i, j, `) combinations.

44The variances in the fraction are computed under the assumption that the shocks are serially and
mutually independent. In the literature the FEVD is defined by conditioning on (yt−1, yt−2, . . . ) instead of
(εt−1, εt−2, . . . ). This distinction matters when the IRFs are noninvertible. Baumeister & Hamilton (2015a)
conduct inference on the FEVD in a Bayesian SVAR, assuming invertibility.
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Figure 1.11: Summary of posterior IRF (Θ) draws, news shock application. The plots show prior
90% confidence bands (shaded), posterior means (crosses), and posterior 5–95 percentile intervals
(vertical bars).
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Figure 1.12: Histograms of posterior draws of long-run impulse responses
∑q
`=0 Θij,` for each

(i, j), news shock application. Curves are prior densities. Histograms and curves integrate to 1.
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Figure 1.13: Summary of posterior draws of FEVDij,` (1.9), news shock application. The figure
shows posterior means (crosses) and posterior 5–95 percentile intervals (vertical bars). For each
variable i and each horizon `, the posterior means sum to 1 across the three shocks j.

and monetary policy shocks on TFP and GDP growth are especially precisely estimated.

From the perspective of the prior beliefs, it is surprising to learn that the impact effect of

productivity shocks on GDP growth is quite large, and the effect of monetary policy shocks

on the real interest rate is not very persistent. Figure 1.12 shows that the monetary policy

shock has negative and substantially non-neutral effects on the level of GDP in the long run,

even though the prior distribution for this long-run response is centered around zero.

The IRFs corresponding to the news shock are not estimated as precisely as IRFs for the

other shocks, but the data does noticeably update the prior. The IRF of TFP growth to

the news shock indicates that future productivity increases are anticipated only one quarter

ahead, and the increase is mostly reversed in the following quarters. According to the data,

the long-run response of TFP to a news shock is unlikely to be substantially positive, implying

that economic agents seldom correctly anticipate shifts in medium-run productivity levels.

The news shock is found to have substantially less persistent effects on GDP growth than
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predicted by the DSGE model. However, the effect of the news shock on the real interest

rate is found to be large and persistent.

The news shock is not an important driver of TFP and GDP growth but is important

for explaining real interest rate movements at longer horizons. According to Figure 1.13,

the news shock contributes little to the forecast error variance for TFP and GDP growth

at all horizons. The monetary policy shock is only slightly more important in explaining

GDP growth, while the productivity shock is much more important by these measures.

However, the monetary policy shock is important for explaining short-run movements in the

real interest rate, while the news shock dominates longer-run movements in this series.

The data and prior provide overwhelming evidence that the IRFs are noninvertible. In

Figure 1.14 I report a continuous measure of invertibility suggested by Watson (1994, p.

2901) and Sims & Zha (2006, p. 243). For each posterior parameter draw I compute the

R2 from a population regression of each shock εj,t on current and 50 lags of past data

(yt, yt−1, . . . , yt−50), assuming i.i.d. Gaussian shocks.45 This R2 value should be essentially

1 for all shocks if the IRFs are invertible, by definition. Instead, Figure 1.14 shows a high

posterior probability that the news shock R2 is below 0.3, despite the prior putting most

weight on values near 1.46

The noninvertibility of the estimated IRFs is economically significant. Figure 1.15 sum-

marizes the posterior distribution of those invertible IRFs that are closest to the actual

(possibly noninvertible) IRFs. Specifically, for each posterior draw (Θ, σ) I compute the

parameter vector (Θ̃, σ̃) that minimizes the Frobenius distance ‖Θ diag(σ)− Θ̃ diag(σ̃)‖ over

45Given the parameters, I run the Kalman filter in Appendix A.1.3.1 forward for 51 periods on data
that is identically zero (due to Gaussianity, conditional variances do not depend on realized data values).
This yields a final updated state prediction variance matrix Var(diag(σ)−1ε51 | y51, . . . , y1) whose diagonal
elements equal 1 minus the desired population R2 values at the given parameters.

46Essentially no posterior IRF draws are exactly invertible; the prior probability is 0.06%.
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Figure 1.14: Histograms of posterior draws of the population R2 values in regressions of each
shock on current and 50 lagged values of the observed data, news shock application. Curves are
kernel density estimates of the prior distribution of R2s. Histograms and curves integrate to 1.
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Figure 1.15: Posterior distribution of the invertible IRFs that are closest to the actual IRFs, news
shock application. The figure shows posterior means of actual IRFs from Figure 1.11 (thick lines),
posterior means of the closest invertible IRFs (crosses), and posterior 5–95 percentile intervals for
these invertible IRFs (vertical bars).
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parameters for which Θ̃ is invertible and (Θ̃, σ̃) generates the same ACF as (Θ, σ).47 While

the invertible IRFs for the productivity and monetary policy shocks are similar to the unre-

stricted IRFs, the invertible news shock IRFs look nothing like the actual estimated IRFs.48

Thus, no SVAR identification scheme can deliver accurate inference about the effects of

technological news shocks in this dataset.

Appendix A.1.6.2 uses standard state-space methods to estimate the structural shocks,

which is straight-forward despite noninvertibility of the IRFs.

Prior sensitivity and model validation. In Appendix A.1.6.3 I show that the pos-

terior inference is insensitive to moderate changes in the prior distribution. I use the Müller

(2012) measure of local prior sensitivity, which allows me to graphically summarize the

sensitivity of the posterior mean of each impulse response.

I conduct a battery of graphical posterior predictive checks to identify ways to improve

the model’s fit. As shown in Section 1.6, the posterior distribution of the parameters of the

Gaussian SVMA model fits the unconditional second moments of the observed data well in

large samples. In Appendix A.1.6.4 I investigate whether the model also matches higher

moments and conditional time series properties. While the Gaussianity-based posterior

analysis is robust to violations of Gaussianity and other model assumptions, cf. Section 1.6,

the posterior predictive analysis points to ways the model could be improved to increase

statistical efficiency. The analysis suggests it would be fruitful to extend the model to include

stochastic volatility and nonlinearities. I briefly discuss such extensions in Section 1.8.

47According to Appendix A.1.2, (Θ̃, σ̃) is obtained as follows. First apply transformation (ii) in The-
orem A.1 several times to (Θ, σ) in order to flip all roots outside the unit circle. Denote the resulting
invertible parameters by (Θ̌, σ̌). Then Θ̃ diag(σ̃) = Θ̌ diag(σ̌)Q, where Q is the orthogonal matrix that
minimizes ‖Θ diag(σ)− Θ̌ diag(σ̌)Q‖. This “orthogonal Procrustes problem” has a well-known solution.

48Figure 1.15 cannot be interpreted as the posterior distribution corresponding to a prior which truncates
the prior from Figure 1.10 to the invertible region. It is difficult to sample from this truncated posterior, as
essentially none of the unrestricted posterior draws are invertible, so an accept-reject scheme is inapplicable.
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Comparison with the literature. My conclusion that technological news shocks are

not important for explaining business cycles is consistent with the literature, but my method

is the first to allow for noninvertibility without additional assumptions. Forni et al. (2014)

estimate small effects of technological news shocks in a factor-augmented SVAR. Their empir-

ical strategy may overcome the noninvertibility issue if technological news are well captured

by the first few principal components of their large macroeconomic panel data set. They

confirm that low-dimensional systems (without factors) are noninvertible. Papers that es-

timate fully-specified DSGE models with news shocks also tend to find a limited role for

technological news, cf. the review by Beaudry & Portier (2014, Sec. 4.2.2). Unlike these

papers, I do not dogmatically impose restrictions implied by a particular structural model.

Several SVAR papers on news shocks have used stock market data in an attempt to

overcome the invertibility problem, cf. Beaudry & Portier (2014, Sec. 3). Such SVAR

specifications may be valid if the stock market is a good proxy for the news shock, i.e., if the

market responds immediately and forcefully upon arrival of technological news. On the other

hand, if market movements are highly contaminated by other types of shocks, incorporating

stock market data may lead to biased SVAR estimates. It would be interesting to incorporate

stock market data into my analysis to fully reconcile my results with these SVAR analyses.

1.6 Asymptotic theory

To gain insight into how the data updates the prior information, I derive the asymptotic

limit of the Bayesian posterior distribution from a frequentist point of view. I first derive

general results on the frequentist asymptotics of Bayes procedures for a large class of partially

identified models that includes the SVMA model. Then I specialize to the SVMA model

and show that, asymptotically, the role of the data is to pin down the true autocovariances,

whereas all other information about IRFs comes from the prior. The asymptotics imply
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that the limiting form of the posterior is robust to violations of the assumption of Gaussian

shocks and to the use of the Whittle likelihood in place of the exact likelihood.

1.6.1 General results for partially identified models

In this subsection I present a general result on the frequentist asymptotic limit of the Bayesian

posterior distribution for a large class of partially identified models that includes the SVMA

model. Due to the lack of identification, the asymptotic analysis is nonstandard, as the data

does not dominate all aspects of the prior distribution in large samples.

Consider a general model for which the data vector YT is independent of the parameter

of interest θ, conditional on a second parameter Γ.49 In other words, the likelihood function

of the data YT only depends on θ through Γ. This property holds for models with a partially

identified parameter θ, as explained in Poirier (1998). Because I will restrict attention to

models in which the parameter Γ is identified, I refer to Γ as the reduced-form parameter,

while θ is called the structural parameter. The parameter spaces for Γ and θ are denoted ΞΓ

and Ξθ, respectively, and these are assumed to be finite-dimensional Euclidean and equipped

with the Frobenius norm ‖ · ‖.

As an illustration, consider the SVMA model with data vector YT = (y′1, . . . , y′T )′. Let

Γ = (Γ(0), . . . ,Γ(q)) be the ACF of the observed time series, and let θ denote a single IRF,

for example the IRF of the first variable to the first shock, i.e., θ = (Θ11,0, . . . ,Θ11,q)′. I

explain below why I focus on a single IRF. Since the distribution of the stationary Gaussian

process yt only depends on θ through the ACF Γ, we have YT ⊥⊥ θ | Γ.

In any model satisfying YT ⊥⊥ θ | Γ, the prior information about θ conditional on Γ is not

updated by the data YT , but the data is informative about Γ. Let Pθ|Y (· | YT ) denote the

posterior probability measure for θ given data YT , and let similarly PΓ|Y (· | YT ) denote the

49T denotes the sample size, but the model does not have to be a time series model.
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posterior measure for Γ. For any Γ̃ ∈ ΞΓ, let Πθ|Γ(· | Γ̃) denote the conditional prior measure

for θ given Γ, evaluated at Γ = Γ̃. As in Moon & Schorfheide (2012, Sec. 3), decompose

Pθ|Y (A | YT ) =
∫

ΞΓ
Πθ|Γ(A | Γ)PΓ|Y (dΓ | YT ) (1.10)

for any measurable set A ⊂ Ξθ. Let Γ0 denote the true value of Γ. If the reduced-form

parameter Γ0 is identified, the posterior PΓ|Y (· | YT ) for Γ will typically concentrate around Γ0

in large samples, so that the posterior for θ is well approximated by Pθ|Y (· | YT ) ≈ Πθ|Γ(· | Γ0),

the conditional prior for θ given Γ at the true Γ0.

The following lemma formalizes the intuition about the asymptotic limit of the posterior

distribution for θ. Define the L1 norm ‖P‖L1 = sup|h|≤1
∫
|h(x)|P (dx) on the space of signed

measures, where P is any signed measure and the supremum is over all scalar real-valued

measurable functions h(·) bounded in absolute value by 1.50

Lemma 1.1. Let the posterior measure Pθ|Y (· | YT ) satisfy the decomposition (1.10). All

stochastic limits below are taken under the true probability measure of the data. Assume:

(i) The map Γ̃ 7→ Πθ|Γ(θ | Γ̃) is continuous at Γ0 with respect to the L1 norm ‖ · ‖L1.51

(ii) For any neighborhood U of Γ0 in ΞΓ, PΓ|Y (U | YT ) p→ 1 as T →∞.

Then as T →∞,

‖Pθ|Y (· | YT )− Πθ|Γ(· | Γ0)‖L1
p→ 0.

50The L1 distance ‖P1−P2‖L1 between two probability measures P1 and P2 equals twice the total variation
distance (TVD) between P1 and P2. TVD is an important metric, as convergence in TVD implies convergence
of Bayes point estimators under certain side conditions (van der Vaart, 1998, Ch. 10.3).

51Denote the underlying probability sample space by Ω, and let Bθ be the Borel sigma-algebra on Ξθ.
Formally, assumption (i) requires the existence of a function ς : Bθ×ΞΓ → R+ such that {ς(B,Γ(o))}B∈Bθ, o∈Ω
is a version of the conditional probability measure of θ given Γ, and such that ‖ς(·,Γk)− ς(·,Γ0)‖L1 → 0 as
k →∞ for any sequence {Γk}k≥1 satisfying Γk → Γ0 and Γk ∈ ΞΓ.
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If furthermore Γ̂ is a consistent estimator of Γ0, i.e., Γ̂ p→ Γ0, then

‖Pθ|Y (· | YT )− Πθ|Γ(· | Γ̂)‖L1
p→ 0.

In addition to stating the asymptotic form of the posterior distribution, Lemma 1.1

yields three main insights. First, the posterior for θ given the data does not collapse to

a point asymptotically, a consequence of the lack of identification.52 Second, the sampling

uncertainty about the true reduced-form parameter Γ0, which is identified in the sense of

assumption (ii), is asymptotically negligible relative to the uncertainty about θ given knowl-

edge of Γ0. Third, in large samples, the way the data disciplines the prior information on θ

is through the consistent estimator Γ̂ of Γ0.

Lemma 1.1 gives weaker and simpler conditions for result (ii) in Theorem 1 of Moon &

Schorfheide (2012). Lipschitz continuity in Γ of the conditional prior measure Πθ|Γ(· | Γ)

(their Assumption 2) is weakened to continuity, and the high-level assumption of asymptotic

normality of the posterior for Γ (their Assumption 1) is weakened to posterior consistency.

Assumption (i) invokes continuity with respect to Γ of the conditional prior of θ given

Γ. This assumption is satisfied in many models with partially identified parameters, if θ

is chosen appropriately. The assumption is unlikely to be satisfied in other contexts. For

example, if θ were identified because there existed a function mapping Γ to θ, and Γ were

identified, then assumption (i) could not be satisfied. More generally, assumption (i) will

typically not be satisfied if the identified set for θ lies in a lower-dimensional subspace of Ξθ.53

If continuity of Πθ|Γ(· | Γ) does not hold, assumption (ii) on the limiting posterior distribution

52As emphasized by Gustafson (2015, pp. 35, 59–61), the Bayesian approach to partial identification
explicitly acknowledges the role of prior information even in infinite samples. This stands in contrast with
traditional “identified” models, for which the potential bias due to misspecification of the identifying restric-
tions is often unacknowledged and difficult to characterize.

53For a discussion of this point, see Remarks 2 and 3, pp. 768–770, in Moon & Schorfheide (2012).
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for Γ can be strengthened to derive an asymptotic approximation to the posterior for θ, cf.

Moon & Schorfheide (2012, Sec. 3).

Assumption (ii) invokes posterior consistency for Γ0, i.e., the posterior for the reduced-

form parameter Γ must concentrate on small neighborhoods of the true value Γ0 in large

samples. While assumption (i) is a condition on the prior, assumption (ii) may be viewed as

a condition on the likelihood of the model, although assumption (ii) does require that the

true reduced-form parameter Γ0 is in the support of the marginal prior distribution on Γ. As

long as the reduced-form parameter Γ0 is identified, posterior consistency holds under very

weak regularity conditions, as discussed in Appendix A.1.7.1 and in the next subsection.54

As the proof of Lemma 1.1 shows, the likelihood function used to calculate the posterior

measure does not have to be correctly specified. That is, if Γ̃ 7→ pY |Γ(YT | Γ̃) denotes the

likelihood function for Γ used to compute the posterior PΓ|Y (· | YT ), then pY |Γ(YT | Γ0)

need not be the true density of the data. As long as PΓ|Y (· | YT ) is a probability measure

that satisfies assumption (ii), where the convergence in probability occurs under the true

probability measure of the data, then the conclusion of the lemma follows. This observation

is helpful when I derive the limit of the Whittle posterior for the SVMA model.

1.6.2 Posterior consistency for the autocovariance function

I now show that the posterior consistency assumption for the reduced-form parameter Γ in

Lemma 1.1 is satisfied in almost all stationary time series models for which Γ can be chosen

to be the ACF, as in the SVMA model. The result below supposes that the posterior measure

for the ACF Γ is computed using the Whittle likelihood under the working assumption that

the time series is stationary Gaussian and q-dependent, i.e., the autocovariances after lag

q are zero. This is the case for the SVMA model. I show that the Whittle posterior is

54See also Ghosh & Ramamoorthi (2003, Ch. 1.3) and Choudhuri, Ghosal & Roy (2005, Ch. 3).
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consistent for the true ACF (up to lag q) even if the true data generating process is in fact

not Gaussian or q-dependent.55

The only restrictions imposed on the underlying true data generating process are the

following nonparametric stationarity and weak dependence assumptions.

Assumption 1.3. {yt} is an n-dimensional time series satisfying the following assumptions.

All limits and expectations below are taken under the true probability measure of the data.

(i) {yt} is a covariance stationary time series with mean zero.

(ii) ∑∞k=−∞ ‖Γ0(k)‖ <∞, where the true ACF is defined by Γ0(k) = E(yt+ky′t), k ∈ Z.

(iii) infω∈[0,π) det
(∑∞

k=−∞ e
−ıkωΓ0(k)

)
> 0.

(iv) For any fixed integer k ≥ 0, T−1∑T
t=k+1 yty

′
t−k

p→ Γ0(k) as T →∞.

The assumption imposes four weak conditions on {yt}. First, the time series must be co-

variance stationary to ensure that the true ACF Γ0(·) is well-defined (as usual, the mean-zero

assumption can be easily relaxed). Second, the process is assumed to be weakly dependent,

in the sense that the matrix ACF is summable, implying that the spectral density is well-

defined. Third, the true spectral density must be uniformly non-singular, meaning that the

process has full rank, is strictly nondeterministic, and has a positive definite ACF. Fourth,

I assume the weak law of large numbers applies to the sample autocovariances.56

55In the case of i.i.d. data, posterior consistency in misspecified models has been investigated in detail, see
Ramamoorthi, Sriram & Martin (2015) and references therein. Shalizi (2009) places high-level assumptions
on the prior and likelihood to derive posterior consistency under misspecification with dependent data. Müller
(2013) discusses decision theoretic properties of Bayes estimators when the model is mispecified. Tamaki
(2008) derives a large-sample Gaussian approximation to the Whittle-based posterior under a correctly
specified parametric spectral density and further regularity conditions.

56Phillips & Solo (1992) and Davidson (1994, Ch. 19) give sufficient conditions for the law of large numbers
for dependent data.
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To state the posterior consistency result, I first define the posterior measure. Let

Tn,q =
{
{Γ(k)}0≤k≤q : Γ(·) ∈ Rn×n, Γ(0) = Γ(0)′,

inf
ω∈[0,π)

det
(

Γ(0) +
q∑

k=1
{e−ıωkΓ(k) + eıωkΓ(k)′}

)
> 0

}

be the space of ACFs for n-dimensional full-rank nondeterministic q-dependent processes. Let

pWY |Γ(YT | Γ) denote the Whittle approximation to the likelihood of a stationary Gaussian

process with ACF Γ.57 Let ΠΓ(·) be a prior measure on the space Tn,q. The associated

Whittle posterior measure for {Γ0(k)}0≤k≤q given the data YT is given by

PW
Γ|Y (A | YT ) =

∫
A p

W
Y |Γ(YT | Γ)ΠΓ(dΓ)∫

Tn,q p
W
Y |Γ(YT | Γ)ΠΓ(dΓ) , (1.11)

where A is a measurable subset of Tn,q.

Theorem 1.1. Let Assumption 1.3 hold. Assume that {Γ0(k)}0≤k≤q is in the support of

ΠΓ(·). Then the Whittle posterior for {Γ0(k)}0≤k≤q is consistent, i.e., for any neighborhood

U of {Γ0(k)}0≤k≤q in Tn,q, we have

PW
Γ|Y (U | YT ) p→ 1,

as T →∞ under the true probability measure of the data.

The SVMA model (1.3) and (1.5) is an example of a model with a stationary Gaussian

and q-dependent likelihood. Hence, when applied to the SVMA model, Theorem 1.1 states

that if the prior measure on the SVMA parameters induces a prior measure on Γ which

has the true ACF {Γ0(k)}0≤k≤q in its support, then the model-implied Whittle posterior for

57The precise functional form is stated in Appendix A.1.7.2.
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Γ precisely pins down the true ACF in large samples. This result is exploited in the next

subsection.

While the measure PW
Γ|Y (A | YT ) is computed using the Whittle likelihood and therefore

exploits the working assumption that the data is Gaussian and q-dependent, Theorem 1.1

shows that posterior consistency for the true ACF (up to lag q) holds even for time series that

are not Gaussian or q-dependent. The only restrictions placed on the true distribution of the

data are the stationarity and weak dependence conditions in Assumption 1.3. Theorem 1.1

is silent about posterior inference on autocovariances at lags higher than q, although the

true higher-order autocovariances are allowed to be nonzero.

Theorem 1.1 places no restrictions on the prior ΠΓ(·) on the ACF, except that the true

ACF Γ0 lies in its support. This level of generality is helpful below when I derive the

properties of the SVMA posterior, since no closed-form expression is available for the prior

on the ACF that is induced by any given prior on the IRFs and shock standard deviations.

The intermediate results I derive in Appendix A.1.7 to prove Theorem 1.1 may be use-

ful in other contexts. My proof of Theorem 1.1 is based on the general Lemma A.2 in

Appendix A.1.7.1, which gives sufficient conditions for posterior consistency in any model,

time series or otherwise. Another component of the proof is Lemma A.3, which builds on

Dunsmuir & Hannan (1976) to show posterior consistency for the reduced-form (Wold) IRFs

in an invertible MA model with q lags, where the posterior is computed using the Whittle

likelihood, but the data only has to satisfy Assumption 1.3. No assumptions are placed on

the prior, except that the true reduced-form IRFs must be contained in its support.

1.6.3 Limiting posterior distribution in the SVMA model

I finally specialize the general asymptotic results from the previous subsections to the SVMA

model with a non-dogmatic prior on IRFs. The asymptotics allow for noninvertibility and

non-Gaussian structural shocks. The frequentist large-sample approximation to the Bayesian
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posterior shows that the role of the data is to pin down the true autocovariances of the data,

which in turn pins down the reduced-form (Wold) IRFs, while all other information about

the structural IRFs comes from the prior. I also argue that the limiting form of the posterior

is the same whether the Whittle likelihood or the exact likelihood is used.

Set-up and main result. To map the SVMA model into the general framework, let θ

denote the IRFs and shock standard deviation corresponding to the first shock, and let Γ

denote the ACF of the data. That is, θ = ({Θi1,`}1≤i≤n, 0≤`≤q, σ1) and Γ = (Γ(0), . . . ,Γ(k)).

I now apply Lemma 1.1 and Theorem 1.1 to the SVMA model, which will give a simple

description of the limiting form of the Whittle posterior PW
θ|Y (· | YT ) for all the structural

parameters pertaining to the first shock. This analysis of course applies to each of the other

shocks.

I choose θ to be the IRFs and shock standard deviation corresponding to a single shock

in order to satisfy the prior continuity assumption in Lemma 1.1. In the SVMA model,

Γ(k) = σ2
1

q−k∑
`=0

Θ:1,`+kΘ′:1,` +
n∑
j=2

σ2
j

q−k∑
`=0

Θ:j,`+kΘ′:j,`, k = 0, 1, . . . , q, (1.12)

where Θ:j,` = (Θ1j,`, . . . ,Θnj,`)′. If θ = ({Θi1,`}1≤i≤n, 0≤`≤q, σ1) and there are two or more

shocks (n ≥ 2), then the above equations for k = 0, 1, . . . , q are of the form Γ = G(θ) + U ,

where G(·) is a matrix-valued function and U is a function only of structural parameters

pertaining to shocks j ≥ 2. θ and U are a priori independent provided that the n2 IRFs and

n shock standard deviations are a priori mutually independent (for example, the multivariate

Gaussian prior in Section 1.2.5 imposes such independence). In this case, the reduced-form

parameter Γ equals a function of the structural parameter θ plus a priori independent “noise”

U . If the prior on the IRFs is non-dogmatic so that U is continuously distributed, we can
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expect the conditional prior distribution of θ given Γ to be continuous in Γ.58

On the other hand, the conditional prior distribution for θ given Γ would not be contin-

uous in Γ if I had picked θ to be all IRFs and shock standard deviations. If θ = (Θ, σ), then

Γ would equal a deterministic function of θ, cf. (1.12), and so continuity of the conditional

prior Πθ|Γ(· | Γ) would not obtain. Hence, Lemma 1.1 is not useful for deriving the limit of

the joint posterior of all structural parameters of the SVMA model.

The main theorem below states the limiting form of the Whittle posterior under general

choices for the prior on IRFs and shock standard deviations. That is, I do not assume the

multivariate Gaussian prior from Section 1.2.5. I also do not restrict the prior to the region

of invertible IRFs, unlike the implicit priors used in SVAR analysis. Let ΠΘ,σ(·) denote any

prior measure for (Θ, σ) on the space ΞΘ × Ξσ. Through equation (1.7), this prior induces

a joint prior measure ΠΘ,σ,Γ(·) on (Θ, σ,Γ), which in turn implies marginal prior measures

Πθ(·) and ΠΓ(·) for θ and Γ as well as the conditional prior measure Πθ|Γ(· | Γ) for θ given

Γ. Let PW
θ|Y (· | YT ) denote the Whittle posterior measure for θ computed using the Whittle

SVMA likelihood, cf. Section 1.3, and the prior ΠΘ,σ(·).

Theorem 1.2. Let the data YT = (y′1, . . . , y′T )′ be generated from a time series {yt} satisfying

Assumption 1.3 (but not necessarily Assumptions 1.1 and 1.2). Assume that the prior ΠΘ,σ(·)

for (Θ, σ) has full support on ΞΘ × Ξσ. If the induced conditional prior Πθ|Γ(· | Γ) satisfies

the continuity assumption (i) of Lemma 1.1, then the Whittle posterior satisfies

‖PW
θ|Y (· | YT )− Πθ|Γ(· | Γ0)‖L1

p→ 0,

where the stochastic limit is taken as T →∞ under the true probability measure of the data.

If Γ̂ = {Γ̂(k)}0≤k≤q denotes the sample autocovariances up to order q, then the above two

58This paragraph is inspired by Remark 3, pp. 769–770, in Moon & Schorfheide (2012).
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convergence statements also hold with Γ0 replaced by Γ̂.59

Continuity of the conditional prior Πθ|Γ(· | Γ) is stated as a high-level assumption in

Theorem 1.2. I conjecture that prior continuity holds for the multivariate Gaussian prior

introduced in Section 1.2.5, for the reasons discussed below equation (1.12), but I have not

yet been able to prove this result formally.

An important caveat on the results in this subsection is that the MA lag length q is

considered fixed as the sample size T tends to infinity. In applications where q is large

relative to T , i.e., when the data is very persistent, these asymptotics may not be a good

guide to the finite-sample behavior of the posterior. Nevertheless, the fixed-q asymptotics

do shed light on the interplay between the SVMA model, the prior, and the data.60

How the data updates the prior. According to Theorem 1.2, the posterior for the

structural parameters θ does not collapse to a point asymptotically, but the data does pin

down the true ACF Γ0. Equivalently, the data reveals the true reduced-form IRFs and

innovation variance matrix, or more precisely, reveals the Wold representation of the observed

time series yt (Hannan, 1970, Thm. 2′′, p. 158). Due to the under-identification of the SVMA

model, many different structural IRFs are observationally equivalent with a given set of Wold

IRFs, cf. Appendix A.1.2. In large samples, the prior is the only source of information able

to discriminate between different structural IRFs that are consistent with the true ACF.

Unlike SVARs, the SVMA approach does not infer long-horizon IRFs from short-run

dynamics of the data. In large samples the SVMA posterior depends on the data through

59The proof of Theorem 1.2 follows easily from Lemma 1.1 and Theorem 1.1. PWθ|Y (· | YT ) satisfies the
general decomposition (1.10) for partially identified models, where the Whittle posterior for Γ has the general
form (1.11) for q-dependent Gaussian time series. Theorem 1.1 gives posterior consistency for Γ0, which is
assumption (ii) in Lemma 1.1. Posterior consistency for Γ0 requires the induced prior measure ΠΓ(·) to have
Γ0 in its support, which is guaranteed by the assumption of full support for the prior ΠΘ,σ(·).

60I conjecture that my results can be extended to allow for the asymptotic thought experiment q = q(T ) =
O(T ν), for appropriate ν > 0 and under additional nonparametric conditions.
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the empirical autocovariances Γ̂ out to lag q. Inference about long-horizon impulse responses

is informed by the empirical autocovariances at the same long horizons (as well as other

horizons).61 In contrast, most SVAR estimation procedures extrapolate long-horizon IRFs

from the first few empirical autocorrelations of the data. In this sense, the SVMA approach

lets the data influence IRF inference more flexibly than SVAR analysis, although the degree

to which the data influences the posterior depends on the prior.

Theorem 1.2 shows to what extent the data can falsify the prior beliefs. The data indi-

cates whether the induced prior ΠΓ(·) on the ACF is at odds with the true ACF Γ0.62 For

example, if the prior distribution on IRFs imposes a strong (but non-dogmatic) belief that

{yt} is very persistent, but the actual data generating process is not persistent, the posterior

will in large samples put most mass on IRFs that imply low persistence, as illustrated in

Appendix A.1.5.2. On the other hand, if the prior distribution on IRFs is tightly concen-

trated around parameters (Θ, σ) that lie in the true identified set S(Γ0), then the posterior

also concentrates around (Θ, σ), regardless of how close (Θ, σ) are to the true structural

parameters.

Robustness to misspecified likelihood. Theorem 1.2 states that the posterior mea-

sure, which is computed using the Whittle likelihood and thus under the working assumption

of a Gaussian SVMA model, converges to Πθ|Γ(· | Γ0) regardless of whether the Gaussian

SVMA model is correctly specified.63 The only restrictions on the true data generating pro-

cess are the stationarity and weak dependence conditions in Assumption 1.3. Of course, the

IRF parameters only have a structural economic interpretation if the basic SVMA model

61The local projection method of Jordà (2005) shares this feature but assumes that shocks are observed.

62As a tool for prior elicitation, prior predictive checks can be used to gauge whether the induced prior
distribution on the ACF is inconsistent with the observed sample ACF.

63Baumeister & Hamilton (2015b) derive an analogous result for Bayesian inference in the SVAR model
with a particular family of prior distributions and assuming invertibility.
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structure in Assumption 1.1 holds. In this case, the ACF has the form (1.7), so the condi-

tional prior Πθ|Γ(· | Γ0) imposes valid restrictions on the structural parameters. Thus, under

Assumptions 1.1 and 1.3, the large-sample shape of the Whittle SVMA posterior provides

valid information about θ even when the shocks are non-Gaussian or heteroskedastic (i.e.,

E(ε2
j,t | {εs}s<t) is non-constant).64

The asymptotic robustness to non-Gaussianity of the shocks is a consequence of the neg-

ligible importance of the uncertainty surrounding estimation of the true ACF Γ0. As in the

general Lemma 1.1, the latter uncertainty gets dominated in large samples by the condi-

tional prior uncertainty about the structural parameters θ given knowledge of Γ0. Because

the sampling distribution of any efficient estimator of Γ0 in general depends on fourth mo-

ments of the data, the sampling distribution is sensitive to departures from Gaussianity, but

this sensitivity does not matter for the first-order asymptotic limit of the posterior for θ.

My results do not and cannot imply that Bayesian inference based on the Gaussian SVMA

model is asymptotically equivalent to optimal Bayesian inference under non-Gaussian shocks.

If the SVMA likelihood were computed under the assumption that the structural shocks εt

are i.i.d. Student-t distributed, say, then the asymptotic limit of the posterior would differ

from Πθ|Γ(· | Γ0). Indeed, if the shocks are known to be non-Gaussian, then higher-order

cumulants of the data have identifying power, the empirical ACF does not constitute an

asymptotically sufficient statistic for the IRFs, and it may no longer be the case that every

invertible set of IRFs can be matched with an observationally equivalent set of noninvertible

IRFs (Lanne & Saikkonen, 2013; Gospodinov & Ng, 2015).

However, Bayesian inference based on non-Gaussian shocks is less robust than Gaussian

inference. Intuitively, while the expectation of the Gaussian or Whittle (quasi) log likelihood

64Standard arguments show that Assumption 1.1 implies Assumption 1.3 under two additional conditions:
The true polynomial Θ(z) cannot have any roots exactly on the unit circle (but the true IRFs may be
invertible or noninvertible), and the shocks εt must have enough moments to ensure consistency of Γ̂.
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function depends only on second moments of the data, the expectation of a non-Gaussian

log likelihood function generally depends also on higher moments. Hence, Bayesian infer-

ence computed under non-Gaussian shocks is misleading asymptotically if a failure of the

distributional assumptions causes misspecification of higher-order moments, even if second

moments are correctly specified.65 It is an interesting question how to exploit the identifying

power of non-Gaussian shocks without unduly compromising computational tractability or

robustness to misspecification.

Theorem 1.2 also implies that the error incurred in using the Whittle approximation to

the SVMA likelihood is negligible in large samples, in the sense that the data pins down the

true ACF in large samples even when the Whittle approximation is used. This is true whether

or not the data distribution is the one implied by the Gaussian SVMA model, as long as

Assumption 1.3 holds. As discussed in Section 1.3, the reweighting step in Appendix A.1.4.2

therefore makes no difference asymptotically.

1.7 Comparison with SVAR methods

To aid readers who are familiar with SVARs, this section shows that standard SVAR identi-

fying restrictions can be transparently imposed through specific prior choices in the SVMA

model, if desired. The SVMA approach easily accommodates exclusion and sign restric-

tions on short- and long-run impulse responses. External instruments can be exploited in

the SVMA framework by expanding the vector of observed time series. Both dogmatic and

non-dogmatic prior restrictions are feasible. For extensive discussion of SVAR identification

schemes, see Ramey (2016), Stock & Watson (2016), and Uhlig (2015).

The most popular identifying restrictions in the literature are exclusion (i.e., zero) re-

65Consider the trivial SVMA model yt = εt, E(ε2
t ) = σ2 (n = 1, q = 0). It is well known that the Gaussian

MLE σ̂2 = T−1∑
t y

2
t of σ2 = Γ(0) enjoys unique robustness properties.
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strictions on short-run (i.e., impact) impulse responses: Θij,0 = 0 for certain pairs (i, j).

These short-run exclusion restrictions include so-called “recursive” or “Cholesky” orderings,

in which the Θ0 matrix is assumed triangular. Exclusion restrictions on impulse responses

(at horizon 0 or higher) can be incorporated in the SVMA framework by simply setting the

corresponding Θij,` parameters equal to zero and dropping them from the parameter vector.

Prior elicitation and posterior computation for the remaining parameters are unchanged.

Another popular type of identifying restrictions are exclusion restrictions on long-run (i.e.,

cumulative) impulse responses: ∑q
`=0 Θij,` = 0 for certain pairs (i, j). Long-run exclusion

restrictions can be accommodated in the SVMA model by restricting Θij,q = −∑q−1
`=0 Θij,`

when evaluating the likelihood. The first q impulse responses (Θij,0, . . . ,Θij,q−1) are treated

as free parameters whose prior must be specified by the researcher. When evaluating the

score in the HMC procedure, cf. Section 1.3, the chain rule must be used to incorporate the

effect that a change in Θij,` (` < q) has on the implied value for Θij,q.

Short- or long-run exclusion restrictions are special cases of linear restrictions on the IRF

parameters. Suppose we have prior information that C vec(Θ) = d, where C is a known full-

rank matrix and d is a known vector.66 Let C⊥ be a matrix such that (C ′, C⊥) is a square

invertible matrix and CC⊥ = 0. We can then reparametrize vec(Θ) = C⊥ψ + C ′(CC ′)−1d,

where ψ is an unrestricted vector. Given a prior for ψ,67 posterior inference in the SVMA

model can be carried out as in Section 1.3, except that Θ is treated as a known linear function

of the free parameters ψ. Again, the chain rule provides the score with respect to ψ.

The preceding discussion dealt with dogmatic prior restrictions that impose exclusion

restrictions with 100% prior certainty, but in many cases non-dogmatic restrictions are more

66These restrictions should include the normalizations Θijj,0 = 1 for j = 1, . . . , n.

67For example, a prior for ψ can be elicited as follows. Elicit a tentative multivariate Gaussian prior
for Θ that is approximately consistent with the linear restrictions. Then obtain the prior for ψ from the
relationship ψ = (C⊥′C⊥)−1C⊥′{vec(Θ)−C ′(CC ′)−1d}. In general, subtle issues (the Borel paradox) arise
when a restricted prior is obtained from an unrestricted one (Drèze & Richard, 1983, Sec. 1.3).
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credible.68 Multivariate Gaussian priors can easily handle non-dogmatic prior restrictions.

A prior belief that the impulse response Θij,` is close to zero with high probability is imposed

by choosing prior mean µij,` = 0 along with a small value for the prior variance τ 2
ij,` (see

the notation in Section 1.2.5). To impose a prior belief that the long-run impulse response∑q
`=0 Θij,` is close to zero with high probability, imagine that Θij,q = −∑q−1

`=0 Θij,` + νij,

where νij is mean-zero independent Gaussian noise with a small variance. Given a choice

of Gaussian prior for the first q impulse responses (Θij,0, . . . ,Θij,q−1), this relationship fully

specifies the prior mean vector and covariance matrix of the entire IRF (Θij,0, . . . ,Θij,q).

These considerations only concern the functional form of the prior density for Θ; evaluation

of the likelihood and score is carried out exactly as in Section 1.3.

Many recent SVAR papers exploit sign restrictions on impulse responses: Θij,` ≥ 0 or

Θij,` ≤ 0 for certain triplets (i, j, `). Dogmatic sign restrictions can be imposed in the SVMA

framework by simply restricting the IRF parameter space ΞΘ to the subspace where the

inequality constraints hold. This may require some care when running the HMC procedure,

but the standard reparametrization Θij,` = ± exp{log(±Θij,`)} should work (see also Neal,

2011, Sec. 5.1). If the researcher is uncomfortable imposing much more prior information

than the sign restrictions, the prior distribution for the impulse responses in question can be

chosen to be diffuse (e.g., truncated Gaussian with large variance).69

However, researchers often have more prior information about impulse responses than

just their signs, and this can be exploited in the SVMA approach.70 If an impulse response

is viewed as being likely to be positive, then very small positive values ought to be less

68The distinction between dogmatic (exact) and non-dogmatic (“stochastic”) identifying restrictions is
familiar from the Bayesian literature on simultaneous equation models (Drèze & Richard, 1983).

69Poirier (1998, Sec. 4) warns against entirely flat priors in partially identified models.

70Similar points have been made in the context of SVARs by Kilian & Murphy (2012), and even more
explicitly by Baumeister & Hamilton (2015c). While these papers focus on prior information about impact
impulse responses, the SVMA approach facilitates imposing information about longer-horizon responses.
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likely than somewhat larger values, up to a point. Additionally, extremely large values for

the impulse responses can often be ruled out a priori. The multivariate Gaussian prior

distribution in Section 1.2.5 is capable of expressing a strong but non-dogmatic prior belief

that certain impulse responses have certain signs, while at the same time imposing weak

information about magnitudes and ruling out extreme values.71

While computationally attractive, the well-known Uhlig (2005) inference procedure for

sign-identified SVARs is less transparent than the SVMA approach. Uhlig (2005) uses a

conjugate prior on the reduced-form VAR parameters and a uniform conditional prior for

the structural parameters given the reduced-form parameters.72 Because the prior is mainly

chosen for computational convenience, it is not very flexible and does not easily allow for

non-dogmatic sign restrictions. Furthermore, Baumeister & Hamilton (2015b) show that

the Uhlig (2005) procedure imposes unintended and unacknowledged prior information in

addition to the acknowledged sign restrictions.73 In contrast, the SVMA prior is flexible and

all restrictions that it imposes can be transparently visualized.

The SVMA approach can exploit the identifying power of external instruments. An

external instrument is an observed variable zt that is correlated with one of the structural

shocks but uncorrelated with the other shocks (Stock & Watson, 2008, 2012a; Mertens &

Ravn, 2013). If such an instrument is available, it can be incorporated in the analysis by

71In some applications, a non-symmetric (e.g., log-normal) prior distribution may better express a strong
prior belief in the sign of an impulse response, while imposing weak prior restrictions on the magnitude.

72Using the notation of Footnote 4 and setting Σ = H diag(σ)2H ′, the prior for the reduced-form param-
eters (A1, . . . , Am,Σ) is a normal-inverse-Wishart distribution, while the prior for the orthogonal matrix Q
given the reduced-form parameters is Haar measure restricted to the space where the sign restrictions hold.
See Arias et al. (2014) for a full discussion. The Uhlig (2005) prior implies a particular informative prior
distribution on IRFs, which could in principle be imposed in the SVMA model. Doing so is not desirable,
as the main justification for the Uhlig (2005) prior is its convenience in SVAR analysis.

73Giacomini & Kitagawa (2015) develop a robust Bayes SVAR approach that imposes dogmatic exclusion
and sign restrictions without imposing any other identifying restrictions. Their goals are diametrically
opposed to mine, since one of the motivations of the SVMA approach is to allow for as many types of prior
information as possible, including information about magnitudes, shapes, and smoothness.
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adding zt to the vector yt of observed variables. Suppose we add it as the first element

(i = 1), and that zt is an instrument for the first structural shock (j = 1). The properties of

the external instrument then imply that we have a strong prior belief that Θ1j,0 is (close to)

zero for j = 2, 3, . . . , n. Depending on the application, we may also have reason to believe

that the non-impact impulse responses Θ1j,` are (close to) zero for ` ≥ 1. Such prior beliefs

can be imposed like any other exclusion restrictions.

The SVMA IRFs can be restricted to be invertible, if desired. As explained in Sec-

tion 1.2.3, SVARs implicitly assume that the IRFs are invertible, although this is more of a

bug than a feature. If, for some reason, the researcher wants to impose invertibility a priori

in SVMA analysis, simply restrict the IRF parameter space ΞΘ to the invertible subspace

{Θ: det(∑q
`=0 Θ`z

`) 6= 0 ∀ z ∈ C s.t. |z| < 1}.74 Since this represents a nonlinear constraint

on the parameter space, it is easiest to carry out posterior inference by first employing the

HMC procedure on the unrestricted parameter space and afterwards discarding all posterior

draws of Θ that are noninvertible. If the procedure ends up discarding a high fraction of

posterior draws, the invertibility restriction is called into question.

1.8 Topics for future research

I conclude by listing some – primarily technical – avenues for future research.

Many SVAR papers seek to identify the IRFs to a single shock (while allowing for other

shocks). It would be interesting to investigate whether prior elicitation and Bayesian com-

putations in the SVMA approach can be simplified in the case of single-shock identification.

Whereas the SVMA model in Section 1.2 does not restrict the IRFs at all before prior

74If det(Θ0) = 0, the IRFs are noninvertible. If det(Θ0) 6= 0, the roots of the polynomial det(
∑q
`=0 Θ`z

`)
equal the roots of det(In+

∑q
`=1 Θ−1

0 Θ`z
`). The latter roots can be obtained as reciprocals of the eigenvalues

of the polynomial’s companion matrix (e.g., Hamilton, 1994, Prop. 10.1).
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information is imposed, an alternative modeling strategy is to impose a flexible parametric

structure on the SVMA IRFs.75 Each IRF could be parametrized as a polynomial, trigono-

metric, or spline function of the horizon, say. The likelihood and score formulas would be

essentially unchanged, and computational advantages due to reduced dimensionality may

outweigh the loss of flexibility in specifying the IRF prior. Parametrizing the IRFs in this

way would even permit an infinite MA lag length (q =∞), while allowing for noninvertibility.

Following the SVAR literature, I assumed that the number of shocks equals the number of

observed variables. Yet the SVMA likelihood and Whittle approximation may be evaluated

in essentially the same way if the number of shocks exceeds the number of variables. Hence,

given a prior on the IRFs, the same Bayesian computations can be applied. The asymptotic

analysis also carries through essentially unchanged. However, the characterization of the

identified set in Appendix A.1.2 is substantially affected by allowing for more shocks than

variables. It would be interesting to extend the identification analysis to the general case.

Also in line with the SVAR literature, this paper focused on a linear stationary model

with constant parameters and Gaussian shocks. However, the key advantages of the SVMA

approach – the natural IRF parametrization and the ability to allow for noninvertibility – do

not rely on these specific assumptions. As long as the likelihood can be evaluated, Bayesian

computation is possible in principle. Future work could explore the computational feasibility

and robustness properties of SVMA inference that explicitly incorporates nonstationarity,

deterministic components, nonlinearities, time-varying parameters, non-Gaussian shocks, or

stochastic volatility.76 The Whittle likelihood approximation used in Section 1.3 may work

poorly in non-Gaussian models, but other computational tricks may be available.

Prior knowledge that one of the shocks is more volatile than usual on a known set of

75This idea is explored by Hansen & Sargent (1981, p. 44) and Barnichon & Matthes (2015).

76In the context of cointegrated time series, an analog of the SVMA approach is to do Bayesian inference
on the parameters of the Granger representation.
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dates can improve identification of the IRFs, as in Rigobon (2003). The SVMA model can

be extended along these lines by allowing the standard deviation of the shock in question to

switch deterministically between two different values, while assuming constancy of all other

structural parameters. It is straight-forward to modify the Kalman filter in Appendix A.1.3.1

to compute the corresponding likelihood function.

A very diffuse prior on IRFs leads to a multimodal posterior distribution due to under-

identification. In extreme cases multimodality may cause problems for the basic HMC pro-

cedure. It may be possible to exploit the constructive characterization of the identified set in

Appendix A.1.2 to extend the algorithm so that it occasionally jumps between approximate

modes of the posterior. In case of multimodality, posterior uncertainty should be summarized

by highest posterior density intervals instead of equal-tailed (e.g., 5–95 percentile) intervals.

Finally, it may be possible to simplify posterior simulation by leveraging the asymp-

totic theory in Section 1.6.3. For example, to do exact inference, an approximation to the

asymptotic posterior limit could be used as a proposal distribution for importance sampling.
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Chapter 2

Consistent Factor Estimation in Dynamic Fac-

tor Models with Structural Instability

This paper was coauthored with Brandon J. Bates, James H. Stock & Mark W. Watson. It

was published in Journal of Econometrics 177(2), special issue on “Dynamic Econometric

Modeling and Forecasting”, Timmermann, A. & van Dijk, H. (Eds.), 289–304, December

2013. I thank my coauthors and Elsevier for their permission to reproduce the work here.

2.1 Introduction

Dynamic factor models (DFMs) provide a flexible framework for simultaneously modeling

a large number of macroeconomic time series.1 In a DFM, a potentially large number of

observed time series variables are modeled as depending on a small number of unobserved

factors, which account for the widespread co-movements of the observed series. Although

there is now a large body of theory for the analysis of high-dimensional DFMs, nearly all

1The early work on DFMs considered a small number of time series. DFMs were introduced by Geweke
(1977), and early low-dimensional applications include Sargent & Sims (1977), Engle & Watson (1981),
Watson & Engle (1983), Sargent (1989) and Stock & Watson (1989). Work over the past fifteen years has
focused on methods that facilitate the analysis of a large number of time series, see Forni, Hallin, Lippi &
Reichlin (2000) and Stock & Watson (2002) for early contributions. For recent contributions and discussions
of this large literature see Bai & Ng (2008), Eickmeier & Ziegler (2008), Chudik & Pesaran (2011) and Stock
& Watson (2011).
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of this theory has been developed for the case in which the DFM parameters are stable, in

particular, in which there are no changes in the factor loadings (the coefficients on the fac-

tors); among the few exceptions are Stock & Watson (2002, 2009) and Breitung & Eickmeier

(2011). This assumption of parameter stability is at odds with broad evidence of time vari-

ation in many macroeconomic forecasting relations. Recently, a number of empirical DFM

papers have explicitly allowed for structural instability, e.g., Banerjee, Marcellino & Masten

(2008), Stock & Watson (2009), Eickmeier, Lemke & Marcellino (2015) and Korobilis (2013).

However, theoretical guidance remains scant.

The goal of this paper is to characterize the type and magnitude of parameter instability

that can be tolerated by a standard estimator of the factors, the principal components

estimator, in a DFM when the coefficients of the model are unstable. In so doing, this paper

contributes to a larger debate about how best to handle the instability that is widespread in

macroeconomic forecasting relations. On the one hand, the conventional wisdom is that time

series forecasts deteriorate when there are undetected structural breaks or unmodeled time-

varying parameters, see for example Clements & Hendry (1998). This view underlies the

large literatures on the detection of breaks and on models that incorporate breaks and time

variation, for example by modeling the breaks as following a Markov process (Hamilton,

1989; Pesaran, Pettenuzzo & Timmermann, 2006). In the context of DFMs, Breitung &

Eickmeier (2011) show that a one-time structural break in the factor loadings has the effect

of introducing new factors, so that estimation of the factors ignoring the break leads to

estimating too many factors.

On the other hand, a few recent papers have provided evidence that sometimes it can

be better to ignore parameter instability when forecasting. Pesaran & Timmermann (2005)

point out that whether to use pre-break data for estimating an autoregression trades off an

increase in bias against a reduction in estimator variance, and they supply empirical evidence

supporting the use of pre-break data for forecasting. Pesaran & Timmermann (2007) develop
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tools to help ascertain in practice whether pre-break data should be used for estimation of

single-equation time series forecasting models. In DFMs, Stock & Watson (2009) provide

an empirical example using U.S. macroeconomic data from 1960–2007 in which full-sample

estimates of the factors are preferable to subsample estimates, despite clear evidence of a

break in many factor loadings around the beginning of the Great Moderation in 1984.

We therefore seek a precise theoretical understanding of the effect of instability in the

factor loadings on the performance of principal components estimators of the factors. Specif-

ically, we consider a DFM with N variables observed for T time periods and r � N factors,

where the N × r matrix of dynamic factor loadings Λ can vary over time. We write this

time variation so that Λ at date t equals its value at date 0, plus a deviation; that is,

Λt = Λ0 + hNT ξt. The term ξt is a possibly random disturbance, and hNT is a deterministic

scalar sequence in N and T which governs the scale of the deviation. Using this framework

and standard assumptions in the literature (Bai & Ng, 2002, 2006a), we obtain general con-

ditions on hNT under which the principal components estimates are mean square consistent

for the space spanned by the true factors. We then specialize these general results to three

leading cases: i.i.d. deviations of Λt from Λ0, random walk deviations that are independent

across series, and an arbitrary one-time break that affects some or all of the series.

For the case in which Λt is a vector of independent random walks, Stock & Watson (2002)

showed that the factor estimates are consistent if hNT = O(T−1). By using a different method

of proof (which builds on Bai & Ng, 2002), we are able to weaken this result considerably

and show that the estimated factors are consistent if hNT = o(T−1/2). We further show

that, if hNT = O(1/min{N1/4T 1/2, T 3/4}), the estimated factors achieve the mean square

consistency rate of 1/min{N, T}, a rate initially established by Bai & Ng (2002) in the case

of no time variation. Because the elements of ξt in the random walk case are themselves

Op(t1/2), this means that deviations in the factor loadings on the order of op(1) do not

break the consistency of the principal components estimator. These rates are remarkable:
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as a comparison, if the factors were observed so an efficient test for time variation could

be performed, the test would have nontrivial power against random walk deviations in a

hNT ∝ T−1 neighborhood of zero (e.g., Stock & Watson, 1998b) and would have power of

one against parameter deviations of the magnitude tolerated by the principal components

estimator. Intuitively, the reason that the principal components estimator can handle such

large changes in the coefficients is that, if these shifts have limited dependence across series,

their effect can be reduced, and eliminated asymptotically, by averaging across series.

We further provide the rate of mean square consistency as a function of hNT , both in

general and specialized to the random walk case. The resulting consistency rate function is

nonlinear and reflects the tradeoff between the magnitude of the instability and, through the

relative rate N/T as T increases, the amount of cross-sectional information that can be used

to “average out” this instability. To elaborate on the practical implications of the theory, we

conduct a simulation study calibrated to the Stock & Watson (2009) dataset. The results

confirm that the principal components estimator and derived diffusion index forecasts are

robust to empirically relevant degrees of temporal instability in the factor loadings, although

the precise quantitative conclusions depend on the assumed type of structural instability

and the persistence of the factors. Interestingly, the robustness obtains even though the Bai

& Ng (2002) information criterion estimator of the rank of the factor space appears to be

asymptotically biased for some of our parametrizations.

The rest of the paper proceeds as follows. Section 2.2 lays out the model, the assumptions,

and the three special cases. Our main result on consistency of the principal components

estimator is presented in Section 2.3. Rank selection and diffusion index forecasting are

discussed in Section 2.4. Section 2.5 provides Monte Carlo results, and Section 2.6 concludes.
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2.2 Model and assumptions

2.2.1 Basic model and intuition

The model and notation follow Bai & Ng (2002) closely. Denote the observed data by Xit

for i = 1, . . . , N , t = 1, . . . , T . It is assumed that the observed series are driven by a small,

fixed number r of unobserved common factors Fpt, p = 1, . . . , r, such that

Xit = λ′itFt + eit.

Here λit ∈ Rr is the possibly time-varying factor loading of series i at time t, Ft =

(F1t, . . . , Frt)′, and eit is an idiosyncratic error. Define vectors Xt = (X1t, . . . , XNt)′, et =

(e1t, . . . , eNt)′, Λt = (λ1t, . . . , λNt)′ and data matrices X = (X1, . . . , XT )′, F = (F1, . . . , FT )′.

The initial factor loadings Λ0 are fixed. We write the cumulative drift in the parameter

loadings as

Λt − Λ0 = hNT ξt,

where hNT is a deterministic scalar that may depend on N and T , while {ξt} is a possibly

degenerate random process of dimension N ×r, ξt = (ξ1t, . . . , ξNt)′ (in fact, it will be allowed

to be a triangular array). Observe that

Xt = ΛtFt + et = Λ0Ft + et + wt, (2.1)

where wt = hNT ξtFt. Our proof technique will be to treat wt as another error term in the

factor model.2

2As pointed out by our referees, a straight-forward approach would be to treat e∗t = et +wt as a catch-all
error term and provide conditions on hNT and ξt such that e∗t satisfies Assumption C in Bai & Ng (2002).
Some of the examples below could be handled this way. However, in the case of random walk factor loadings,
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To establish some intuition for why estimation of the factors is possible despite structural

instability, let the number of factors be r = 1 and consider an independent random walk

model for the time variation in the factor loadings, so that ξit = ξi,t−1 + ζit, where ζit is i.i.d.

across i and t with mean 0 and variance σ2
ζ , and suppose that Λ0 is known. In addition, we

look ahead to Assumption 2.2 and assume that Λ′0Λ0/N → D > 0. Because Λ0 is known, we

can consider the estimator F̂t(Λ0) = (Λ′0Λ0)−1Λ′0Xt. From (2.1),

F̂t(Λ0) = Ft + (Λ′0Λ0)−1Λ′0et + (Λ′0Λ0)−1Λ′0wt,

so

F̂t(Λ0)− Ft ≈ D−1N−1
N∑
i=1

λi0eit +D−1N−1
N∑
i=1

λi0wit.

The first term does not involve time-varying factor loadings and under limited cross-sectional

dependence it is Op(N−1/2). Using the definition of wt, the second term can be written

D−1N−1
N∑
i=1

λi0wit = D−1
(
hNTN

−1
N∑
i=1

λi0ξit

)
Ft.

Since Ft is Op(1), this second term is the same order as the first, Op(N−1/2), provided

that hNTN−1∑N
i=1 λi0ξit is Op(N−1/2). Under the independent random walk model, ξit =

Op(T 1/2), so

hNTN
−1

N∑
i=1

λi0ξit = Op(hNT (T/N)1/2),

which in turn is Op(N−1/2) if hNT = O(T−1/2). This informal reasoning suggests that the

estimator F̂t(Λ0) satisfies F̂t(Λ0) = Ft +Op(N−1/2) if hNT = cT−1/2.

In practice Λ0 is not known so F̂t(Λ0) is not feasible. The principal components esti-

applying the Bai & Ng assumption to e∗t would restrict the temporal dependence of ξt more severely than
required by our Theorem 2.1 (cf. Assumption 2.3.2 below).
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mator of Ft is F̂t(Λ̂r), where Λ̂r is the matrix of eigenvectors corresponding to the first r

eigenvalues of the sample second moment matrix of Xt. The calculations below suggest that

the estimation of Λ0 by Λ̂r reduces the amount of time variation that can be tolerated in

the independent random walk case; setting hNT = cT−1/2 results in an Op(1) mean square

discrepancy between F̂t(Λ̂r) and Ft.

2.2.2 Examples of structural instability

For concreteness, we highlight three special cases that will receive extra attention in the

following analysis. In these examples, the scalar hNT is left unspecified for now. We will

continue to set the number of factors r to 1 for ease of exposition.

Example 1 (white noise). All entries ξit are i.i.d. across i and t with mean zero and

E(ξ4
it) < ∞. The factor loadings Λt are then equal to the initial loading matrix Λ0 plus

uncorrelated noise.3

Example 2 (random walk). Entries ξit are given by ξit = ∑t
s=1 ζis, where {ζis} is a

random process that is i.i.d. across i and s with mean zero and E(ζ4
is) <∞. In this example,

the factor loadings evolve as cross-sectionally uncorrelated random walks.4 Models of this

type are often referred to as time-varying parameter models in the literature. DFMs with

time-varying parameters have recently received attention in the empirical macro literature,

cf. Eickmeier et al. (2015), Korobilis (2013) and references therein.

3As is clear from the subsequent calculations, our conclusions remain true if the disturbances are weakly
dependent in the temporal and cross-sectional dimensions. In the interest of clarity we focus on the i.i.d.
case.

4While conceptually clear, cross-sectional independence of the random walk innovations ζit is a stricter
assumption than necessary for the subsequent treatment. It is straight-forward to modify the example to
allow m-dependence or exponentially decreasing correlation across i, and all the results below go through
for these modifications.
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Example 3 (single large break). Let τ̄ ∈ (0, 1) be fixed and set κ = [τ̄T ], where [ · ]

denotes the integer part. Let ∆ ∈ RN be a shift parameter. We then define

ξt =


0 for t = 1, . . . , κ

∆ for t = κ+ 1, . . . , T
.

Breitung & Eickmeier (2011) demonstrate that a structurally unstable model of this kind may

equivalently be written as a stable DFM with 2r dynamic factors. Deterministic parameter

shifts have also been extensively studied in the context of structural break tests in the linear

regression model.

2.2.3 Principal components estimation

We are interested in the properties of the principal components estimator of the factors,

where estimation is carried out as if the factor loadings were constant over time. Let k

denote the number of factors that are estimated. The principal components estimators of

the loadings and factors are obtained by solving the minimization problem

V (k) = min
Λk,Fk

(NT )−1
N∑
i=1

T∑
t=1

(Xit − λki
′
F k
t )2, (2.2)

where the superscripts on Λk and F k signify that there are k estimated factors. It is necessary

to impose a normalization on the estimators to uniquely define the minimizers (see Bai &

Ng, 2008, for a thorough treatment). Such restrictions are innocuous since the unobserved

true factors F are only identifiable up to multiplication by a non-singular matrix. One

estimator of F is obtained by first concentrating out Λk and imposing the normalization

F k′F k/T = Ik. The resulting estimator F̃ k is given by
√
T times the matrix of eigenvectors

corresponding to the largest k eigenvalues of the matrix XX ′. A second estimator is obtained

by first concentrating out F k and imposing the normalization Λk′Λk/N = Ik. This estimator
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equals F̄ k = XΛ̄k/N , where Λ̄k is
√
N times the eigenvectors corresponding to the k largest

eigenvalues of X ′X. Following Bai & Ng (2002), we use a rescaled estimator

F̂ k = F̄ k(F̄ k′F̄ k/T )1/2

in the following.

2.2.4 Assumptions

Our assumptions on the factors, initial loadings and the idiosyncratic errors are the same as

in Bai & Ng (2002). The matrix norm is chosen to be the Frobenius norm ‖A‖ = [tr(A′A)]1/2.

The subscripts i, j will denote cross-sectional indices, s, t will denote time indices and p, q

will denote factor indices. M ∈ (0,∞) is a constant that is common to all the assumptions

below. Finally, define CNT = min{N1/2, T 1/2}. The following are Assumptions A–C in Bai

& Ng (2002).

Assumption 2.1 (Factors). E‖Ft‖4 ≤ M and T−1∑T
t=1 FtF

′
t

p→ ΣF as T → ∞ for some

positive definite matrix ΣF .

Assumption 2.2 (Initial factor loadings). ‖λi0‖ ≤ λ̄ < ∞, and ‖Λ′0Λ0/N − D‖ → 0 as

N →∞ for some positive definite matrix D ∈ Rr×r.

Assumption 2.3 (Idiosyncratic errors). The following conditions hold for all N and T .

1. E(eit) = 0, E|eit|8 ≤M .

2. γN(s, t) = E(e′set/N) exists for all (s, t). |γN(s, s)| ≤ M for all s. In addition,

T−1∑T
s,t=1 |γN(s, t)| ≤M .

3. τij,ts = E(eitejs) exists for all (i, j, s, t). |τij,tt| ≤ |τij| for some τij and for all t, while

N−1∑N
i,j=1 |τij| ≤M . In addition, (NT )−1∑N

i,j=1
∑T
s,t=1 |τij,ts| ≤M .
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4. For every (s, t), E|N−1/2∑N
i=1[eiseit − E(eiseit)]|4 ≤M .

As mentioned by Bai & Ng (2002), the above assumptions allow for weak cross-sectional and

temporal dependence of the idiosyncratic errors. Note that the factors do not need to be

stationary to satisfy Assumption 2.1.

The assumptions we need on the factor loading innovations hNT ξt are summarized below.

For now we require the existence of three envelope functions that bound the rates, in terms

of N and T , at which certain sums of higher moments diverge. Their interpretation will be

made clear in examples below. As we later state in Theorem 2.1, these rates determine the

convergence rate of the principal components estimator of the factors.

Assumption 2.4 (Factor loading innovations). There exist envelope functions Q1(N, T ),

Q2(N, T ) and Q3(N, T ) such that the following conditions hold for all N , T and factor

indices p1, q1, p2, q2 = 1, . . . , r.

1. sups,t≤T
∑N
i,j=1 |E(ξisp1ξjtq1Fsp1Ftq1)| ≤ Q1(N, T ).

2. ∑T
s,t=1

∑N
i,j=1 |E(ξisp1ξjsq1Fsp1Fsq1Ftp2Ftq2)| ≤ Q2(N, T ).

3. ∑T
s,t=1

∑N
i,j=1 |E(ξisp1ξjsq1ξitp2ξjtq2Fsp1Fsq1Ftp2Ftq2)| ≤ Q3(N, T ).

While consistency of the principal components estimator will require limited dependence

between the factor loading innovations and the factors themselves, full independence is not

necessary. This is empirically appealing, as it is reasonable to expect that breaks in the factor

relationships may occur at times when the factors deviate substantially from their long-run

means. That being said, we remark that if the processes {ξt} and {Ft} are assumed to be

independent (and given Assumption 2.1), two sufficient conditions for Assumption 2.4 are

that there exist envelope functions Q̃1(N, T ) and Q̃3(N, T ) such that for all factor indices,

sup
s,t≤T

N∑
i,j=1
|E(ξisp1ξjtq1)| ≤ Q̃1(N, T ) (2.3)
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and
T∑

s,t=1

N∑
i,j=1
|E(ξisp1ξjsq1ξitp2ξjtq2)| ≤ Q̃3(N, T ). (2.4)

Under the above conditions, Assumption 2.4 holds with Q1(N, T ) ∝ Q̃1(N, T ), Q2(N, T ) ∝

T 2Q̃1(N, T ) and Q3(N, T ) ∝ Q̃3(N, T ).

Finally, rather than expanding the list of moment conditions in Assumption 2.4, we

simply impose independence between the idiosyncratic errors and the other variables. It is

possible to relax this assumption at the cost of added complexity.5

Assumption 2.5 (Independence). For all (i, j, s, t), eit is independent of (Fs, ξjs).

Examples (continued). For Examples 1 and 2 (white noise and random walk), assume

that {ξt} and {Ft} are independent.

In Example 1 (white noise), the supremum on the left-hand side of (2.3) reduces to

NE(ξ2
it). By writing out terms, it may be verified that the quadruple sum in condition (2.4)

is bounded by an O(NT 2) +O(N2T ) expression. Consequently, Assumption 2.4 holds with

Q1(N, T ) = O(N), Q2(N, T ) = O(NT 2) and Q3(N, T ) = O(NT 2) +O(N2T ).

In Example 2 (random walk), due to cross-sectional i.i.d.-ness we obtain

sup
s,t≤T

N∑
i=1

N∑
j=1
|E(ξisξjt)| = N sup

s,t≤T
|E(ξisξit)|

= N sup
s,t≤T

min{s, t}E(ζ2
i1)

= O(NT ),

so Assumption 2.4.1 and 2.4.2 hold with Q1(N, T ) = O(NT ) and Q2(N, T ) = O(NT 3). A

somewhat lengthier calculation gives that the quadruple sum in condition (2.4) is O(N2T 4),

5Bai & Ng (2006a) impose independence of {et} and {Ft} when providing inferential theory for regressions
involving estimated factors.
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so Assumption 2.4.3 holds with Q3(N, T ) = O(N2T 4).

In Example 3 (single large break), the supremum in inequality (2.3) evaluates as

N∑
i=1
|∆i|

N∑
j=1
|∆j|.

Assume that |∆i| ≤M for some M ∈ (0,∞) that does not depend on N . We note for later

reference that if |∆i| > 0 for at most O(N1/2) values of i, the expression above is O(N). The

same condition ensures that the left-hand side of condition (2.4) is O(NT 2). Consequently,

we can choose Q1(N, T ) = O(N) and Q2(N, T ) = Q3(N, T ) = O(NT 2) if at most O(N1/2)

series undergo a break.

2.3 Consistent estimation of the factor space

2.3.1 Main result

Our main result provides the mean square convergence rate of the usual principal components

estimator under Assumptions 2.1 to 2.5. After stating the general theorem, we give sufficient

conditions that ensure the same convergence rate that Bai & Ng (2002) obtained in a setting

with constant factor loadings.

Theorem 2.1. Let Assumptions 2.1 to 2.5 hold. For any fixed k,

T−1
T∑
t=1
‖F̂ k

t −Hk′Ft‖2 = Op(RNT )

as N, T →∞, where

RNT = max
{

1
C2
NT

,
h2
NT

N2 Q1(N, T ), h
2
NT

N2T 2Q2(N, T ), h
4
NT

N2T 2Q3(N, T )
}
,
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and the r × k matrix Hk is given by

Hk = (Λ′0Λ0/N)(F ′F̃ k/T ).

See Appendix B.2 for the proof. If RNT → 0 as N, T → ∞, the theorem implies that the

r-dimensional space spanned by the true factors is estimated consistently in mean square

(averaging over time) as N, T → ∞. While we do not discuss it here, a similar statement

concerning pointwise consistency of the factors (Bai & Ng, 2002, p. 198) may be achieved

by slightly modifying Assumptions 2.3 and 2.4.

We now give sufficient conditions on the envelope functions in Assumption 2.4 such that

the principal components estimator achieves the same convergence rate as in Theorem 1 of

Bai & Ng (2002). This rate, C2
NT , turns out to be central for other results in the literature

on DFMs (Bai & Ng, 2002, 2006a). The following corollary is a straight-forward consequence

of Theorem 2.1.

Corollary 2.1. Under the assumptions of Theorem 2.1, and if additionally

• h2
NTQ1(N, T ) = O(N),

• h2
NTQ2(N, T ) = O(NT 2),

• h4
NTC

2
NTQ3(N, T ) = O(N2T 2),

it follows that, as N, T →∞,

C2
NT

(
T−1

T∑
t=1
‖F̂ k

t −Hk′Ft‖2
)

= Op(1).

Examples (continued). In Section 2.2.4 we computed the envelope functions Q1(N, T ),

Q2(N, T ) and Q3(N, T ) for our three examples. From these calculations we note that if

hNT = 1, the model in Example 1 (white noise) satisfies the conditions of Corollary 2.1.
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Hence, uncorrelated order-Op(1) white noise disturbances in the factor loadings do not affect

the consistency of the principal components estimator.

Likewise, it follows from our calculations that the structural break process in Example 2

(random walk) satisfies the conditions of Corollary 2.1 if hNT = O(1/min{N1/4T 1/2, T 3/4}).

Moreover, a rate of hNT = o(T−1/2) is sufficient to achieve RNT = o(1) in Theorem 2.1, i.e.,

that the factor space is estimated consistently. This is a weaker rate requirement than the

O(T−1) scale factor imposed by Stock & Watson (2002).6 To elaborate on the convergence

rate in Theorem 2.1, suppose we set N = [T µ] and hNT = cT−γ, µ, γ ≥ 0. Using the formula

for RNT and the random walk calculations in Section 2.2.4, we obtain

RNT = O(max{T−1, T−µ, T 1−2γ−µ, T 2−4γ}) = O(Tm(µ,γ)), (2.5)

where

m(µ, γ) = max{−1,−µ, 1− 2γ − µ, 2− 4γ} = max{−1,−µ, 2− 4γ}. (2.6)

This convergence rate exponent reflects the influence of the magnitude of the random walk

deviations, as measured by γ, and the relative sizes of the cross-sectional and temporal

dimensions, as measured by µ. Evidently, increasing the number of available series relative

to the sample size improves the worst-case convergence rate, but only up to a point. The

dependence of the convergence rate on γ is monotonic, as expected, but nonlinear.

For Example 3 (single large break), Corollary 2.1 and our calculations in Section 2.2.4

yield that if we set hNT = 1, the principal components estimator achieves the Bai & Ng (2002)

convergence rate, provided at most O(N1/2) series undergo a break. A fraction O(N−1/2) of

the series may therefore experience an order-O(1), perfectly correlated shift in their factor

6Empirical implementations of principal components estimation of structurally unstable DFMs, such as
Eickmeier et al. (2015) and Korobilis (2013), rely on robustness of the estimator to small degrees of instability.
Our theorem shows that the asymptotically allowable amount of instability is larger than hitherto assumed.
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loadings without affecting the consistency of the estimator.

2.3.2 Detailed calculations for special cases

Theorem 2.1 shows the convergence rate of the principal components estimator but does not

offer any information on the constant of proportionality, which in general will depend on

the size of the various moments in Assumptions 2.1 to 2.4. In this subsection we consider

examples in which we can say more about the speed of convergence.

For analytical tractability, we assume in this subsection that the initial factor loadings Λ0

are 0 and the true number of factors r is 1. When Λ0 = 0, the matrix Hk in Theorem 2.1 is

equal to zero, so that consistency of the principal components estimator hinges on how fast

the norm of F̂ k
t tends to zero in mean square.7 As shown in Appendix A.2.1, when Λ0 = 0

and r = 1,

T−1
T∑
t=1
‖F̂ k

t −Hk ′Ft‖2 = (NT )−2
k∑
l=1

ω2
l ,

where ωl is the l-th largest eigenvalue of the T × T matrix XX ′.

Example 1 (white noise, continued). Suppose the single factor is identically 1 (Ft ≡

1), and N and T tend to infinity at the relative rate θ = limN→∞ T/N , θ ∈ (0,∞). Let

the idiosyncratic errors eit be i.i.d. across i and t with E(e2
it) = σ2

e . Denote σ2
ξ = E(ξ2

it).

Appendix A.2.1 shows that if the number of estimated factors is k = 1, then

T−1
T∑
t=1
‖F̂ k

t −Hk ′Ft‖2 = T−2(σ2
e + h2

NTσ
2
ξ )2(1 +

√
θ)4(1 + op(1)). (2.7)

When hNT = 1, the right-hand side quantity is Op(T−2), which is stronger than the Op(C−2
NT )

rate bound in Theorem 2.1. Introducing cross-sectional and temporal dependence in the

7Note that while Λ0 = 0 violates Assumption 2.2, the proof of Theorem 2.1 does not rely on the matrix
D = plim Λ′0Λ0/N being positive definite.
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idiosyncratic errors causes the left-hand side above to achieve the worst-case rate asymp-

totically, as noted by Bai & Ng (2002, pp. 199–200). According to the expression on the

right-hand side of equation (2.7), h2
NT measures the importance of the factor loading dis-

turbance variance relative to the idiosyncratic error variance. Furthermore, for given T , the

mean square error of the principal components estimator increases with the ratio θ ≈ T/N .

Example 2 (random walk, continued). Suppose that the idiosyncratic errors are

cross-sectionally i.i.d. Denote σ2
ζ = E(ζ2

it). If the number of estimated factors is k = 1, we

show in Appendix A.2.1 that

E

(
T−1

T∑
t=1
‖F̂ k

t −Hk ′Ft‖2
)
≥

T−2
T∑

s,t=1

[
γN(s, t) + h2

NTσ
2
ζ min{s, t}E(FsFt)

]
2

, (2.8)

where γN(s, t) is defined in Assumption 2.3. This lower bound on the expectation of the

mean square error of the principal components estimator complements the upper rate bound

in Theorem 2.1. The expression reinforces the intuition that the factor space will be poorly

estimated in models with persistent errors (here eit and hNT ξ′itFt).

Without any prior knowledge about the factor process, a conservative benchmark sets

E(FsFt) = O(1). Note that ∑T
s,t=1 min{s, t} = 1

3T
3 + O(T 2), and ∑T

s,t=1 γN(s, t) = O(T )

by Assumption 2.3. If hNT ≥ T−1 asymptotically, the right-hand side of inequality (2.8) is

then of order h4
NTT

2. Together with Theorem 2.1, this establishes that there exist constants

C,C > 0 such that

C ≤ (h2
NTT )−2E

(
T−1

T∑
t=1
‖F̂ k

t −Hk ′Ft‖2
)
≤ C max{(h2

NTTCNT )−2, 1}
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for sufficiently large N and T .8 The maximum on the right-hand side above tends to 1 as

long as hNT ≥ (TCNT )−1/2 = 1/min{N1/4T 1/2, T 3/4} asymptotically.9 Thus, unless we have

special knowledge about the factor process, we generically need hNT = o(T−1/2) for mean

square consistency of the factors, while hNT = O(1/min{N1/4T 1/2, T 3/4}) is generically

necessary to achieve the Bai & Ng (2002) convergence rate.

Example 3 (single large break, continued). Here we consider a limiting case with

eit ≡ 0, so that all the variance in the observed data is due to structural instability. Suppose

the single factor Ft satisfies (T − κ)−1∑T
t=κ+1 F

2
t

p→ Σ̃F as T →∞. Then, regardless of the

number of estimated factors k,

T−1
T∑
t=1
‖F̂ k

t −Hk ′Ft‖2 = h4
NT

N2 ‖∆‖
4(1− τ̄)2Σ̃2

F (1 + op(1)), (2.9)

as shown in Appendix A.2.1. The result indicates that the mean square error of the principal

components estimator is larger the smaller is τ̄ (the break fraction), the larger is Σ̃F (the

post-break factor second moment), and the larger is ‖∆‖ (the size of the break vector). Note

that if the elements of ∆ are uniformly bounded, |∆i| ≤ M , then ‖∆‖2 is on the order of

the number of series undergoing a break. Denote this number by BNT . The right-hand side

above is then Op ((h2
NTBNT/N)2), which is also the rate stated in the bound in Theorem 2.1,

provided that hNT = 1.

8The rate bound in Theorem 2.1 is in probability, but the proof given in Appendix B.2 shows that the
bound holds in expectation as well.

9Recall that such rates for hNT are exactly the ones we are most interested in, since any faster rate of
decay for hNT will lead to RNT = C−2

NT in Theorem 2.1.
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2.4 Rank selection and diffusion index forecasting

2.4.1 Estimating the number of factors

Bai & Ng (2002, 2006b) introduce a class of information criteria that consistently estimate

the true number r of factors when the factor loadings are constant through time. Specifically,

define the two classes of criteria

PC (k) = V (k) + kg(N, T ), IC (k) = log V (k) + kg(N, T ), (2.10)

where V (k) is the sum of squared residuals defined by (2.2), and g(N, T ) is a deterministic

function satisfying g(N, T )→ 0, C2
NTg(N, T )→∞ as N, T →∞. Let kmax ≥ r be an upper

bound on the estimated rank. With constant factor loadings, a consistent estimate of r is

then given by either k̂ = arg min0≤k≤kmax PC (k) or k̂ = arg min0≤k≤kmax IC (k).

Lemma 2 of Amengual &Watson (2007) establishes that these information criteria remain

consistent for r when the data X are measured with an additive error, i.e., if the researcher

instead observes X̃ = X + b for a T ×N error matrix b that satisfies (NT )−1∑N
i=1

∑T
t=1 b

2
it =

Op(C−2
NT ). By our decomposition (2.1) of Xt, time variation in the factor loadings may be

seen as contributing an extra error term wt to the usual terms Λ0Ft+et. The following result

is therefore a direct consequence of Lemma 2 of Amengual & Watson (2007) and Markov’s

inequality.

Observation 2.1. Let assumptions (A1)–(A9) in Amengual & Watson (2007) hold. If in

addition

h2
NT

N∑
i=1

T∑
t=1

E[(ξ′itFt)2] = O(max{N, T}), (2.11)

then arg min0≤k≤kmax PC (k) p→ r and arg min0≤k≤kmax IC (k) p→ r as N, T →∞.

In the interest of brevity we do not state the precise Amengual & Watson conditions here
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but remark that they are very similar to our Assumptions 2.1 to 2.3 and 2.5. We now

comment on how the sufficient condition in Observation 2.1 bears on our three examples of

structural breaks. The finite-sample performance of the information criteria will be explored

in Section 2.5.

Examples (continued). If r = 1 and ξit is independent of Ft, the left-hand side of condi-

tion (2.11) is of order h2
NT

∑N
i=1

∑T
t=1E(ξ2

it). In Example 1 (white noise), ∑N
i=1

∑T
t=1E(ξ2

it) =

O(NT ), so condition (2.11) holds if hNT = O(C−1
NT ). The white noise disturbances must

therefore vanish asymptotically, albeit slowly, for the Amengual & Watson (2007) result to

ensure consistent estimation of the factor rank.

For Example 2 (random walk),∑N
i=1

∑T
t=1E(ξ2

it) = O(NT 2), implying that we need hNT =

O(1/min{T, (NT )1/2}) to fulfill condition (2.11). In particular, the Stock & Watson (2002)

assumption hNT = O(1/T ) admits consistent estimation of the true number of factors using

the Bai & Ng (2002) information criteria.

In Example 3 (single large break), we set hNT = 1 as before. If (T−κ)−1∑T
t=κ+1E(F 2

t ) =

O(1), we get ∑N
i=1

∑T
t=1 E(ξ2

it) = O(T‖∆‖2), so ‖∆‖2 = O(max{N/T, 1}) is needed to satisfy

condition (2.11). As previously explained, if the elements of ∆ are uniformly bounded, ‖∆‖2

is on the order of the number BNT of series undergoing a break at time t = κ + 1. The

fraction BNT/N of series undergoing a break must therefore be of order at most C−2
NT for

the Amengual & Watson (2007) result to apply. The conclusion that large breaks are more

problematic for rank estimation than for mean square consistency is not surprising given

Breitung & Eickmeier’s (2011) insight that the large break model (with non-vanishing break

parameter) is equivalent to a DFM with 2r factors.

In summary, in all three of our examples we need more stringent assumptions on hNT

in order to ensure consistent estimation of r than we did for consistency of the principal

components estimator. It is a topic for future research to determine whether these tentative
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results can be improved upon.

2.4.2 Diffusion index forecasting

As an application of Corollary 2.1, consider the diffusion index model of Stock & Watson

(1998a, 2002) and Bai & Ng (2006a). For ease of exposition we assume that the factors are

the only explanatory variables, so the model is

yt+h = α′Ft + εt+h.

Here yt+h is the scalar random variable that we seek to forecast, while εt+h is an idiosyncratic

forecast error term that is independent of all other variables. We shall assume that the true

number of factors r is known. Because the true factors Ft are not observable, one must

forecast yt+h using the estimated factors F̂t. Does the sampling variability in F̂ influence

the precision and asymptotic normality of the feasible estimates of α?

Let F̂ be the principal components estimator with k = r factors estimated and denote

the r× r matrix Hr from Theorem 2.1 by H. Define δ = H−1α (note that due to the factors

being unobservable, α is only identified up to multiplication by a nonsingular matrix) and

let δ̂ be the least squares estimator in the feasible diffusion index regression of yt+h on F̂t.

Bai & Ng (2006a) show that

√
T (δ̂ − δ) = (T−1F̂ ′F̂ )−1T−1/2F̂ ′ε− (T−1F̂ ′F̂ )−1[T−1/2F̂ ′(F̂ − FH)]H−1α, (2.12)

where ε = (ε1+h, . . . , εT+h)′. Under the assumptions of Corollary 2.1, the Cauchy-Schwarz

inequality yields

‖T−1/2F̂ ′(F̂ − FH)‖2 ≤ T

(
T−1

T∑
t=1
‖F̂t‖2

)(
T−1

T∑
t=1
‖F̂t −H ′Ft‖2

)
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= TOp(1)Op(C−2
NT )

= Op(max{1, T/N}).

Similarly,

T−1/2F̂ ′ε = T−1/2H ′F ′ε+ T−1/2(F̂ − FH)′ε = T−1/2H ′F ′ε+Op(max{1, T/N}).

Suppose T−1/2F ′ε = Op(1), as implied by Assumption E in Bai & Ng (2006a). It is easy to

show that H = Op(1). Provided T = O(N), we thus obtain δ̂ − δ = Op(T−1/2), i.e., under

the conditions of Corollary 2.1, the feasible diffusion regression estimator is consistent at

the usual rate. The restrictions on hNT for the three examples are discussed immediately

following Corollary 2.1.10

2.5 Simulations

2.5.1 Design

To illustrate our results and assess their finite sample validity we conduct a Monte Carlo

simulation study. Stock & Watson (2002) and Eickmeier et al. (2015) numerically evaluate

the performance of the principal components estimator when the factor loadings evolve as

random walks, and Banerjee et al. (2008) focus in particular on the effect of time variation

in short samples. We provide additional evidence on the necessary scale factor hNT for

10If α = 0, which is often an interesting null hypothesis in applied work, the second term on the right-
hand side of the decomposition (2.12) vanishes. Assume that {εt+h} is independent of all other variables.
Then, conditional on F̂ , the first term on the right-hand side of (2.12) will (under weak conditions) obey
a central limit theorem, and so δ̂ should be unconditionally asymptotically normally distributed under the
null H0 : α = 0. Bai & Ng (2006a) prove that if the factor loadings are not subject to time variation, δ̂ will
indeed be asymptotically normal, regardless of the true value of α, as long as

√
T/N → 0. We expect that

a similar result can be proved formally in our framework but leave this for future research.
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the random walk case (our Example 2). Moreover, we consider data generating processes

(DGPs) in which the factor loadings are subject to white noise disturbances (as in Example

1), as well as DGPs for which a subset of the series undergo one large break in their factor

loadings (an analog of Example 3).

The design broadly follows Stock & Watson (2002):

Xit = λ′itFt + eit, Ftp = ρFt−1,p + utp, (1− aL)eit = vit, yt+1 =
r∑
q=1

Ftq + εt+1,

where i = 1, . . . , N , t = 1, . . . , T , p = 1, . . . , r. The processes {utp}, {vit} and {εt+1} are

mutually independent, with utp and εt+1 being i.i.d. standard normally distributed. To

capture cross-sectional dependence of the idiosyncratic errors, we let vt = (v1t, . . . , vNt)′ be

i.i.d. normally distributed with covariance matrix Ω = (β|i−j|)ij, as in Amengual & Watson

(2007). The scalar ρ is the common AR(1) coefficient for the r factors, while a is the AR(1)

coefficient for the idiosyncratic errors.

The initial values F0 and e0 for the factors and idiosyncratic errors are drawn from their

respective stationary distributions. The initial factor loading matrix Λ0 was chosen based on

the population R2 for the regression ofXi0 = λ′i0F0+ei0 on F0. Specifically, for each i we draw

a value R2
i uniformly at random from the interval [0, 0.8]. We then set λi0p = λ∗(R2

i )λ̄i0j,

where λ̄i0j is i.i.d. standard normal and independent of all other disturbances.11 The scalar

λ∗(R2
i ) is given by the value for which E[(λ′0iF0)2|R2

i ]/E[X2
i0|R2

i ] = R2
i , given the draw of

R2
i .12

We consider three different specifications for the evolution of factor loadings over time.

11We assumed above that Λ0 is fixed for simplicity. It is not difficult to verify that Λ0 could instead
be random, provided that it is independent of all other random variables, N−1Λ′0Λ0

p→ D for an r × r
non-singular matrix D, and E‖λi‖4 < M , as in Bai & Ng (2006a).

12Specifically, [λ∗(R2
i )]2 = 1−ρ2

r(1−a2)
R2
i

1−R2
i
.
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In the white noise model the loadings are given by

λitp = λi0p + dξitp,

i = 1, . . . , N , t = 1, . . . , T , p = 1, . . . , r, where d is a constant and the disturbances ξitp are

i.i.d. standard normal and independent of all other disturbances. Note that the standard

deviation of λitp − λi0p is d for all t.

In the random walk model we set

λitp = λi,t−1,p + cT−3/4ζitp,

i = 1, . . . , N , t = 1, . . . , T , p = 1, . . . , r, where c is a constant and the innovations ζitp are

i.i.d. standard normal and independent of everything. Note that the T 3/4 rate is different

from the rate of T used by Stock & Watson (2002) and Banerjee et al. (2008). In our design,

the standard deviation of λiTp − λi0p is cT−1/4.

In the large break model we select a subset J of size [bN1/2] uniformly at random from

the integers {1, . . . , N}, where b is a constant. For i /∈ J , we simply let λitp = λi0p for all t.

For i ∈ J , we set

λitp =


λi0p for t ≤ [0.5T ]

λi0p + ∆p for t > [0.5T ]
.

The shift ∆p (which is the same for all i ∈ J) is distributed N (0, [λ∗(0.4)]2), i.i.d. across

p = 1, . . . , r, so that the shift is of the same magnitude as the initial loading λi0p.13 The

fraction of series that undergo a shift in the large break model is [bN1/2]/N ≈ bN−1/2.

The principal components estimator F̂ k described earlier is used to estimate the factors.

13This shift process satisfies Assumption 2.4 with envelope functions of the same order as was used for the
deterministic break in Example 3.

87



Estimation of the factor rank r is done using the “ICp2” information criterion of Bai & Ng

(2002) with a maximum rank of rmax = 10, and, for simplicity, a minimum estimated rank of

1. The criterion is of the IC type in definition (2.10) with g(N, T ) = (logC2
NT )(N+T )/(NT ).

We also consider principal components estimates that impose the true rank k = r. To

evaluate the principal components estimator’s performance, we compute a trace R2 statistic

for the multivariate regression of F̂ onto F ,

R2
F̂,F

= Ê‖PF F̂‖2

Ê‖F̂‖2
,

where Ê denotes averaging over Monte Carlo repetitions and PF = F (F ′F )−1F ′. Corol-

lary 2.1 states that this measure tends to 1 as T → ∞. In each repetition we compute

the feasible out-of-sample forecast ŷT+1|T = δ̂′F̂T , where δ̂ are the OLS coefficients in the

regression of yt+1 onto F̂t for t ≤ T − 1, as well as the infeasible forecast ỹT+1|T = δ̃′FT ,

where δ̃ is obtained by regressing yt+1 on the true factors Ft, t ≤ T − 1. The closeness of the

feasible and infeasible forecasts is measured by the statistic

S2
ŷ,ỹ = 1− Ê(ŷT+1|T − ỹT+1|T )2

Ê(ŷ2
T+1|T )

.

The measures R2
F̂,F

and S2
ŷ,ỹ were also used by Stock & Watson (2002).

2.5.2 Calibration

The free parameters are T , N , r, ρ, a, β, b, c and d. We set r = 5 throughout. In line with

Stock & Watson (2002) and Amengual & Watson (2007), we consider ρ = 0, 0.9, a = 0, 0.5

and β = 0, 0.5.

To guide our choice of the crucial parameters b, c and d, we turn to the empirical analysis

of Stock & Watson (2009). They fit a DFM to 144 quarterly U.S. macroeconomic time series
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from 1959 to 2006, splitting the sample at the first quarter of 1984. Using their results, we

compare the pre- and post-break estimated factor loadings. The ratio of the mean square

changes in the factor loadings to the mean square pre-break factor loadings is 0.21. Assuming

that the break date and factor loadings are known, the corresponding ratio in our large break

DGP is

(Nr)−1∑N
i=1

∑r
p=1 ∆2

p

(Nr)−1∑N
i=1

∑r
p=1 λ

2
i0p

= bN−1/2[λ∗(0.4)]2∫ 0.8
0 [λ∗(x)]2dx/0.8

+ op(1) = 0.66bN−1/2 + op(1),

regardless of the values of r, ρ, a and β. For N = 144 series, the value of the parameter b

that brings the theoretical ratio in line with the observed one in the Stock & Watson (2009)

dataset is b =
√

144 · 0.21/0.66 = 3.7. While we have ignored estimation error, it therefore

seems empirically relevant to consider large break DGPs with a b of this magnitude. We

pick b = 3.5 to be our benchmark value, which for N = 100 implies that bN−1/2 = 35%

of the loadings undergo a break (for N = 200 and N = 400 the fraction is 25% and 18%,

respectively). To stress test our conclusions, we also examine the extreme choice b = 7.

When calibrating the values of c and d, we take the following steps. Focusing on the

parametrization N = T = 200 and a = β = ρ = 0, we first record the trace R2 statistics

for the large break DGPs with b = 3.5 and b = 7, respectively. We then determine round

values of c and d such that the corresponding trace R2 statistics for the random walk and

white noise DGPs approximately match the above-mentioned two figures for the large break

model. This yields c = 2, 3.5 and d = 0.4, 0.7. To compare the time variation with the scale

of the initial factor loadings, note that with a = β = ρ = 0 and r = 5, the unconditional

standard deviation of each initial factor loading is
√∫ 0.8

0 [λ∗(x)]2dx/0.8 = 0.45. Because

d is the standard deviation of λitp − λi0p in the white noise model, the choice d = 0.4

creates fluctuations of about the same magnitude as the initial factor loadings. Similarly,

the standard deviation of λiTp − λi0p in the random walk model equals cT−1/4 = 0.53 for
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T = 200 and c = 2. In Appendix A.2.2 we show that this amount of random walk parameter

variation is of the same magnitude as the estimates for U.S. data presented in Eickmeier

et al. (2015), while our c = 3.5 parametrization exhibits substantially more instability.14

2.5.3 Results

We perform 5,000 Monte Carlo repetitions for each DGP. To graphically illustrate the con-

vergence properties of the principal components estimator, we first focus on the baseline

set-up with a = β = ρ = 0, N = T and k = r (the true number of factors is known).

We run simulations for a fine grid of T values, T = 50, 100, 150, . . . , 400. The results are

plotted in Figures 2.1 to 2.3, corresponding to the white noise, random walk and large break

models, respectively. Each figure has two panels. The top panel shows the R2
F̂,F

statistic as

a function of the sample size T , for the three different choices of b, c or d. Similarly, the

bottom panel shows the S2
ŷ,ỹ statistic. All figures confirm that, while time variation in the

factor loadings, vanishing at the appropriate rate, does impact the precision of the principal

components estimator, the performance improves as T increases, both in absolute terms and

relative to the no-instability benchmark.

14For T ≥ 67 our worst-case random walk DGP, c = 3.5, exhibits more time variation in factor loadings
than any of the parametrizations considered by Stock & Watson (2002) and Banerjee et al. (2008).
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Figure 2.1: Simulation results for the white noise model, benchmark parameter and rate choices.
Actual observations are marked with “x.” Each is based on 5,000 Monte Carlo repetitions. The
lines are piecewise linear interpolations.
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Figure 2.2: Simulation results for the random walk model, benchmark parameter and rate choices.
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Figure 2.3: Simulation results for the large break model, benchmark parameter and rate choices.
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2 ŷ,
ỹ
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Tables 2.1 to 2.3 display a more comprehensive range of simulation results for the white

noise, random walk and large break models, respectively. As explained above, we consider

two values each for the instability parameters b, c and d, and each table compares those

results to the no-instability benchmark (b = c = d = 0). The columns marked “k = r”

impose knowledge of the true number of factors, while the columns marked “IC” correspond

to simulations in which the factor rank is estimated using an information criterion. Ê(k̂)

denotes the average estimated rank. We focus on dataset dimensions that are especially

relevant for macroeconomic analyses with quarterly data, namely T = 50, 100, 200 and N

either equal to, half or double the value of T .

Our first set of simulations has a = β = ρ = 0, i.e., no serial or cross-sectional dependence

in the factors or idiosyncratic errors. For the empirically calibrated amount of instability (the

middle five columns in each table), the R2
F̂,F

and S2
ŷ,ỹ statistics are close to the no-instability

benchmark as long as N ≥ T ≥ 100. The average estimated rank is also close to the truth

r = 5 in these cases. Throughout Table 2.3 and Figure 2.2, the large break model does

remarkably well in terms of the closeness S2
ŷ,ỹ of the feasible and infeasible forecasts, even

when a majority of factor loadings undergo a break. As Figure 2.1 already demonstrated,

the white noise model gives comparatively poor results for small T and when N < T , as

predicted by our Λ0 = 0 calculation, cf. expression (2.7). Increasing the amount of structural

instability to extreme values (the right-most five columns of each table) substantially affects

the results, more so than the introduction of moderate serial and cross-sectional correlation.

The white noise model fares particularly poorly for d = 0.7, except when N > T ≥ 200, and

the estimated factor rank tends to severely undershoot the target for small sample sizes, as

the common component in the data is diluted by the loading disturbances. For the random

walk DGP, while the average estimated rank is hardly affected by moving from c = 0 to

c = 2, extreme structural instability c = 3.5 does lead to significant deterioration of the

performance of the information criterion; the continual evolution of the factor loadings over
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time causes overestimation of the number of common factors. For the large break model the

information criterion does much better, although it overshoots somewhat, as established by

Breitung & Eickmeier (2011).

We consider separately the effects of introducing serial (a = 0.5) or cross-sectional (β =

0.5) dependence in the idiosyncratic errors. Moderate serial correlation in the errors is

clearly a second-order issue.15 Exponentially decreasing cross-sectional correlation of the

above-mentioned magnitude has only a slightly larger impact. Furthermore, there appears

to be no interesting interaction between dependence in the idiosyncratic errors and instability

in the factor loadings.

Introducing persistence in the factors (ρ = 0.9) dramatically worsens the results for the

white noise DGP. For the empirically calibrated amount of instability, d = 0.4, the R2
F̂,F

and

S2
ŷ,ỹ statistics are unacceptably poor, except perhaps for large sample sizes, and the estimated

rank is much too low. For the random walk model, factor persistence has a more moderate,

but still noticeable, effect. It causes overestimation of the number of factors, which only

becomes worse as the sample size increases, and the convergence to 1 of the R2
F̂,F

and S2
ŷ,ỹ

statistics is not evident for T ≤ 200.16 However, the absolute impact of the factor loading

instability is not alarming, even for c = 3.5, unless consistent estimation of r is viewed as

a goal in and of itself. In contrast to the first two models, the large break model does not

exhibit noticeable sensitivity to the persistence of the factors. Since serial correlation in the

factors tends to bias downward the estimate of the factor rank, it actually partially corrects

for the upward bias induced by the one-time loading break.17

15In fact, relative to the i.i.d. benchmark, the a = 0.5 results are somewhat better in cases in which the
estimated rank is much too low.

16In unreported simulations, we have confirmed that these statistics do begin to improve for larger values
of T .

17In Table 2.3, the large break model often performs better for ρ = 0.9 than for ρ = 0. The reason is that
the denominators in the R2

F̂,F
and S2

ŷ,ỹ statistics tend to increase with the persistence of the factors. For
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The last seven rows in the tables display results for the most empirically relevant case

in which the factors are persistent and the idiosyncratic errors are both serially and cross-

sectionally correlated (a = β = 0.5, ρ = 0.9). As expected based on the discussion above,

these figures are similar to those for a = β = 0, ρ = 0.9, and we find no interesting com-

pounding effects of the various departures from the baseline parametrization.

We summarize the findings of the simulation study as follows.

• Empirically calibrated structural instability of the random walk or large break variety

does not, on average, markedly impact the estimation of the factor space or diffusion

index forecasts. Increasing the temporal instability by an order of magnitude does not

overturn this conclusion.

• The impact of white noise disturbances is a lot more sensitive to the sample size, to the

ratio of N to T (higher is better), and to the persistence of the factors (lower is better).

The numbers in Table 2.1 arguably overstate this sensitivity, since d was calibrated

based on a setting with ρ = 0 and N = T = 200, which is relatively favorable for the

white noise model. In a sense, Table 2.1 documents how well the principal components

estimator deals with substantial white noise disturbances when the sample size and

relative dimension N/T are both large.

• The correlation structure of the idiosyncratic errors is not an important concern in

the exponential design we consider here. We have also tried the linearly decreasing

correlation structure of Bai & Ng (2002, section 6). As expected, such a set-up yields

worse convergence rates than those exhibited in Tables 2.1 to 2.3, although the results

are sensitive to the choice of correlation parameters.

• Estimation of the factor rank r is governed by somewhat different forces than estimation

the two other models, the detrimental impact on the numerators outweigh this effect.
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of the factor space or diffusion index forecasting, as we anticipated in Section 2.4.1.

Relative to the no-instability benchmark, the Bai & Ng (2002) information criterion

estimator is generally biased downward in the white noise model, whereas it is biased

upward in the large break model and (especially) the random walk model. In the latter

two models, there is no indication that this bias vanishes as N, T →∞ for the choices

of hNT and ‖∆‖2 that we have considered here. However, overestimation of r is not a

problem, on average, for diffusion index forecasting.

2.5.4 Rate of convergence

We now turn to the more detailed asymptotic rates stated in Theorem 2.1. Our method of

proof and the calculations in Section 2.3.2 suggest that it may not in general be possible

to improve upon the RNT rate for our three examples of break processes. To investigate

this claim, we carry out two exercises. First, we set N = T and execute a separate set

of simulations in which λitp − λi0p = dT 1/4ξitp for the white noise model, λitp − λi,t−1,p =

cT−1/2ζitp for the random walk model, and the number of shifting series in the large break

model is set to [bN ]. These three rates all (just) violate the conditions for mean square

consistency in Theorem 2.1. To make the results comparable to Figures 2.1 to 2.3, we scale

down our choices of b, c and d so that the amount of time variation in the two experiments

coincide for T = 200. All other parameters are unchanged. See Figures 2.4 to 2.6 for the

results. As hypothesized, for the random walk and large break models the trace R2 curve

flattens out for large T , instead of converging with the no-instability curve as in Figures 2.2

and 2.3. For the white noise model, convergence seems to still obtain with hNT = dT 1/4.18

It would be interesting to explore whether temporal or cross-sectional dependence in the

18This is consistent with the calculations in Section 2.3.2, which showed that hNT = o(T 1/2) is necessary
and sufficient for mean square consistency when Λ0 = 0, Ft ≡ 1, k = r = 1 and T/N → θ ∈ (0,∞), cf.
equation (2.7).

100



50 100 150 200 250 300 350 400
0.8

0.85

0.9

0.95

1
White noise model: Trace R2

T

50 100 150 200 250 300 350 400
0.6

0.7

0.8

0.9

1
White noise model: Closeness of forecast to infeasible one

T

 

 

d=0
d=0.11
d=0.19

Figure 2.4: Simulation results for the white noise model, alternative rates.
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Figure 2.5: Simulation results for the random walk model, alternative rates.
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Figure 2.6: Simulation results for the large break model, alternative rates.
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Figure 2.7: Rate frontiers for the random walk model with c = 5, N = T and hNT = cT−γ .
The solid line interpolates between the finite-sample rate exponent estimates m̂γ (observations are
marked with “x”), while the dashed line represents the theoretical rate exponent m(γ).

disturbances ξit would make Theorem 2.1 tight also for the white noise model.

Second, we construct a “rate frontier” that corresponds to the predictions of Theorem 2.1

for the special case of the random walk model, which is the break process that has received

most attention in the literature. Consider the explicit rate expression (2.5)–(2.6) for the

random walk model under the assumptions N = [T µ] and hNT = cT−γ. In the following we

set µ = 1 so that the rate exponent (2.6) reduces to

m(γ) = m(1, γ) = max{−1, 2− 4γ}.

The flat profile of the trace R2 statistic in Figure 2.5 is fully consistent with m(1/2) = 0.

These calculations pertain to the worst-case rate stated in Theorem 2.1. While Section 2.3.2
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showed suggestive calculations for the special case Λ0 = 0, we have not been able to prove that

the convergence rate RNT is sharp, in the sense that a generic DFM with random walk factor

loadings that satisfies Assumptions 2.1 to 2.5 achieves the RNT rate. Instead, we provide

simulation evidence indicating that the independent random walk model achieves the stated

bound. We maintain the simulation design described in Section 2.5.1 with a = β = ρ = 0 and

N = T , except that we set hNT = 5T−γ and vary γ over the range 0.25, 0.30, 0.35, . . . , 1.50.

For each value of γ and each sample size T = 200, 300, . . . , 700 we compute the statistic

M̂SE(γ, T ) = T−1(Ê‖F̂‖2 − Ê‖PF F̂‖2),

where Ê denotes the average over 500 Monte Carlo repetitions. This statistic is a close analog

of the mean square error that is the object of study in Theorem 2.1. Our theoretical results

suggest that M̂SE(γ, T ) should grow or decay at rate Tm(γ). We verify this by regressing,

for each γ,

log M̂SE(γ, T ) = constantγ +mγ log T,

using our six observations T = 200, . . . , 700. Figure 2.7 plots the estimates m̂γ against γ

along with the theoretical values m(γ). The estimated rate frontier is strikingly close to

the theoretical one, although some finite-sample issues remain for intermediate values of γ.

This corroborates our conjecture that Theorem 2.1 provides sharp rates for the independent

random walk case.

2.6 Discussion and conclusions

The theoretical results of Section 2.3 and the simulation study of Section 2.5 point towards

a considerable amount of robustness of the principal components estimator of the factors

when the factor loading matrix varies over time. Although we have not proved that the
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consistency rate function presented in Section 2.3.1 is tight in a formal sense, inspection of

our proof, as well as calculations for special cases and Monte Carlo evidence, do not suggest

any room for improvement, particularly for the random walk and large break models. In

this sense our rate function represents an upper bound on the parameter instability that

can be tolerated by the principal components estimator. The amount of such instability is

quite large when calibrated to values of N and T typically used in applied work, which is

reassuring for the nascent empirical research agenda that allows for structural instability in

estimation of DFMs (Korobilis, 2013; Eickmeier et al., 2015).

Our evidence concerning the robustness of the principal components estimator raises a

tension with the results in Breitung & Eickmeier (2011), who stress the harmful effect of

undetected factor loading breaks on rank estimation. Our simulations show that diffusion in-

dex forecasting using principal components estimates can be effective even when the rank of

the factor space is not estimated consistently. Indeed, we conjecture (but do not prove) that

the principal components estimator and feasible diffusion index regression will be consistent

under sequences of breaks for which the Breitung & Eickmeier (2011) test rejects. Further-

more, our simulations indicate that the direction of the rank estimation bias depends on

the type of structural instability. Sorting out the relative importance of these countervailing

forces for the sampling distribution of forecasts would be of independent interest and would

also return the large-dimensional discussion here to the bias-variance tradeoffs associated

with ignoring breaks tackled in a low-dimensional setting by Pesaran & Timmermann (2005,

2007).

In some applications, such as with data on asset returns, accurate estimation of the

number of factors is of direct concern. Our results suggest that the allowable amount of

structural instability in these cases is smaller than for forecasting purposes. More work is

needed to establish necessary conditions for consistent rank estimation, and if necessary, to

develop rank estimators that are more robust to different types of instability.
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Chapter 3

Estimation of Smooth Impulse Response Func-

tions

3.1 Introduction

An impulse response function (IRF) measures the dynamic response of a variable to an initial

shock to another variable. In macroeconomics, IRFs are crucial tools for understanding

economic dynamics and the causes of business cycles, cf. the survey by Ramey (2016).

In applied microeconomics, IRFs conveniently summarize dynamic treatment effects.1 In

empirical settings where both the response and shock variables are observed, it is possible

to estimate IRFs in a model-free way by simple regression methods (Cochrane & Piazzesi,

2002; Jordà, 2005). While such methods have low bias, they may produce jagged and highly

variable IRF estimates in small samples. In many applications, researchers have a priori

reasons to believe that the true IRF is smooth, but no established econometric method can

exploit such smoothness without making strong parametric assumptions.

In this paper I propose a smooth impulse response function (SmIRF) estimator that

1Applications include the dynamic responses of worker earnings to separations (Jacobson, LaLonde &
Sullivan, 1993), of consumption to stimulus payments (Broda & Parker, 2014), and of life outcomes to
childhood teacher quality (Chetty, Friedman & Rockoff, 2014).
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smooths out an initial non-smooth IRF estimate. The smoothing procedure can be applied

to any uniformly consistent and asymptotically normal initial IRF estimator, for example

from time series or panel regressions of outcomes on an observed shock. The degree of

smoothing can be chosen to minimize a data-dependent estimate of the mean squared error

(MSE) of the SmIRF estimator, thus optimally trading off bias and variance. The SmIRF

estimator is a member of a computationally convenient class of shrinkage estimators that

can flexibly impose a variety of smoothness, short-run, and long-run restrictions. I show that

the SmIRF estimator dominates the non-smooth initial estimator in terms of MSE under

realistic conditions. Finally, I propose novel procedures for constructing asymptotically

uniformly valid confidence sets based on the shrinkage estimator.

Figure 3.1 illustrates how the SmIRF estimator smooths out an initial jagged IRF esti-

mate in order to increase its precision. The response variable in the figure is a measure of

U.S. financial sector balance sheet distress, while the shocks are monetary policy surprises

identified from high-frequency financial data; the specification includes additional lagged

control variables as in Ramey (2016). The IRF estimated using the regression-based Jordà

(2005) “local projection” method is very jagged, and most of its spikes are likely due to

sampling noise or outliers. The SmIRF estimator modifies the regression-based estimate by

penalizing jagged IRFs, effectively averaging the initial IRF estimate across nearby impulse

response horizons, and thus reducing variance. The increase in bias caused by moderate

amounts of smoothing is small if the true IRF is smooth.

The SmIRF estimator is a function of a scalar smoothing parameter that can be chosen

to optimally trade off bias and variance in a data-dependent way. This is done by minimizing

an unbiased estimator of the risk (here: MSE) of the SmIRF estimator, as in Stein (1981).

The unbiased risk estimate (URE) is easy to compute, as it depends only on the initial

non-smooth IRF estimate and its estimated asymptotic variance. Minimizing the URE

makes SmIRF adaptive: It only substantially smooths the IRF when the data confirms the
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Illustration of the SmIRF estimator
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Figure 3.1: Local projection (jagged line, crosses) and SmIRF (smooth curve) estimators of the
IRF of the excess bond premium to a 1-standard-deviation monetary policy shock, monthly U.S.
data. Response: Gilchrist & Zakrajšek (2012) excess bond premium. Shock: Gertler & Karadi
(2015) monetary policy shock. Controls: quadr. time trend, 2 lags of response, shock, log indu.
prod., log cons. price index, 1-year Treas. rate. Sample: 1991:1–2012:6. Details in Appendix A.3.2.

smoothness hypothesis. Consequently, I prove that a version of the SmIRF estimator with

data-dependent smoothing parameter dominates the initial non-smooth estimator in terms

of MSE under realistic conditions.

The SmIRF estimator is a member of a flexible and computationally convenient class

of shrinkage estimators. These shrinkage estimators penalize large squared values of user-

specified linear combinations of the impulse response parameters. Estimators in this class are

not only able to impose smoothness, but also short-run and long-run approximate restrictions

on the impulse responses. An analytically tractable subclass of estimators are the projection

shrinkage estimators, which shrink the initial IRF estimate towards a linear-in-parameters

function of the response horizon, such as a polynomial.

The main theoretical contribution of this paper is to develop novel joint and pointwise

109



shrinkage confidence bands for conducting inference about the smoothed IRFs. The bands

are obtained by numerically inverting test statistics that are functions of the shrinkage

estimator, using simulated critical values.2 These confidence sets have correct coverage in

a finite-sample normal location model with arbitrary known covariance matrix. In the case

of projection shrinkage, the finite-sample normal results translate into asymptotic uniform

coverage when the distribution of the initial IRF estimator is unknown. The proposed

confidence sets can be constructed so that they always contain the shrinkage estimator.

Simulation evidence suggests that, if the true IRF is smooth, the shrinkage confidence sets

often have smaller volume than the usual Wald confidence sets centered at the initial IRF

estimate, and the shrinkage sets never perform substantially worse than the Wald sets.

Literature. The SmIRF estimator imposes smoothness in a more robust and transpar-

ent manner than parametric procedures such as Vector Autoregressions (VARs). This paper

is not concerned with applications in which VAR-type methods are used to achieve iden-

tification due to the shock being unobserved (Stock & Watson, 2016). VARs and similar

parsimonious models generate smooth IRFs by extrapolating long-run responses from short-

run features of the data. While such models are efficient if the parametric assumptions hold,

misspecification biases can be large, as discussed by Jordà (2005) and Ramey (2016, Sec.

2.4, 3.5). My paper demonstrates that it is not necessary to impose a rigid parametric struc-

ture to accurately estimate smooth IRFs. With a data-dependent smoothing parameter, the

SmIRF estimator adapts to the smoothness of the true IRF; in contrast, robust paramet-

ric analysis requires specification tests that are not directly tied to IRFs and are often not

uniformly consistent (Leeb & Pötscher, 2005).

The SmIRF estimator is related to and inspired by Shiller’s (1973) smoothness prior

2I thank Isaiah Andrews for suggesting this strategy and Adam McCloskey for stimulating discussions.

110



estimator for distributed lag regressions, but I go further in providing methods for adaptive,

MSE-optimal inference. The SmIRF estimator uses the same penalty for estimating jagged

IRFs as the Shiller estimator. Unlike the latter, the SmIRF estimator nests the popular Jordà

(2005) local projection estimator in the case of time series regression. In contrast to Shiller’s

focus on subjective Bayesian estimation, I provide methods for optimally selecting the degree

of smoothing and for constructing confidence sets with guaranteed frequentist coverage. My

procedure for selecting the smoothing parameter is more precisely theoretically founded and

widely applicable than procedures designed for the Shiller estimator, cf. the survey by

Hendry, Pagan & Sargan (1984, pp. 1060–1062). Moreover, I consider general shrinkage

estimators that do not use the Shiller penalty.

Shrinkage estimation has recently received attention in economics outside of the domain

of IRF estimation. Fessler & Kasy (2016) use an Empirical Bayes estimator to flexibly im-

pose linear restrictions from economic theory in a manner similar to the projection shrinkage

estimator in the present paper; however, they do not construct valid frequentist confidence

sets. Hansen (2016a) introduces a shrinkage IV estimator which MSE-dominates two-stage

least squares. Giannone, Lenza & Primiceri (2015) and Hansen (2016c) shrink VAR es-

timates to improve forecasting performance, assuming that the unrestricted VAR model

is well-specified. Additionally, high-dimensional predictive/forecasting methods often rely

on shrinkage to ensure good out-of-sample performance (Stock & Watson, 2012b; Belloni,

Chernozhukov & Hansen, 2014).

The theoretical framework in this paper is formally similar to nonparametric regres-

sion, with the crucial difference that the regression errors may be heteroskedastic and cross-

correlated. The impulse response horizons can be viewed as equally spaced design points,

the initial IRF estimator as observed data, and the initial IRF estimation errors as regression

errors. Viewed in this way, the shrinkage IRF estimators are similar to spline smoothing

(Wahba, 1990); however, much of the theory for nonparametric regression has been devel-
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oped under the assumption of independent and identically distributed errors, which does

not apply in the IRF estimation context. Many papers get rid of serial correlation by trans-

forming the data to a different coordinate system, but this transformation can drastically

change the economic interpretation of the shrinkage estimator.3 Lest the economic analysis

be dictated by statistical convenience, my analysis directly deals with correlated errors.

My theoretical results build on developments in the shrinkage literature that followed

Stein (1956) and James & Stein (1961), see Lehmann & Casella (1998, Ch. 5.4–5.7). The

general class of shrinkage estimators I consider is akin to generalized ridge regression, cf. the

survey by Vinod (1978). The subclass of projection shrinkage estimators has been analyzed

in the abstract by Bock (1975), Oman (1982), and Casella & Hwang (1987), none of whom

consider IRF estimation. My URE criterion is similar to those derived by Mallows (1973) and

Berger (1985, Ch. 5.4.2), but my derivations rely on asymptotic rather than finite-sample

normality, as in the model selection analysis of Claeskens & Hjort (2003) and Hansen (2010).

The proof that the SmIRF estimator MSE-dominates the initial non-smooth estimator relies

heavily on abstract results in Hansen (2016b). My proofs of asymptotic uniform validity of

the projection shrinkage confidence sets employ the abstract drifting parameter techniques

of Andrews, Cheng & Guggenberger (2011) and McCloskey (2015).

Despite their general applicability, the test inversion shrinkage confidence sets appear

to be novel. Brown, Casella & Hwang (1995) and Tseng & Brown (1997) invert tests to

obtain confidence sets with small prior expected volume, but the tests do not have direct

connections to shrinkage estimation. My procedure allows for arbitrary dependence between

the initial impulse response estimators at different horizons, whereas previous papers on

shrinkage confidence sets tend to focus on the independent case, cf. the survey by Casella

& Hwang (2012). In contrast to Beran (2010), my confidence sets are valid even when the

3For example, a penalty for estimating jagged IRFs may not resemble a jaggedness penalty once the
estimator is transformed to another coordinate system.
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number of parameters of interest (i.e., impulse responses) is small. However, unlike other

papers, I do not provide analytic conditions for my confidence sets to beat the usual Wald

sets in terms of expected volume, although I present encouraging simulation evidence.

Outline. The paper is organized as follows. Section 3.2 is a user’s guide to SmIRF and

other shrinkage estimators, the URE, and confidence set construction. Section 3.3 presents

theoretical results on the MSE of shrinkage estimators. Section 3.4 derives valid shrinkage

confidence sets. Section 3.5 contains a simulation study. Section 3.6 lists topics for future

research. Appendix A.3 defines notation and data, gives technical details, and provides

additional simulation results, while proofs are relegated to Appendix B.3.

3.2 Overview and examples

This section is a user’s guide to estimating and doing inference on smooth impulse response

functions (IRFs). First, I define IRFs, the object of interest. Second, I introduce the smooth

impulse response function (SmIRF) estimator. Third, I show how to pick the smoothing

parameter in a data-dependent way by minimizing an unbiased estimate of the mean squared

error (MSE), thus optimally trading off bias and variance. Finally, I give algorithms for

constructing joint and pointwise confidence bands. I illustrate the new methods with the

empirical example from Figure 3.1 in the Introduction.

3.2.1 Impulse response functions

I start off by defining IRFs. I then review estimation of IRFs using approximately unbiased

regression methods when both the outcome and shock variables are observed. Such unbiased

estimators are often jagged and have unnecessarily high variance, as they do not impose

smoothness on the IRF.
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An IRF measures the average dynamic response of variable yt to an initial shock or

impulse to variable xt (in the case of panel data, add an additional unit subscript j). The

averaging can be across time, or across time and cross-section units, depending on whether

the application involves time series or panel data. While nonlinearities can be economically

interesting, in this paper I focus on average linear relationships. Hence, an IRF, broadly

construed, is a vector β = (β0, β1, . . . , βn−1)′ of impulse responses at horizons i = 0, 1, . . . , n−

1, where n− 1 is the largest response horizon of interest, and βi = ∂yt+i/∂xt.

When both the outcome and shock variables are observed, asymptotically unbiased IRF

estimates can be obtained by regressing current and future outcomes on the shock.4 The

regression may control for covariates or lagged outcomes. A prototypical specification is

yt+i = βixt + controls + εt+i|t, (3.1)

where εt+i|t is the forecast error at time t for forecasting i periods ahead. Running the above

regression separately for each horizon i = 0, 1, . . . , n − 1, we obtain coefficient estimates

β̂ = (β̂0, β̂1, . . . , β̂n−1)′ which constitute Jordà’s (2005) “local projection” IRF estimator.

This procedure has a panel regression counterpart that is often used in event studies –

simply add unit subscripts j to the variables in (3.1). Even if the underlying true IRF is

nonlinear, the coefficient estimates β̂ capture the least-squares linear predictor of current

and future outcomes yt based on the shock xt and controls.

Regression-based IRF estimators are often jagged and highly variable in moderate sam-

ples, especially if the regression includes many controls. This is illustrated in Figure 3.1 in the

Introduction. If the IRF is estimated from horizon-by-horizon regressions, there is nothing

4This paper does not consider settings in which xt is unobserved, unlike Structural Vector Autoregression
(SVAR) analysis which seeks to jointly identify IRFs and shocks. In principle, the SmIRF estimator can be
used to further smooth an SVAR-estimated IRF, but if identification is predicated on the assumptions of
the SVAR model, it makes sense to impose smoothness directly in that model.
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constraining the function to look smooth. This problem is shared by other IRF estimators

in the recent literature, such as the propensity score weighted IRF estimator for discrete

policy treatments in Angrist, Jordà & Kuersteiner (2013) and Ramey’s (2016) instrumental

variables (IV) extension of the local projection estimator.5

3.2.2 SmIRF and other shrinkage estimators

Below I introduce the SmIRF estimator and related estimators which smooth an initial IRF

estimate by shrinking it towards a smoother shape. I argue that smoothing decreases the

variance of the estimator, whereas the accompanying increase in bias is likely to be small in

many applications. The SmIRF estimator belongs to a class of general shrinkage estimators

that flexibly impose smoothness and other approximate restrictions. The analytically con-

venient subclass of projection shrinkage estimators shrinks the initial IRF estimate towards

a polynomial, or any other linear-in-parameters function of the response horizon.

SmIRF estimator. In many applications, there is a priori reason to believe the true IRF

to be smooth, and this knowledge can be exploited to improve the precision of the estima-

tor. Smoothness of the IRF is a reasonable hypothesis in many economic applications, e.g.,

due to adjustment costs, consumption smoothing, information frictions, staggered decisions,

or strategic complementarity. Loosely speaking, a low-bias, high-variance estimator can be

smoothed by averaging the IRF across nearby response horizons, cf. Figure 3.1 in the Intro-

duction. Such averaging decreases the variance of the estimator and reduces the influence of

outlier data points. Averaging may increase the bias of the estimator, but this effect will be

minimal for moderate amounts of smoothing if the true IRF is in fact smooth.

5Ramey (2016, Sec. 2.4) proposes regressing outcome yt+i on policy variable xt using a third variable zt
as IV, separately for each i. This amounts to a proportional scaling of the Jordà local projection IRF of yt
to zt, because the “first stage” is the same at all horizons i.
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The SmIRF estimator transforms an initial non-smooth IRF estimate into a smooth

estimate by penalizing jagged functions. The initial estimator can be obtained from any

type of data set using any method, as long as the initial estimator is uniformly consistent

and asymptotically normal with consistently estimable asymptotic variance, in a sense made

precise in Sections 3.3 and 3.4. These properties hold for many regression-based methods,

such as the Jordà (2005) local projection estimator, under standard regularity conditions.

Given the initial non-smooth IRF estimator β̂ = (β̂0, . . . , β̂n−1)′ and a scalar smoothing

parameter λ ≥ 0, the SmIRF estimator is defined as

β̂(λ) = arg min
β∈Rn

n−1∑
i=0

(βi − β̂i)2 + λ
n−1∑
i=2
{(βi − βi−1)− (βi−1 − βi−2)}2. (3.2)

The SmIRF estimator trades off fidelity to the initial estimate with a penalty equal to the

smoothing parameter λ times the sum of squared second differences of the IRF.6 λ governs

the degree to which the initial IRF estimate is smoothed out. If λ = 0, the SmIRF estimator

equals the non-smooth initial estimate. As λ → ∞, the SmIRF estimator converges to the

straight line that best fits the initial IRF estimate. For 0 < λ < ∞, the SmIRF estimator

shrinks the initial estimate towards a straight line. Provided λ > 0, the SmIRF impulse

response estimate β̂i(λ) at horizon i is a function of the initial impulse response estimates

at horizons other than i – the intended averaging effect of the smoothing procedure.

The jaggedness penalty in the definition of the SmIRF estimator is familiar to time series

econometricians. Inspection of the definition (3.2) reveals that the SmIRF estimator β̂(λ)

is just the Hodrick & Prescott (1997) trend of the artificial “time series” (β̂0, β̂1, . . . , β̂n−1).

Hence, the SmIRF estimator is easy to compute using standard software (see also formulas

6For local projection (3.1), β̂(λ) = arg minβ∈Rn ((T −h)σ̂2
x̃)−1∑T−n

t=1
∑n−1
i=0 (yt+i−βix̃t)2 +λ

∑n−1
i=2 {(βi−

βi−1)− (βi−1 − βi−2)}2, where σ̂2
x̃ is the sample variance of x̃t, the residuals after regressing xt on controls.

Hence, SmIRF trades off the sum of squared forecast errors across i with the jaggedness penalty.
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Effect of the smoothing parameter on SmIRF
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Figure 3.2: SmIRF estimator for λ = 0 (solid line, crosses), 2 (dashed), 298 (solid, no crosses),
and 2000 (dotted). λ = 298 is optimal in the sense of Section 3.2.3. See caption for Figure 3.1.

below). As mentioned in the Introduction, the quadratic second difference penalty was used

by Shiller (1973) to produce smooth distributed lag regression estimates. As with many

penalized estimators, the SmIRF estimator can be interpreted as a Bayesian posterior mean,

in this case using Shiller’s smoothness prior.

Figure 3.2 illustrates how larger values of the smoothing parameter λ impose increasing

amounts of smoothness on the SmIRF estimator. The optimal amount of smoothness to

impose depends on how fast the bias increases as the IRF estimator is smoothed further,

which in turn depends on the unknown smoothness of the true IRF. Section 3.2.3 below

shows how to select λ in a data-dependent way to optimally trade off bias and variance.7

7In the setting of Footnote 6, Shiller (1973, p. 779) suggests the rule of thumb λ = n/
√

8Sσ2
x̃ if the IRF

is expected to be symmetrically tent-shaped with cumulative impulse response S across the n horizons.
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General shrinkage class. The SmIRF estimator defined above is a special case of the

class of general shrinkage estimators given by

β̂M,W (λ) = arg min
β∈Rn

‖β − β̂‖2
W + λ‖Mβ‖2 = ΘM,W (λ)β̂, (3.3)

where ‖v‖2
W = v′Wv and ‖v‖2 = v′v for any vector v ∈ Rn. M is an m× n matrix, W is an

n× n symmetric positive definite weight matrix, and

ΘM,W (λ) = (In + λW−1M ′M)−1. (3.4)

The rows of the matrix M determine which linear combinations of the impulse responses to

penalize. The weight matrix W down-weights certain impulse responses relative to others in

the fit to the initial IRF estimate.

The SmIRF estimator (3.2) obtains when W = In and

M =



1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1


∈ R(n−2)×n, (3.5)

the second difference matrix. If M equals the above second difference matrix with the first

row deleted, the impact impulse response β0 will not be penalized, which is desirable if the

impact response is of special interest. Being essentially a version of ridge regression (Vinod,

1978), general shrinkage estimators are easy to compute, as the explicit expression (3.3)

shows.

General shrinkage estimators (3.3) can flexibly impose not only smoothness, but also

short-run and long-run approximate restrictions on the IRFs. For example, if M equals the
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first unit vector, the contemporaneous impulse response is shrunk towards zero. If M equals

the row vector consisting of ones, the shrinkage estimator shrinks the cumulative sum of the

IRF towards 0. It is computationally straight-forward to introduce multiple penalty terms

with separate shrinkage parameters λk, although I do not consider that possibility here.

Projection shrinkage class. An analytically convenient subclass of estimators are

the projection shrinkage estimators. These estimators are obtained from the general class

(3.3) by choosing weight matrix W = In and penalty matrix M = P , where P is an n × n

orthogonal projection matrix, i.e., a symmetric matrix satisfying P 2 = P (idempotence).

As shown in Appendix A.3.3, the projection shrinkage estimator β̂P (λ) := β̂P,In(λ) can be

written

β̂P (λ) = arg min
β∈Rn

{
‖Pβ − Pβ̂‖2 + ‖(In − P )β − (In − P )β̂‖2 + λ‖Pβ‖2

}
(3.6)

= 1
1 + λ

P β̂ + (In − P )β̂.

In words, the projection shrinkage estimator shrinks towards zero the projection of the initial

IRF estimate β̂ onto the space spanned by the matrix P , while the projection of β̂ onto the

orthogonal complement of this space is unchanged.

Projection shrinkage estimators can be designed to shrink the initial IRF estimate towards

a polynomial, or any other linear-in-parameters function of the response horizon. Suppose we

have a prior belief that the true IRF is likely to look similar to the function l(i) = ∑p
k=0 akbk(i)

of the response horizon i, for some unknown constants a0, . . . , ap, and some user-specified

basis functions b0(·), . . . , bp(·). For example, we can consider polynomials with bk(i) = ik. If

we set P = In−L(L′L)−1L′, where L is the n×(p+1) matrix whose (k+1)-th column equals

(bk(0), bk(1), . . . , bk(n − 1))′, then the term λ‖Pβ‖2 in the projection shrinkage objective

function (3.6) penalizes deviations of the IRF from functions of the form l(i) (for some
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Projection shrinkage towards quadratic IRF
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Figure 3.3: Initial IRF estimate (jagged line, crosses), best-fitting quadratic IRF (dashed), and
projection shrinkage estimator with λ = 1 (solid, no crosses). See caption for Figure 3.1.

constants a0, . . . , ap). Hence, the projection shrinkage estimator β̂P (λ) shrinks the initial IRF

estimate β̂ towards the IRF {∑p
k=0 âkbk(i)}0≤i≤n−1, where âk are the least-squares coefficients

in a regression of β̂0, . . . , β̂n−1 on the columns of L.

In Figure 3.3 the initial IRF estimate is shrunk towards a quadratic function. This

procedure does not produce as smooth-looking IRFs as the basic SmIRF estimator (3.2).

Nevertheless, it achieves the same goal of reducing the variance of the initial IRF estimator

by using global features of the IRF to discipline the estimate at each response horizon.

3.2.3 Unbiased risk estimate

I now propose a criterion for selecting the smoothing parameter in a data-dependent way to

minimize the MSE of a general shrinkage estimator, such as SmIRF. Let β† denote the true

IRF, i.e., the value that the initial estimator β̂ is approximately unbiased for. To trade off
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bias and variance, we would like to choose λ ≥ 0 to minimize the weighted MSE criterion

RM,W,W̃ (λ) = T E
[
‖β̂M,W (λ)− β†‖2

W̃

]
,

where W̃ is a user-specified n× n symmetric positive definite weight matrix (in most appli-

cations, W̃ = W ). The sample size is denoted T , but the underlying data need not be time

series data. The above expectation averages over the unknown sampling distribution of the

initial estimator β̂, so RM,W,W̃ (λ) cannot be used to choose λ in practice.

To estimate the MSE of general shrinkage estimators, I assume we have available an

initial IRF estimator β̂ and a consistent estimator Σ̂ of its asymptotic variance. As formally

defined in Section 3.3.1, β̂ must be approximately unbiased and asymptotically normal, and

Σ̂ must be consistent for the asymptotic variance Σ = limT→∞E[T (β̂ − β†)(β̂ − β†)′]. It

is well known how to construct such estimators if β̂ is obtained from time series or panel

regression or similar methods.8

The unbiased risk estimate (URE) is an asymptotically uniformly unbiased estimator of

the true MSE, up to a constant that does not depend on λ, as shown in Section 3.3.1:

R̂M,W,W̃ (λ) = T‖β̂M,W (λ)− β̂‖2
W̃ + 2 tr

{
W̃ΘM,W (λ)Σ̂

}
, (3.7)

where “tr” denotes the trace of a matrix. The URE depends on the data only through

β̂ and Σ̂. The first term in expression (3.7) measures the in-sample fit of the shrinkage

estimator relative to the initial IRF estimate. The second term penalizes small values of

λ ≥ 0, since such values lead to a high-variance shrinkage estimator for which the in-sample

8In the case of panel regression, Σ̂ will be a clustered variance estimator; in the case of time series
regression, a heteroskedasticity and autocorrelation consistent (HAC) estimator. In some applications, the
shock xt is obtained from a preliminary estimation procedure, e.g., as a residual. Σ̂ should then reflect the
additional estimation uncertainty due to the generated regressor (Pagan, 1984).
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Unbiased risk estimate for projection shrinkage
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Figure 3.4: URE criterion to optimally select the smoothing parameter λ for the projection
shrinkage estimator in Figure 3.3. The horizontal axis plots λ/(1 + λ), not λ. MSE estimates on
the vertical axis are normalized to [0, 1]. HAC: Newey-West, 24 lags. See caption for Figure 3.1.

fit relative to β̂ is an overoptimistic measure of out-of-sample performance relative to the

truth β†. Similar ideas underlie many model selection criteria (Claeskens & Hjort, 2008;

Hansen, 2010). Appendix A.3.4 shows that the URE can be rewritten as a sum of unbiased

estimates of the variance and the squared bias of the shrinkage estimator.

Figure 3.4 plots the URE corresponding to the projection shrinkage estimator in Fig-

ure 3.3. It is straight-forward to compute the URE (3.7) over a fine grid of λ values for

plotting purposes. The minimizing λ value can be computed using one-dimensional numer-

ical optimization. The shape of the URE criterion is informative about how sensitively the

MSE performance of the estimator depends on the smoothing parameter.

I propose selecting the shrinkage parameter that minimizes the URE. For penalty matrix

M and weight matrices W, W̃ , the optimal shrinkage estimator is β̂M,W,W̃ := β̂M,W (λ̂M,W,W̃ ),

where λ̂M,W,W̃ is the URE-minimizing λ. Simulations in Section 3.5 indicate that this esti-
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mator often has lower weighted MSE than the initial IRF estimator in realistic settings.

The minimum-URE estimator has a simple form with provably desirable MSE properties

in the case of projection shrinkage and W = W̃ = In. Appendix A.3.3 shows that, in this

case, the URE is a quadratic function in λ/(1+λ). The minimum-URE projection shrinkage

estimator (restricting λ ≥ 0) equals

β̂P,In,In =
1− tr(Σ̂P )

T‖Pβ̂‖2


+

Pβ̂ + (In − P )β̂ = β̂ −min

 tr(Σ̂P )
T‖Pβ̂‖2

, 1

Pβ̂, (3.8)

where Σ̂P = P Σ̂P and x+ = max{x, 0} for any x ∈ R. Expression (3.8) illustrates that

choosing λ to minimize the URE makes shrinkage estimation adaptive: The amount of

shrinkage applied to the initial estimate β̂ depends on the extent to which the data is

compatible with the shrinkage hypothesis, in this case through the ratio T‖Pβ̂‖2/ tr(Σ̂P ). As

a consequence, Section 3.3.2 proves that the optimal projection shrinkage estimator uniformly

dominates the initial IRF estimator in terms of MSE under realistic conditions. An additional

attractive feature of the optimal shrinkage estimator is that it depends on the asymptotic

variance estimate Σ̂ only through the scalar tr(Σ̂P ).9

3.2.4 Confidence bands

Confidence bands for general shrinkage estimators can be constructed by a test inversion

procedure that takes into account the shrinkage bias and the randomness induced by a

data-dependent shrinkage parameter.10 Here I provide recipes for constructing joint and

pointwise confidence bands. As discussed in detail in Sections 3.4 and 3.5, the proposed

9This fact is especially helpful if β̂ is obtained from a time series regression, as Σ̂ will then typically be a
HAC estimator with limited accuracy in small samples (Müller, 2014).

10If the shrinkage parameter λ has been picked based on introspection before seeing the data, as in Foot-
note 7, a quick-and-dirty confidence band can be constructed using Var(

√
T β̂M,W (λ)) ≈ ΘM,W (λ)Σ̂ΘM,W (λ)′

for fixed λ. This procedure is only accurate for small λ because it ignores the shrinkage bias.
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shrinkage bands do not have uniformly smaller area than the usual Wald confidence bands

centered at the initial IRF estimate β̂. Nevertheless, simulation evidence indicates that the

bands perform well when the true IRF is smooth, while apparently never doing substantially

worse than the standard bands. Unlike the standard bands, the shrinkage bands can be

constructed so they always contain the shrinkage estimator.

Pointwise bands. Pointwise confidence bands guarantee a pre-specified asymptotic cov-

erage probability in repeated experiments, considering each impulse response separately.

Pointwise bands are commonly used in applied macroeconomics and panel event studies.

The pointwise shrinkage confidence bands are based on simulated critical values obtained

horizon by horizon. Suppose we seek a confidence set for the linear combination s′β† of the

IRF parameters, where s is a user-specified selection vector (most commonly a unit vector).

First, for any η ∈ Rn and n× n symmetric positive definite matrix Σ, define11

θ̂M,W,W̃ (η,Σ) = ΘM,W (λ̂M,W,W̃ (η,Σ))η, (3.9)

λ̂M,W,W̃ (η,Σ) = arg min
λ≥0

(
‖{ΘM,W (λ)− In}η‖2

W̃ + 2 tr{W̃ΘM,W (λ)Σ}
)
. (3.10)

Second, for any θ ∈ Rn and Σ, let ζ = (s′Σs)−1Σs, and define qs,1−α,M,W,W̃ (θ,Σ) to be the

1− α quantile of the distribution of

{s′θ̂M,W,W̃ (ζu+ θ,Σ)− s′θ}2, (3.11)

where u ∼ N(0, s′Σs). This quantile can be approximated arbitrarily well for given η and

Σ by repeatedly simulating draws of u. The simulations run faster for projection shrinkage

11If the minimum (3.10) is attained at λ = ∞, set θ̂M,W,W̃ (η,Σ) = limλ→∞ΘM,W (λ)η. The limit equals
(In −W−1M ′(MW−1M ′)−1M)η if M has full row rank, and (In −M)η if M is an orthogonal projection.
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estimators because the minimizer (3.10) is available in closed form, cf. Appendix A.3.3.

A shrinkage confidence set with asymptotic 1− α coverage rate for s′β† is given by

Ĉs,1−α =
{
µ ∈ R : T (s′β̂M,W,W̃ − µ)2 ≤ qs,1−α,M,W,W̃ (

√
T (ζ̂µ+ ν̂), Σ̂)

}
,

where ζ̂ = (s′Σ̂s)−1Σ̂s and ν̂ = (In − ζ̂s′)β̂. To approximate the set, consider a fine grid of

µ values containing s′β̂M,W,W̃ , and evaluate the above inequality at each point in the grid.

While more computationally intensive than the usual Wald interval, the grid search is fast

for the case of projection shrinkage and not too onerous in the general case. In the case of

projection shrinkage, Appendix A.3.3 shows that the grid search can be confined to a bounded

interval: Ĉs,1−α ⊂ [s′β̂P,In,In − ξ̂, s′β̂P,In,In + ξ̂], where ξ̂ =
√

(s′Σ̂s/T )z1,1−α + ‖s‖
√

tr(Σ̂)/T

and z1,1−α is the 1− α quantile of a χ2(1) distribution.

The proposed set Ĉs,1−α always contains the shrinkage point estimate s′θ̂M,W,W̃ , but an

alternative shrinkage set without this guarantee is often faster to compute. The alternative

procedure involves a user-specified tuning parameter δ ∈ [0, α]. Define the usual Wald

interval for s′β† at level 1 − δ: Îs,1−δ = [s′β̂ − ĉ1−δ/
√
T , s′β̂ + ĉ1−δ/

√
T ], where ĉ1−δ =√

(s′Σ̂s)z1,1−δ. Define also q̃s,1−α,M,W,W̃ (θ,Σ, c) to be the 1−α quantile of the statistic (3.11)

when u has a truncated normal distribution with mean 0, variance parameter s′Σs and

truncation interval |u| < c (this quantile can be computed by simulation). Finally, define

the alternative level 1− α shrinkage set12

Ĉs,1−α,1−δ =
{
µ ∈ Îs,1−δ : T (s′β̂M,W,W̃ − µ)2 ≤ q̃s, 1−α1−δ ,M,W,W̃ (

√
T (ζ̂µ+ ν̂), Σ̂, ĉ1−δ)

}
.

The alternative shrinkage set is always contained in the (1 − δ)-level Wald interval Îs,1−δ,

12The right-hand side of the inequality in the definition of Ĉs,1−α,1−δ refers to the 1−α
1−δ quantile, as the use

of the auxiliary confidence interval Îs,1−δ necessitates an adjustment of the critical value, cf. Section 3.4.
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which limits the worst-case length of the confidence set but implies that the set does not

always contain the shrinkage estimate. A higher value for the tuning parameter δ yields a

smaller worst-case length but a higher probability of not containing the shrinkage estimate.

I suggest the default value δ = α/10 as in McCloskey (2015, Sec. 3.5).

Figures 3.5 and 3.6 show that the pointwise projection shrinkage band can be narrower

at most horizons than the usual pointwise band centered at the local projection estimator.

Figure 3.5 draws a pointwise 90% confidence band based on the alternative shrinkage set

with δ = 0.01. While the shrinkage band is not very different from the usual Wald band in

Figure 3.6, the former is slightly narrower at most horizons. Although not guaranteed, here

the alternative shrinkage set actually does contain the shrinkage estimator at all horizons.

Joint bands. A joint confidence band of asymptotic level 1−α covers the true IRF at all

horizons with probability 1−α in repeated experiments, for large sample sizes. Joint bands

are needed when testing whether the entire IRF is zero, or for hypothesis tests concerning

the overall shape of the IRF. Sims & Zha (1999) and Inoue & Kilian (2016) recommend the

use of joint bands instead of pointwise bands for macroeconomic applications.

I construct joint shrinkage bands by inverting a statistic with simulated critical values,

as in the pointwise case. For any θ = (θ0, . . . , θn−1)′ ∈ Rn and n × n symmetric positive

definite Σ, let q1−α,M,W,W̃ (θ,Σ) be the 1− α quantile of the distribution of

sup
0≤i≤n−1

∣∣∣Σ−1/2
ii

(
θ̂i,M,W,W̃ (θ + U,Σ)− θi

)∣∣∣ ,
where θ̂i,M,W,W̃ (η,Σ) is the (i + 1)-th element of (3.9), Σii is the i-th diagonal element of

Σ, and U ∼ N(0,Σ). This quantile can be computed by repeated simulation of U . Finally,
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Pointwise confidence band for projection shrinkage
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Figure 3.5: Projection shrinkage point estimate (thick line) and 90% pointwise confidence band
Ĉs,0.9,1−δ for δ = 0.01 (shaded). HAC: Newey-West, 24 lags. See caption for Figure 3.1.

Pointwise confidence band for local projection
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Figure 3.6: Local projection point estimate (thick line) and 90% pointwise confidence band
(shaded). HAC: Newey-West, 24 lags. See caption for Figure 3.1.
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define the joint level 1− α shrinkage confidence set13

Ĉ1−α =
{

(β0, . . . , βn−1)′ ∈ Rn : sup
0≤i≤n−1

√
T
∣∣∣Σ̂−1/2

ii

(
β̂i,M,W,W̃ − βi

)∣∣∣ ≤ q1−α,M,W,W̃ (
√
Tβ, Σ̂)

}
.

The joint shrinkage band can be computed numerically by an accept/reject procedure, as

with the “shotgun plots” in Inoue & Kilian (2016): Simulate draws of β = (β0, . . . , βn−1)′

from some proposal distribution and retain them if they satisfy the inequality in the definition

of Ĉ1−α. If the proposal distribution has full support, this procedure will exhaust the joint

confidence band as the number of draws tends to infinity. I suggest using the proposal

distribution β̂M,W,W̃ +
√
z1,1−α/T Σ̂1/2Ũ , where Ũ is an n-dimensional vector consisting of

i.i.d. t-distributed elements with few degrees of freedom, e.g., 5.

Figure 3.7 depicts draws from a joint confidence band around the projection shrinkage

estimator. Even at the 68% confidence level used by Inoue & Kilian (2016), the joint band

is wide and contains a variety of differently shaped IRFs. The uncertainty about the shape

of the tail of the IRF is particularly high.

3.3 Mean squared error optimality

In this section I present theoretical results on the MSE of shrinkage estimators. First,

I give conditions under which the URE is asymptotically unbiased for the true MSE of

general shrinkage estimators. Then I show that projection shrinkage estimators can achieve

uniformly lower asymptotic MSE than the unconstrained estimator when the smoothing

parameter is chosen to minimize the URE.

I assume that the initial non-smooth IRF estimator β̂ is consistent for the true IRF and

13Inoue & Kilian (2016) construct joint confidence bands based on the Wald set. I prefer the weighted
supremum metric in the definition of Ĉ1−α, since the Euclidean norm used by the Wald set allows large
deviations from the point estimate at some horizons, provided the deviations are small at other horizons.
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Joint confidence band for projection shrinkage

Figure 3.7: Projection shrinkage point estimate (thick line) and draws from 68% joint confidence
band (thin lines). 10,000 t-distributed proposal draws, 5 d.f.; 1,251 draws accepted. HAC: Newey-
West, 24 lags. See caption for Figure 3.1.

asymptotically normal, with consistently estimable asymptotic variance.

Assumption 3.1. The distribution of the data for sample size T is indexed by a parameter

β†T ∈ Rn. The estimators β̂ ∈ Rn and Σ̂ ∈ Sn satisfy
√
T (β̂−β†T ) d→ N(0,Σ) and Σ̂ p→ Σ for

some Σ ∈ Sn+, and the sequence {T‖β̂ − β†T‖2 + ‖Σ̂‖}T≥1 is uniformly integrable.

The assumptions on the estimators β̂ and Σ̂ are standard. The notation indicates that

the IRF β†T may depend on the sample size, which is convenient when stating the results in

this section. The parameter β†T is pseudo-true, in the sense that β̂ − β†T
p→ 0, but otherwise

the parameter may have no direct connection to the underlying data generating model. The

uniform integrability assumption is implied by ‖
√
T (β̂ − β†T )‖ having uniformly bounded

2 + ε moment and ‖Σ̂‖ having uniformly bounded 1 + ε moment for sufficiently large T .14

14Uniform integrability essentially rules out cases where, for example, β̂ does not have finite moments for
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3.3.1 Unbiased risk estimate

I now justify the name “unbiased risk estimate” by proving that the URE criterion (3.7) is

asymptotically uniformly unbiased for the MSE of a general shrinkage estimator.

I restrict attention to IRFs that are moderately smooth in an asymptotic sense, since

otherwise shrinkage does not matter asymptotically. Let M be the matrix defining the

penalty term in the general shrinkage estimator (3.3), and define the projection matrix

PM = M ′(MM ′)−1M (if M = P is itself a projection matrix, set PM = P ). I assume

below that limT→∞ ‖
√
TPMβ

†
T‖ < ∞, following Hansen’s (2016b) insight that only such

local asymptotic sequences generate a nontrivial role for shrinkage asymptotically. If instead

lim infT→∞ ‖
√
TPMβ

†
T‖ = ∞, one can show that both the true MSE RM,W,W̃ (λ) and the

URE R̂M,W,W̃ (λ) tend to infinity asymptotically for any λ > 0, which is an uninteresting

conclusion from an applied perspective.

The following proposition states the asymptotic uniform unbiasedness of the URE cri-

terion, up to a constant. Since this constant does not depend on λ, it is irrelevant for the

purposes of selecting the smoothing parameter.

Proposition 3.1. Let Assumption 3.1 hold. Assume that either: (a) M ∈ Rm×n has full row

rank, or (b)M = P ∈ Rn×n is an orthogonal projection matrix. Define PM = M ′(MM ′)−1M

in case (a) or PM = P in case (b). Assume that
√
TPMβ

†
T → h ∈ Rn. Let W, W̃ ∈ Sn+.

Then there exists a random variable Ĉ that does not depend on λ such that

lim
T→∞

sup
λ≥0

∣∣∣RM,W,W̃ (λ)− E
(
R̂M,W,W̃ (λ) + Ĉ

)∣∣∣ = 0.

any finite T . The assumption can probably be relaxed at the expense of a more complicated statement in
Proposition 3.1, and a trimmed-risk statement in Proposition 3.2 similar to Hansen (2016b, Thm. 1).
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3.3.2 Risk of projection shrinkage

The proposition below gives conditions under which projection shrinkage estimators have

small MSE relative to the initial IRF estimator. Given an orthogonal projection matrix

P ∈ Rn×n, the MSE dominance result applies to the class of shrinkage estimators

β̂P (τ) = β̂ −min
{

τ

T‖Pβ̂‖2
, 1
}
Pβ̂, τ ≥ 0,

where I have abused notation slightly relative to definition (3.6) (note that here I use τ instead

of λ for the argument). The optimal projection shrinkage estimator (3.8) is a member of

the above class with τ = tr(Σ̂P ). The following proposition is a minor extension of results

in Oman (1982) and Hansen (2016b). For the same reason as in the previous subsection, I

restrict attention to a 1/
√
T neighborhood of the shrinkage space.

Proposition 3.2 (Oman, 1982; Hansen, 2016b). Let Assumption 3.1 hold, and assume
√
TPβ†T → h ∈ Rn. Let τ̂ ≥ 0 be a scalar random variable satisfying τ̂ p→ τ ≤ 2(tr(Σ) −

2ρ(Σ)) and such that the sequence {T‖β̂ − β†T‖2 + τ̂}T≥1 is uniformly integrable. Define

ΣP = PΣP . Then

lim sup
T→∞

E
(
T‖β̂P (τ̂)− β†T‖2

)
≤ tr(Σ)− τ 2(tr(ΣP )− 2ρ(ΣP ))− τ

tr(ΣP ) + ‖h‖2 .

The result shows that if plimT→∞τ̂ ≤ 2(tr(ΣP ) − 2ρ(ΣP )), the limiting MSE of the

shrinkage estimator β̂P (τ̂) is less than that of the initial IRF estimator β̂ = β̂P (0), uniformly

in a 1/
√
T neighborhood of the shrinkage space span(In−P ). The first term on the right-hand

side above equals the limiting MSE of the initial estimator. The fraction on the right-hand

side above is maximized at τ = tr(ΣP )− 2ρ(ΣP ); however, it does not follow that this is the

MSE-optimal probability limit for τ̂ , as the right-hand side is only an upper bound.

The proposition implies conditions under which the URE-minimizing projection shrinkage
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estimator dominates the initial IRF estimator.

Corollary 3.1. Let Assumption 3.1 hold, and assume
√
TPβ†T → h ∈ Rn. If tr(ΣP ) >

4ρ(ΣP ), the URE-minimizing projection shrinkage estimator β̂P (τ̂) with τ̂ = tr(Σ̂P ) has

smaller limiting MSE than the initial IRF estimator β̂, uniformly in h.

The sufficient condition tr(ΣP ) > 4ρ(ΣP ) in Corollary 3.1 requires that the number of

response horizons of interest is sufficiently high. Since tr(ΣP ) ≤ rk(P )ρ(ΣP ), a necessary

condition for tr(ΣP ) > 4ρ(ΣP ) is that rk(P ) > 4. If the projection shrinkage estimator is

used to shrink the initial IRF estimate towards a polynomial of order p, as explained in

Section 3.2.2, then rk(P ) = n − p, so the necessary condition is n > p + 4. The higher the

order of the polynomial, the harder is it to MSE-dominate the initial IRF estimator for given

number of horizons n, because even the shrunk estimate will have high variance. The more

response horizons the researcher cares about in the MSE criterion, the more is shrinkage

likely to be beneficial. See Oman (1982) for a general discussion of tr(ΣP ) versus ρ(ΣP ).

3.4 Confidence sets

Here I develop novel methods for computing joint and marginal confidence sets based on the

shrinkage estimators in Section 3.2. For expositional convenience, I start off by constructing

valid confidence sets in an idealized finite-sample model in which the initial IRF estimate is

exactly normally distributed with arbitrary known covariance structure. Then I show that,

for the case of projection shrinkage, the finite-sample results imply that the confidence sets

achieve asymptotic uniform coverage under weak assumptions.

3.4.1 Finite-sample normal model

In this subsection I construct valid test inversion confidence sets in a finite-sample normal

model with arbitrary known covariance matrix. The finite-sample normal model is the
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appropriate limit experiment for shrinkage estimators, in a sense that is made formal in the

next subsection for the special case of projection shrinkage. Results in this section motivate

the use of the confidence sets introduced in Section 3.2.4.

Model. Assume that we observe a single draw θ̂ ∼ N(θ†,Σ), where θ† ∈ Rn is the unknown

parameter of interest, and Σ ∈ Sn+ is an arbitrary known covariance matrix. This idealized

model has received extensive attention in the literature on shrinkage confidence sets, although

typically under the additional assumption that Σ is spherical (Casella & Hwang, 2012). To

map into the notation of the previous sections, think of θ̂ =
√
T β̂ and θ† =

√
Tβ†, where the

conditions in Assumption 3.1 of asymptotic normality and consistently estimable asymptotic

variance are replaced with exact finite-sample normality with known covariance matrix.

I consider a general shrinkage estimator and URE constructed from θ̂ by analogy with

Sections 3.2.2 and 3.2.3. Define the shrinkage estimator

θ̂M,W (λ) = ΘM,W (λ)θ̂, λ ≥ 0,

where ΘM,W (λ) is given by (3.4), and also

λ̂M,W,W̃ = arg min
λ≥0

(
‖θ̂M,W (λ)− θ̂‖2

W̃ + 2 tr{W̃ΘM,W (λ)Σ}
)
. (3.12)

Denote the minimum-URE shrinkage estimator by θ̂M,W,W̃ = θ̂M,W (λ̂M,W,W̃ ).15 If W = W̃ =

In and M = P is an orthogonal projection matrix, we have

θ̂P,In,In = θ̂ −min
{

tr(PΣ)
‖P θ̂‖2

, 1
}
P θ̂, (3.13)

15If the minimum in (3.12) is attained at λ =∞, θ̂M,W,W̃ is defined as a limit, cf. Footnote 11.
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which is the analogue of the optimal projection shrinkage estimator (3.8).

In the following I invert tests based on the shrinkage estimator θ̂M,W,W̃ to construct finite-

sample valid confidence sets for θ† or for a linear combination s′θ†. When constructing joint

confidence sets for the vector θ†, a variety of shrinkage confidence sets have been shown to

dominate the usual Wald ellipse centered at θ̂, for the special case Σ = In (Casella & Hwang,

2012). Simulations in Section 3.5 suggest that shrinkage confidence sets are competitive when

based on general shrinkage estimators and with non-diagonal Σ, although I have not proved

analytic dominance results. Marginal shrinkage confidence sets for the scalar s′θ† cannot

have uniformly smaller expected length than the usual Wald interval centered at s′θ̂, as

the latter is uniquely minimax up to Lebesgue null sets (Joshi, 1969). Nevertheless, the

simulations in Section 3.5 indicate that marginal shrinkage confidence sets often outperform

the usual confidence interval when the true IRF is smooth without much worse expected

length in the non-smooth case.16

Joint confidence sets. To construct a joint confidence set for θ†, I invert the test

statistic g(θ̂M,W,W̃−θ,Σ), where g : Rn×Sn+ → R+ is a continuous function. For example, the

choice g(θ,Σ) = ‖ diag(Σ)−1/2θ‖∞, where diag(Σ) equals Σ with all non-diagonal elements

set to zero, yields the confidence set presented in Section 3.2.4. Let q1−α,M,W,W̃ (θ,Σ) be the

1−α quantile of g(θ̂M,W,W̃ (θ+U,Σ)− θ,Σ), U ∼ N(0,Σ), cf. definition (3.9) (this coincides

with the definition in Section 3.2.4 for the choice of g(·, ·) used there). Then, by definition,

Ĉθ1−α = {θ ∈ Rn : g(θ̂M,W,W̃ − θ,Σ) ≤ q1−α,M,W,W̃ (θ,Σ)}

16In the model considered here, the Wald interval has uniformly shortest expected length among unbiased
confidence sets (Lehmann & Romano, 2005, Ch. 5.5). The reason the marginal shrinkage sets can achieve
smaller expected length than the Wald interval for some parameter values is that the shrinkage sets, while
similar, do not attain their highest coverage rate at s′θ = s′θ†. I thank Adam McCloskey for a discussion.
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is a confidence set for θ† with 1− α coverage probability.

The proposed shrinkage confidence set has several attractive features, although I have

not proved any formal optimality properties. First, its construction is based directly on the

general shrinkage estimator, which is a desirable and economically intuitive estimator from

the perspective of point estimation, as argued in Section 3.2. Second, the set is guaranteed

to contain the shrinkage estimator θ̂M,W,W̃ , unlike, say, the usual Wald ellipse centered at

θ̂. Third, one can show that in the projection shrinkage case (3.13), the set Ĉ coincides

with the Wald ellipse almost surely in the limit under any sequence of probability measures

with ‖Pθ‖ → ∞.17 A drawback of the shrinkage confidence set is that it requires extensive

simulation to compute numerically, as described in Section 3.2.4.

Marginal confidence sets. To construct computationally cheap confidence sets for the

linear combination s′θ†, I argue that conditional inference is appropriate. Define P̃ = ζs′,

where ζ = (s′Σs)−1Σs. Since In − P̃ is idempotent with rank n − 1, there exist full-rank

matrices A,B ∈ Rn×(n−1) such that In − P̃ = AB′. The map ψ : Rn → R × Rn−1 given

by ψ(θ) = (s′θ, B′θ) is then a reparametrization of the mean parameter vector,18 and ν̂θ =

(In − P̃ )θ̂ is an S-ancillary statistic for s′θ: The distribution of ν̂θ depends on the unknown

parameters (s′θ, B′θ) only through B′θ, whereas the conditional distribution of θ̂ given ν̂θ

does not depend on B′θ (Lehmann & Romano, 2005, p. 398). These considerations suggest

that one should condition on ν̂θ when doing inference about s′θ.

I obtain a confidence set for µ† = s′θ† by inverting the statistic (s′θ̂M,W,W̃ − µ)2, con-

ditioning on ν̂θ = (In − P̃ )θ̂. Let qs,1−α,M,W,W̃ (θ,Σ) be the quantile function defined in

Section 3.2.4. Since the jointly Gaussian random variables s′θ̂ and ν̂θ are orthogonal and

17The argument is similar to the proof of Proposition 3.3 below.

18This follows from the matrix (s,B)′ being non-singular: The kernel of B′ is span(ζ), but s′ζ = 1.
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thus independent, the distribution of θ̂ = ζ(s′θ̂) + (In − P̃ )θ̂ conditional on ν̂θ = ν equals

the distribution of ζ(u+ µ†) + ν, where u ∼ N(0, s′Σs). Hence,

Ĉθs,1−α = {µ ∈ R : (s′θ̂M,W,W̃ − µ)2 ≤ qs,1−α,M,W,W̃ (ζµ+ ν̂θ,Σ)}

is a confidence set for µ† = s′θ† with conditional coverage 1− α, and thus also valid uncon-

ditional coverage: For ν ∈ span(In − P̃ ),

Prob(µ† ∈ Ĉθs,1−α | ν̂θ = ν)

= Prob
(
{s′θ̂M,W,W̃ (ζu+ ζµ† + ν,Σ)− s′(ζµ† + ν)}2 ≤ qs,1−α,M,W,W̃ (ζµ† + ν,Σ)

)
= 1− α.

The first equality uses independence of s′θ̂ and ν̂θ, the definition (3.9) of θ̂M,W,W̃ (η,Σ),

s′ζ = 1, and s′ν = 0. The second equality uses the definition of qs,1−α,M,W,W̃ (·, ·).

An alternative confidence set is obtained by intersecting a Wald interval with the above

confidence set, using adjusted critical values. Let δ ∈ [0, α], and define the 1 − δ level

Wald confidence interval Îθs,1−δ = [s′θ̂ − c1−δ, s
′θ̂ + c1−δ], where c1−δ =

√
(s′Σs)z1,1−δ. Let

q̃s,1−α,M,W,W̃ (θ,Σ, c) denote the quantile function defined in Section 3.2.4. Then

Ĉθs,1−α,1−δ = {µ ∈ Îθs,1−δ : (s′θ̂M,W,W̃ − µ)2 ≤ q̃s, 1−α1−δ ,M,W,W̃ (ζµ+ ν̂θ,Σ, c1−δ)}

is a 1− α level conditional (and thus unconditional) confidence set: For ν ∈ span(In − P̃ ),

Prob(µ† ∈ Ĉθs,1−α,1−δ | ν̂θ = ν)

= Prob
(

(s′θ̂M,W,W̃ − µ†)2 ≤ q̃s, 1−α1−δ ,M,W,W̃ (ζµ† + ν,Σ, c1−δ)
∣∣∣µ† ∈ Îθs,1−δ, ν̂θ = ν

)
× Prob(µ† ∈ Îθs,1−δ)
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= Prob
(
{s′θ̂M,W,W̃ (ζu+ ζµ† + ν,Σ)− s′(ζµ† + ν)}2

≤ q̃s, 1−α1−δ ,M,W,W̃ (ζµ† + ν,Σ, c1−δ)
∣∣∣ |u| ≤ c1−δ

)
(1− δ)

= 1− α
1− δ (1− δ).

The first equality uses independence of s′θ̂ and ν̂θ. The second equality sets u = s′θ̂ − µ† ∼

N(0, s′Σs) and uses independence, the definition (3.9) of θ̂M,W,W̃ (η,Σ), s′ζ = 1, and s′ν = 0.

The last equality follows from the definition of q̃s,1−α,M,W,W̃ (·, ·, ·).

The alternative confidence set for µ† has known worst-case length and is easy to compute,

but it is not guaranteed to contain the shrinkage estimator. Since Ĉθs,1−α,1−δ ⊂ Îθs,1−δ, the

worst-case length of the set is 2c1−δ. When numerically computing the set by grid search, the

grid can of course be confined to Îθs,1−δ. However, the set has two drawbacks relative to the

pure inversion-based set Ĉθs,1−α. First, Ĉθs,1−α,1−δ contains the shrinkage estimator s′θ̂M,W,W̃

if and only if the latter is contained in the Wald interval Îθs,1−δ.19 Second, the construction

of Ĉθs,1−α,1−δ hinges on the tuning parameter δ, as discussed in Section 3.2.4.

3.4.2 Asymptotic uniform coverage

I now show that, when applied to a class of projection shrinkage estimators, the shrinkage

confidence sets introduced in the previous subsection achieve asymptotic uniform coverage

under weak assumptions on the initial IRF estimator. In place of the idealized assumptions

in the finite-sample normal model from the previous subsection, I assume that the initial

IRF estimator is uniformly asymptotically normal with a uniformly consistently estimable

asymptotic variance. This effectively strengthens Assumption 3.1 in Section 3.3.

Assumption 3.2. Define S = {A ∈ Sn+ : c ≤ 1/ρ(A−1) ≤ ρ(A) ≤ c} for some fixed c, c > 0.

19In the case of projection shrinkage (3.13) with W = W̃ = In and M = P , Ĉθs,1−α,1−δ always contains
s′θ̂P,In,In if c1−δ ≥ ‖s‖

√
tr(PΣ). This follows from ‖θ̂P,In,In − θ̂‖ ≤

√
tr(PΣ), cf. Appendix A.3.3.
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The distribution of the data FT for sample size T is indexed by three parameters β ∈ Rn,

Σ ∈ S, and γ ∈ Γ, where Γ is some set. The estimators (β̂, Σ̂) ∈ Rn×Sn satisfy the following:

For all subsequences {kT}T≥1 of {T}T≥1 and all sequences {βkT ,ΣkT , γkT }T≥1 ∈ Rn×S ×Γ,

we have, as T →∞,

√
kT Σ̂−1/2(β̂ − βkT ) d−→

FkT (βkT ,ΣkT ,γkT )
N(0, In), (Σ̂− ΣkT ) p−→

FkT (βkT ,ΣkT ,γkT )
0.

The assumption requires that β̂ is asymptotically normal and Σ̂ consistent under drifting

sequences of parameters. This is a type of asymptotic regularity condition on the estima-

tors. While the parameter space for the IRF β is unrestricted, the parameter space for the

asymptotic variance Σ of β̂ is restricted to a compact subset of the space of positive defi-

nite matrices, thus assuming away near-singular cases. The parameter γ in the assumption

captures all aspects of the distribution of the data that are not controlled by the parameters

β and Σ. If β̂ is obtained from a time series or panel regression, Assumption 3.2 will typ-

ically be satisfied under mild assumptions on the moments of the regressors and residuals.

Finite-sample normality is not required.

I consider a class of estimators that contains the optimal projection shrinkage estimator.

Given the initial IRF estimator β̂ an n × n orthogonal projection matrix P and a function

f(·, ·) satisfying Assumption 3.3 below, define the shrinkage estimator

β̂P = β̂ − f(T‖Pβ̂‖2, Σ̂)Pβ̂.

Assumption 3.3. f : R+×Sn+ → R is continuous, and limx→∞ xf(x2,Σ)→ 0 for all Σ ∈ Sn+.

The choice f(x,Σ) = min{tr(PΣ)/x, 1} satisfies Assumption 3.3 and yields the optimal

projection shrinkage estimator (3.8).
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Joint confidence sets. The next result states that the joint confidence set in Sec-

tion 3.4.1 is asymptotically uniformly valid. Let g : Rn × Sn+ → R+, and define the test

statistic

Ŝ(β) = g
(√

T (β̂P − β), Σ̂
)
.

Let the quantile function q1−α(θ,Σ) be defined as q1−α,P,In,In(θ,Σ) in Section 3.2.4, except

that θ̂P,In,In(η,Σ) is substituted with θ̂P (η,Σ) = η − f(‖Pη‖2,Σ)Pη.

Proposition 3.3. Let Assumptions 3.2 and 3.3 hold, and assume that g(·, ·) is continuous.

Then

lim inf
T→∞

inf
(β,Σ,γ)∈Rn×S×Γ

ProbFT (β,Σ,γ)
(
Ŝ(β) ≤ q1−α(

√
Tβ, Σ̂)

)
= 1− α. (3.14)

Thus, for sufficiently large sample sizes, the worst-case finite-sample coverage probability

of the confidence region {β ∈ Rn : Ŝ(β) ≤ q1−α(
√
Tβ, Σ̂)} does not fall below 1 − α. The

proof uses the drifting parameter techniques of Andrews et al. (2011) and McCloskey (2015).

Marginal confidence sets. Similarly to the joint case, I prove that the marginal confi-

dence sets constructed in Section 3.4.2 are asymptotically uniformly valid. Suppose we wish

to conduct inference on the linear combination s′β of the true IRF β, where s ∈ Rn\{0}.

Define ζ̂ = (s′Σ̂s)−1Σ̂s, P̂ = ζ̂s′, and ν̂ = (In − P̂ )β̂. Define the test statistics

Ŝs,W (µ) = T (s′β̂ − µ)2, Ŝs(µ) = T (s′β̂P − µ)2, µ ∈ R.

Let the quantile functions qs,1−α(β,Σ) and q̃s,1−α(β,Σ, c) be defined as qs,1−α,P,In,In(θ,Σ) and

q̃s,1−α,P,In,In(β,Σ, c), respectively, in Section 3.2.4, except that θ̂P,In,In(η,Σ) is substituted

with θ̂P (η,Σ) = η − f(‖Pη‖2,Σ)Pη. Finally, define ĉ1−δ =
√

(s′Σ̂s)z1,1−δ.
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Proposition 3.4. Let Assumptions 3.2 and 3.3 hold. Then

lim inf
T→∞

inf
(β,Σ,γ)∈Rn×S×Γ

ProbFT (β,Σ,γ)
(
Ŝs(s′β) ≤ qs,1−α

(√
T (ζ̂(s′β) + ν̂), Σ̂

))
= 1− α. (3.15)

Moreover, for all δ ∈ [0, α],

lim inf
T→∞

inf
(β,Σ,γ)∈Rn×S×Γ

ProbFT (β,Σ,γ)

(
Ŝs,W (s′β) ≤ ĉ2

1−δ,

Ŝs(s′β) ≤ q̃s, 1−α1−δ

(√
T (ζ̂(s′β) + ν̂), Σ̂, ĉ1−δ

))
= 1− α.

(3.16)

3.5 Simulation study

This section illustrates the properties of the shrinkage estimators and confidence sets by

simulation. First, I consider the idealized setting of the finite-sample normal model with

known covariance matrix from Section 3.4.1. The simulations show that shrinkage often

delivers large gains for joint estimation and confidence set construction, while the marginal

shrinkage confidence sets are competitive with the standard Wald confidence interval. Sec-

ond, I consider a realistic time series regression setting with data generating process (DGP)

calibrated to the empirical example from Section 3.2. I find that the advantages of shrinkage

carry over to this setting, despite the need to estimate the asymptotic variance of the initial

IRF estimator.

3.5.1 Normal model with known covariance matrix

To focus on essentials, I first consider the finite-sample normal location model with known

covariance matrix from Section 3.4.1.
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DGP and estimators. We observe a single normal draw θ̂ ∼ N(θ†,Σ) with mean θ† ∈

Rn and known covariance matrix Σ. Given jaggedness parameter K, the true IRF θ† =

(θ†0, . . . , θ†n−1)′ is

θ†i =


1− i

n−1 if K = 0,

sin 2πKi
n−1 if K > 0,

i = 0, 1, . . . , n− 1.

Hence, the true IRF is linearly decreasing from 1 to 0 if K = 0, while it is shaped like K

full waves of a sine curve over [0, n − 1] when K > 0. Σ has the exponentially decreasing

structure Cov(θ̂i, θ̂k) = σiσkκ
|i−k|, where σi = σ0(1 + iϕ−1

n−1 ), so that ϕ2 = Var(θ̂n−1)/Var(θ̂0).

I consider different values for the parameters n, K, κ ∈ [0, 1], σ0 > 0, and ϕ > 0.

I investigate the performance of the SmIRF estimator and the optimal projection shrink-

age estimator that shrinks towards a quadratic IRF. The quadratic projection shrinkage

estimator is given by (3.13), where P is the projection matrix that shrinks towards a second-

degree polynomial, cf. Section 3.2.2. Appendix A.3.5 contains simulation results for the

SmIRF estimator. These are qualitatively similar to the projection shrinkage results.

Results. Table 3.1 shows that the quadratic projection shrinkage estimator outperforms

the initial IRF estimator in terms of total MSE for all DGPs considered. This performance

improvement is due to the reduction in variance caused by shrinkage. The bias of the

shrinkage estimator is only substantial in the DGPs with K = 1 or 2, i.e., for very non-

quadratic IRFs.20 Figure 3.8 illustrates in more detail how the relative MSE and squared

bias of the projection shrinkage estimator depends on the jaggedness of the IRF (i.e., the

parameter K). The relative MSE of the shrinkage estimator is small for IRFs that are well-

approximated by a quadratic function (roughly, K ≤ 0.75), and is still below 1 for very

jagged IRFs due to the adaptivity afforded by a data-dependent smoothing parameter.

20I define bias as ‖E(θ̂)− θ†‖ and variance as E(‖θ̂ − E(θ̂)‖2), and similarly for the shrinkage estimator.
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Simulation results: Projection shrinkage, normal model

Joint Marginal
Parameters

MSE Var CV
MSE Lng Ĉs Lng Ĉs,1−δ

n K κ σ0 ϕ Imp Mid Imp Mid Imp Mid

10 0.5 0.5 0.2 3 0.65 0.65 0.80 1.31 0.55 1.08 0.86 1.08 0.86
25 0.5 0.5 0.2 3 0.35 0.35 0.61 1.19 0.29 0.94 0.82 0.93 0.82
50 0.5 0.5 0.2 3 0.20 0.20 0.44 0.82 0.16 0.87 0.81 0.85 0.80
25 0 0.5 0.2 3 0.35 0.35 0.64 1.20 0.29 0.93 0.82 0.93 0.82
25 1 0.5 0.2 3 0.84 0.66 1.15 3.60 0.56 1.49 0.85 1.40 0.85
25 2 0.5 0.2 3 0.90 0.77 0.97 1.16 0.70 1.04 0.87 1.03 0.87
25 0.5 0 0.2 3 0.16 0.16 0.41 0.58 0.13 0.84 0.81 0.84 0.80
25 0.5 0.9 0.2 3 0.82 0.82 0.85 1.57 0.78 1.19 0.90 1.19 0.90
25 0.5 0.5 0.1 3 0.36 0.35 0.60 1.28 0.31 0.96 0.82 0.95 0.82
25 0.5 0.5 0.4 3 0.35 0.35 0.65 1.15 0.30 0.94 0.82 0.93 0.82
25 0.5 0.5 0.2 1 0.34 0.34 0.57 0.70 0.29 0.88 0.82 0.88 0.82
25 0.5 0.5 0.2 5 0.35 0.35 0.71 1.88 0.28 1.07 0.82 1.00 0.82

Table 3.1: Simulation results for quadratic projection shrinkage, finite-sample normal model.
Columns 1–5: DGP parameters. Column 6: Joint MSE of shrinkage estimator relative to joint
MSE of θ̂. Column 7: Joint variance of shrinkage estimator relative to joint variance of θ̂. Column
8: Critical value at θ† for 90% joint shrinkage confidence set, relative to critical value of joint
Wald set. Columns 9–10: Marginal MSE of SmIRF relative to θ̂ at horizons i = 0 (“Imp”) and
i = 1 + [n/2] (“Mid”). Columns 11–14: Average length of 90% marginal shrinkage sets relative to
Wald interval for sets Ĉs = Ĉs,1−α and Ĉs,1−δ = Ĉs,1−α,1−δ. Length is defined as number of grid
points in set, divided by total grid points (50), times length of grid. 5000 simulations per DGP,
1000 simulations to compute quantiles, α = 0.1, δ = 0.01.
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Simulation results: Joint MSE vs. IRF jaggedness, normal model
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Figure 3.8: Joint MSE and squared bias of quadratic projection shrinkage estimator as func-
tions of the jaggedness of the true IRF, finite-sample normal model. Horizontal axis shows
K = 0.125, 0.25, . . . , 3, with true IRF given by θ†i = sin 2πKi

n−1 . Vertical axis units normalized
by joint MSE of θ̂, for each K. Other DGP parameters: n = 25, κ = 0.5, σ0 = 0.2, ϕ = 3.

Although shrinkage is not designed to improve individual impulse response estimates,

Table 3.1 shows that shrinkage often produces more accurate estimates of a single longer-

horizon impulse response. Intuitively, except at short horizons, the shrinkage estimator

smooths between several nearby horizons, thus reducing variance and improving MSE if the

true IRF is smooth.21 At short horizons, such as the impact response i = 0, the projection

shrinkage estimator tends to perform worse than the initial estimator because the number of

nearby horizons is smaller, so the variance reduction is too small to outweigh the increase in

bias. Nevertheless, the absolute MSE of the shrinkage estimator will often be small even for

the impact response, as this response is typically estimated with relatively high precision.

Table 3.1 shows that joint and marginal shrinkage confidence sets are competitive with

21However, being admissible, θ̂i outperforms shrinkage for some non-smooth parametrizations.
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the usual Wald confidence sets.22 As an imperfect measure of the relative volume of the

joint shrinkage confidence set, the table lists the critical value q1−α,P,In,In(θ†,Σ) evaluated at

the true IRF, divided by the corresponding critical value q1−α,0,In,In(θ†,Σ) (which does not

depend on θ†) of the usual joint Wald set, cf. Section 3.2.4.23 The relative critical value is

below 1 for every DGP considered, often substantially. The marginal shrinkage sets have

average length that is competitive with the usual Wald interval, often outperforming the

latter at the middle response horizon. Although the Wald interval at the impact horizon

i = 0 tends to be shorter, the average lengths of the marginal shrinkage sets are small in

absolute terms at this horizon. There is very little difference between the average lengths of

the pure inversion shrinkage set Ĉs,1−α and the alternative shrinkage set Ĉs,1−α,1−δ.

Table 3.1 offers the following additional lessons on the influence of the DGP parameters:

• The larger the number of parameters n, the better the relative performance of shrink-

age procedures. This does not just apply to joint procedures, but even to marginal

procedures, as higher n means more scope for smoothing between response horizons.

• The performance of shrinkage procedures worsens with higher κ, i.e., as the correlation

between estimators at different horizons increases. However, even for κ = 0.9, the joint

shrinkage procedures outperform the usual procedures, and the marginal shrinkage

procedures outperform the usual procedures at the middle response horizon.

• Proportionally scaling the initial estimator variance Σ does not affect the relative

performance of the various procedures.

22The table does not list coverage rates for the various joint or marginal confidence sets, as these are
guaranteed to be exactly 1− α = 0.9 up to simulation error.

23Unlike for the joint Wald set, the volume of the shrinkage set is not a function of only q1−α,P,In,In(θ†,Σ).
However, the critical value evaluated at the true IRF is a good guide to the volume if the quantile function
is not very sensitive to θ†.

144



• Increasing the variance of the long-horizon initial impulse response estimators relative

to the short-horizon estimators worsens the performance of shrinkage procedures, but

mostly with regard to inference on the impact response.

In unreported simulations, I investigated the performance of a naive confidence set that is

centered at the projection shrinkage estimator but uses the critical value for the correspond-

ing Wald set. Casella & Hwang (1987) show that the naive set has valid coverage in the case

κ = 0 and ϕ = 1, but its properties are otherwise unknown. My simulations show that the

naive set does not control coverage for general choices of Σ, such as the above DGPs.

3.5.2 Time series regression

Now I consider a realistic setting in which we seek to estimate an IRF from time series data,

without knowledge of underlying model parameters. The DGP is calibrated to the empirical

example in Section 3.2.

DGP and estimators. I generate data from a VAR calibrated to the Gertler & Karadi

(2015) data described in Appendix A.3.2. The simulation DGP is given by

 yt

wt

 =
2∑

k=1
Ak

 yt−k

wt−k

+ bxt + Cεt,

where dim(yt) = 1, dim(wt) = 3, εt i.i.d.∼ N(0, I4), and xt is white noise independent of εt (its

distribution is specified below). The parameter of interest is the IRF of yt to xt.

For calibration purposes, I use quadratically detrended monthly data for 1992–2012 on

yt = the excess bond premium and wt = (log industrial production, log consumer price index,

1-year Treasury rate)′.24 Let xt = monetary policy shock. The coefficients A1, A2 ∈ R4×4

24The Bayesian Information Criterion selects a VAR lag length of 2 for the (yt, w′t)′ data.
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and b ∈ R4 are obtained by least-squares regression on the calibration data, with C ∈ R4×4

given by the Cholesky factor of the covariance matrix of the regression residuals. The true

IRF of yt to xt implied by the calibrated VAR is plotted in Appendix A.3.5.

I consider several parametrizations based on the above VAR. First, I let n, the number of

impulse responses of interest, be either 25 (two years) or 49 (four years). Second, I consider

different sample sizes T of simulated data. Third, I let the shock xt be either i.i.d. standard

normal or i.i.d. t-distributed with 5 degrees of freedom (i.e., finite fourth, but not fifth,

moment), normalized to have variance 1. Fourth, I consider different HAC lag lengths `

when estimating Σ, the asymptotic variance of the local projection estimator.

I investigate the relative performance of the Jordà (2005) local projection estimator (3.1)

and the quadratic projection shrinkage transformation of this estimator (see the definition in

the previous subsection). The local projection estimator regresses current and future values

of yt on xt, controlling for wt−1, wt−2. I do not compare with VAR estimators or associated

confidence sets as this has already been done by Jordà (2005).

Results. Table 3.2 shows that the main results from the idealized normal model carry over

to the realistic time series setting. Despite the need to estimate the asymptotic variance Σ

of the local projection estimator by HAC methods, the shrinkage procedures outperform

the local projection procedures in the case of joint inference and marginal inference on the

middle response horizon. Only in the case of inference on the impact impulse response do

the local projection procedures deliver smaller MSE and shorter confidence intervals.

The coverage rates of the joint and marginal shrinkage confidence sets are satisfactory

for moderate and large sample sizes. The shrinkage sets have coverage closer to the nominal

90% level than the local projection based confidence sets for all DGPs, with substantial

improvements in the case of joint inference. The marginal shrinkage sets have near-correct

coverage in all cases except for sample size T = 100. The coverage rates do not deteriorate
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Simulation results: Projection shrinkage, time series regression
Joint Marginal

Parameters MSE CV Cov Cov MSE Lng Ĉs,1−δ Cov W Cov Ĉs,1−δ
n T SD ` W Ĉ Imp Mid Imp Mid Imp Mid Imp Mid
25 200 N 12 0.74 0.85 0.79 0.83 1.51 0.71 1.08 0.91 0.86 0.84 0.87 0.85
49 200 N 12 0.59 0.85 0.72 0.83 2.68 0.51 1.12 0.89 0.86 0.82 0.87 0.85
25 100 N 12 0.70 0.85 0.62 0.74 1.32 0.69 1.05 0.93 0.81 0.77 0.83 0.79
25 300 N 12 0.75 0.85 0.84 0.86 1.64 0.72 1.10 0.91 0.88 0.87 0.89 0.87
25 500 N 12 0.77 0.86 0.87 0.88 1.92 0.74 1.14 0.90 0.88 0.87 0.89 0.88
25 200 t 12 0.74 0.85 0.77 0.82 1.48 0.70 1.08 0.92 0.85 0.84 0.87 0.85
25 200 N 6 0.74 0.83 0.84 0.87 1.57 0.72 1.08 0.90 0.87 0.87 0.88 0.87
25 200 N 24 0.75 0.88 0.71 0.80 1.50 0.73 1.09 0.93 0.83 0.81 0.85 0.84

Table 3.2: Simulation results for quadratic projection shrinkage, time series regression on VAR
data. Columns 5–6, 9–12: See caption for Table 3.1. Columns 1–4: DGP parameters (“SD” =
shock distribution, either Normal or t). Columns 7–8: Coverate rates for 90% joint Wald and
shrinkage confidence sets. Columns 13–16: Coverage rates for 90% marginal Wald and shrinkage
confidence sets at horizons i = 0 (“Imp”) and i = 1 + [n/2] (“Mid”). 5000 simulations per DGP,
1000 simulations to compute quantiles, 100 period burn-in, α = 0.1, δ = 0.01. HAC: Newey-West.

markedly when the shock xt is t-distributed. The last rows of Table 3.2 indicate that coverage

rates for joint sets are sensitive to the choice of HAC bandwidth parameter `, but optimal

HAC estimation is outside the scope of this paper.

3.6 Topics for future research

I finish by discussing several possible topics for future research.

The results on MSE of shrinkage estimators with URE-minimizing shrinkage parameter

and on uniform coverage only apply to projection shrinkage. I conjecture that uniform

coverage can be proved in a similar manner for general shrinkage confidence sets. Moreover,

I conjecture that an MSE-dominance result for general shrinkage estimators can be proved

under asymptotics in which the number of response horizons n tends to infinity, following

results for i.i.d. regression in Li (1986), Andrews (1991), and Xie, Kou & Brown (2012).

I have not provided analytic conditions for the test-inversion shrinkage confidence sets
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to outperform the usual Wald confidence sets in terms of expected volume or other loss.

Simulation evidence suggests that dominance is not uniform over the parameter space for

general dependence structures, but the shrinkage sets often offer large gains when the true

IRF is not too jagged. It would aid our understanding of the relative performance if the

shrinkage sets can be shown to have a precise Bayes or Empirical Bayes interpretation.

In unreported simulation experiments I have found that shrinkage confidence sets based

on the “Simple Bonferroni” procedure of McCloskey (2015) have high expected volume rel-

ative to usual Wald sets precisely when the true IRF is smooth. It would be interesting to

investigate whether McCloskey’s more computationally demanding “Adjusted Bonferroni”

procedure substantially reduces expected volume.

I have not been able to prove that the test inversion shrinkage confidence sets are convex.

Simulations suggest that the marginal confidence sets are convex (i.e., intervals). More

evidence is needed on the geometry of the joint confidence sets.

The performance of the shrinkage estimators and confidence sets depend on the quality

of the HAC or clustered standard errors. While simulations suggest that the need to perform

HAC estimation does not compromise the performance of shrinkage procedures relative to

the initial IRF estimator, methods for improving the quality of HAC or clustered standard

errors would presumably help also in this context (Müller, 2014; Imbens & Kolesár, 2016).
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Appendix A

Supplemental Material

A.1 Material for Chapter 1

A.1.1 Notation

In is the n×n identity matrix. ı is the imaginary unit that satisfies ı2 = −1. If a is a vector,

diag(a) denotes the diagonal matrix with the elements of a along the diagonal in order. If

A is a square matrix, tr(A) is its trace, det(A) is its determinant, and diag(A) is the vector

consisting of the diagonal elements in order. For an arbitrary matrix B, B′ denotes the

matrix transpose, B̄ denotes the elementwise complex conjugate, B∗ = B̄′ is the complex

conjugate transpose, Re(B) is the real part of B, ‖B‖ =
√

tr(B∗B) is the Frobenius norm,

and vec(B) is the columnwise vectorization. If C is a positive semidefinite matrix, λmin(C)

is its smallest eigenvalues. If Q is an n×n matrix, it is said to be orthogonal if it is real and

QQ′ = In, while it is said to be unitary if QQ∗ = In. The statement X ⊥⊥ Y | Z means that

the random variables X and Y are independent conditional on Z. If K is a set, K denotes

its closure and Kc denotes its complement.
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A.1.2 Constructive characterization of the identified set

The result below applies the analysis of Lippi & Reichlin (1994) to the SVMA model; see

also Hansen & Sargent (1981) and Komunjer & Ng (2011). I identify a set of IRFs Θ =

(Θ0, . . . ,Θq) with the matrix polynomial Θ(z) = ∑q
`=0 Θ`z

`, and I use the notation Θ and

Θ(z) interchangeably where appropriate. In words, the theorem says that if we start with

some set of IRFs Θ(z) contained in the identified set, then we can obtain all other sets of

IRFs in the identified set by applying orthogonal rotations to Θ(z) and/or by “flipping the

roots” of Θ(z). Only a finite sequence of such operations is necessary to jump from one

element of the identified set to any other element of the identified set.

Theorem A.1. Let {Γ(k)}0≤k≤q be an arbitrary ACF. Pick an arbitrary (Θ, σ) ∈ S(Γ)

satisfying det(Θ(0)) 6= 0. Define Ψ(z) = Θ(z) diag(σ).

Construct a matrix polynomial Ψ̌(z) in either of the following two ways:

(i) Set Ψ̌(z) = Ψ(z)Q, where Q is an arbitrary orthogonal n× n matrix.

(ii) Let γ1, . . . , γr (r ≤ nq) denote the roots of the polynomial det(Ψ(z)). Pick an arbitrary

positive integer k ≤ r. Let η ∈ Cn be a vector such that Ψ(γk)η = 0 (such a vector exists

because det(Ψ(γk)) = 0). Let Q be a unitary matrix whose first column is proportional

to η (if γk is real, choose Q to be a real orthogonal matrix). All elements of the first

column of the matrix polynomial Ψ(z)Q then contain the factor (z − γk). In each

element of the first column, replace the factor (z−γk) with (1−γkz). Call the resulting

matrix polynomial Ψ̌(z). If γk is real, stop.

If γk is not real, let η̃ ∈ Cn be a vector such that Ψ̌(γk)η̃ = 0, and let Q̃ be a unitary

matrix whose first column is proportional to η̃. All elements of the first column of

Ψ̌(z)Q̃ then contain the factor (z−γk). In each element of the first column, replace the

factor (z − γk) with (1− γkz). Call the resulting matrix polynomial Ψ̃(z). The matrix
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Ψ̃(0)Ψ̃(0)∗ is real, symmetric, and positive definite, so pick a real n× n matrix J such

that JJ ′ = Ψ̃(0)Ψ̃(0)∗. In an abuse of notation, set Ψ̌(z) = Ψ̃(z)Ψ̃(0)−1J , which is

guaranteed to be a real matrix polynomial.

Now obtain a set of IRFs Θ̌ and shock standard deviations σ̌ from Ψ̌(z):

(a) For each j = 1, . . . , n, if the (ij, j) element of Ψ̌(0) is negative, flip the signs of all

elements in the j-th column of Ψ̌(z), and call the resulting matrix polynomial ˇ̌Ψ(z). For

each j = 1, . . . , n, let σ̌j denote the (ij, j) element of ˇ̌Ψ(0). Define σ̌ = (σ̌1, . . . , σ̌n) and

Θ̌(z) = ˇ̌Ψ(z) diag(σ̌)−1 (if the inverse exists).

Then (Θ̌, σ̌) ∈ S(Γ), provided that all elements of σ̌ are strictly positive.

On the other hand, if (Θ̌, σ̌) ∈ S(Γ) is an arbitrary point in the identified set satisfying

det(Θ̌(0)) 6= 0, then (Θ̌, σ̌) can be obtained from (Θ, σ) as follows:

1. Start with the initial point (Θ, σ) and the associated polynomial Ψ(z) defined above.

2. Apply an appropriate finite sequence of the above-mentioned transformations (i) or (ii),

in an appropriate order, to Ψ(z), resulting ultimately in a polynomial Ψ̌(z).

3. Apply the above-mentioned operation (a) to Ψ̌(z). The result is (Θ̌, σ̌).

Remarks:

1. An initial point in the identified set can be obtained by following the procedure in

Hannan (1970, pp. 64–66) and then applying transformation (a). This essentially

corresponds to computing the Wold decomposition of {yt} and applying appropriate

normalizations (Hannan, 1970, Thm. 2′′, p. 158). Hence, Theorem A.1 states that

any set of structural IRFs that are consistent with a given ACF Γ(·) are obtained by

applying transformations (i) and (ii) to the Wold IRFs corresponding to Γ(·).
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2. Transformation (ii) corresponds to “flipping the root” γk of det(Ψ(z)). If γk is not real,

transformation (ii) requires that we also flip the complex conjugate root γk, since this

ensures that the resulting matrix polynomial will be real after a rotation. The rule

used to compute the matrix J in transformation (ii) is not important for the theorem;

in particular, J can be the Cholesky factor of Ψ̃(0)Ψ̃(0)∗.

3. The only purpose of transformation (a) is to enforce the normalizations Θijj,0 = 1.

4. To simplify the math, the theorem restricts attention to IRFs satisfying det(Θ(0)) =

det(Θ0) 6= 0. If det(Θ0) = 0, there exists a linear combination of y1,t, . . . , yn,t that is

perfectly predictable based on knowledge of shocks εt−1, εt−2, . . . occurring before time

t. Hence, in most applications, a reasonable prior for Θ ought to assign zero probability

to the event det(Θ0) = 0.

5. If the IRF parameter space ΞΘ were restricted to those IRFs that are invertible (cf.

Section 1.2.3), then transformation (ii) would be unnecessary. In this case, the identi-

fied set for Ψ(z) = Θ(z) diag(σ) can be obtained by taking any element in the set (e.g.,

the Wold IRFs) and applying all possible orthogonal rotations, i.e., transformation (i).

This is akin to identification in SVARs, cf. Section 1.2.1 and Uhlig (2005, Prop. A.1).

A.1.3 Likelihood evaluation

This subsection provides formulas for computing the exact Gaussian likelihood as well as the

Whittle likelihood and score for the SVMA model.

A.1.3.1 Exact likelihood via the Kalman filter

Let Ψ = Θ diag(σ). The state space representation of the SVMA model is

yi,t = Ψiαt, i = 1, . . . , n, t = 1, . . . , T,
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αt =

 0 0

Inq 0

αt−1 +

 ε̃t

0

 , ε̃t
i.i.d.∼ N(0, In), t = 2, 3, . . . , T,

α1 ∼ N(0, In(q+1)),

where Ψi is the n(q + 1)-dimensional i-th row vector of Ψ = (Ψ0,Ψ1, . . . ,Ψq), ε̃t is the n-

dimensional standardized structural shock vector (each element has variance 1), and αt =

(ε̃′t, ε̃′t−1, . . . , ε̃
′
t−q)′ is the n(q + 1)-dimensional state vector.

I use the “univariate treatment of multivariate series” Kalman filter in Durbin & Koop-

man (2012, Ch. 6.4), since that algorithm avoids inverting large matrices. For my purposes,

the algorithm is as follows.

1. Initialize the state forecast mean a1,1 = 0 and state forecast variance Z1,1 = In(q+1).

Set t = 1.

2. For each i = 1, . . . , n:

(a) Compute the forecast error vi,t = yi,t − Ψiai,t, forecast variance λi,t = ΨiZi,tΨ′i,

and Kalman gain gi,t = (1/λi,t)Zi,tΨ′i.

(b) Compute the log likelihood contribution: Li,t = −1
2(log λi,t + v2

i,t/λi,t).

(c) Update the state forecast mean: ai+1,t = ai,t + gi,tvi,t.

(d) Update the state forecast variance: Zi+1,t = Zi,t − λi,tgi,tg′i,t.

3. Let ãn+1,t denote the first nq elements of an+1,t, and let Z̃n+1,t denote the upper left

nq × nq block of Zn+1,t. Set

a1,t+1 =

 0

ãn+1,t

 , Z1,t+1 =

 In 0

0 Z̃n+1,t

 .

4. If t = T , stop. Otherwise, increment t by 1 and go to step 2.
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The log likelihood log pY |Ψ(YT | Ψ) is given by ∑T
t=1

∑n
i=1 Li,t, up to a constant.

A.1.3.2 Whittle likelihood

Let YT = (y′1, y′2, . . . , y′T )′ be the stacked data vector. Let V (Ψ) be an nT × nT symmetric

block Toeplitz matrix consisting of T × T blocks of n× n matrices, where the (s, t) block is

given by ∑q−(t−s)
`=0 Ψ`+(t−s)Ψ′` for t ≥ s and the sum is taken to equal 0 when t > s+ q. Then

the exact log likelihood function can be written

log pY |Ψ(YT | Ψ) = −1
2nT log(2π)− 1

2 log det(V (Ψ))− 1
2Y
′
TV (Ψ)−1YT . (A.1)

This is what the Kalman filter in Appendix A.1.3.1 computes.

For all k = 0, 1, 2 . . . , T − 1, define the Fourier frequencies ωk = 2πk/T , the discrete

Fourier transform (DFT) of the data ỹk = (2πT )−1/2∑T
t=1 e

−ıωk(t−1)yt, the DFT of the MA

parameters Ψ̃k(Ψ) = ∑q+1
`=1 e

−ıωk(`−1)Ψ`−1, and the SVMA spectral density matrix fk(Ψ) =

(2π)−1Ψ̃k(Ψ)Ψ̃k(Ψ)∗ at frequency ωk. Let ‖B‖max = maxij |Bij| denote the maximum norm

of any matrix B = (Bij). Due to the block Toeplitz structure of V (Ψ),

‖V (Ψ)− 2π∆F (Ψ)∆∗‖max = O(T−1) (A.2)

as T → ∞. ∆ is an nT × nT matrix with (s, t) block equal to T−1/2eıωs−1(t−1)In, so that

∆∆∗ = InT . F (Ψ) is a block diagonal nT × nT matrix with (s, s) block equal to fs(Ψ).1

The Whittle (1953) approximation to the log likelihood (A.1) is obtained by substituting

V (Ψ) ≈ 2π∆F (Ψ)∆∗. This yields the Whittle log likelihood

log pWY |Ψ(YT | Ψ) = −nT log(2π)− 1
2

T−1∑
k=0

{
log det(fk(Ψ)) + ỹ∗k[fk(Ψ)]−1ỹk

}
.

1The result (A.2) is a straight-forward vector generalization of Brockwell & Davis (1991, Prop. 4.5.2).
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The Whittle log likelihood is computationally cheap because {ỹk, Ψ̃k(Ψ)}0≤k≤T−1 can be

computed efficiently using the Fast Fourier Transform (Hansen & Sargent, 1981, Sec. 2b;

Brockwell & Davis, 1991, Ch. 10.3).2

Now I derive the gradient of the Whittle log likelihood. For all k = 0, 1, . . . , T − 1,

define Ck(Ψ) = [fk(Ψ)]−1 − [fk(Ψ)]−1ỹkỹ
∗
k[fk(Ψ)]−1 and C̃k(Ψ) = ∑T

`=1 e
−ıωk(`−1)C`−1(Ψ).

Once {Ck(Ψ)}0≤k≤T−1 have been computed, {C̃k(Ψ)}0≤k≤T−1 can be computed using the

Fast Fourier Transform.3 Finally, let C̃k(Ψ) = C̃T+k(Ψ) for k = −1,−2, . . . , 1− T .

Lemma A.1.

log pWY |Ψ(YT | Ψ)
∂Ψ`

= −
q∑

˜̀=0

Re[C̃˜̀−`(Ψ)]Ψ˜̀, ` = 0, 1, . . . , q. (A.3)

The lemma gives the score with respect to Ψ. Since Ψ` = Θ` diag(σ), the chain rule gives

the score with respect to Θ and log σ:

∂ log pWY |Ψ(YT | Ψ)
∂Θ`

=
∂ log pWY |Ψ(YT | Ψ)

∂Ψ`

diag(σ), ` = 0, 1, . . . , q,

∂ log pWY |Ψ(YT | Ψ)
∂ log σj

=
n∑
i=1

q∑
`=0

∂ log pWY |Ψ(YT | Ψ)
∂Ψij,`

Ψij,`, j = 1, 2, . . . , n.

A.1.4 Bayesian computation: Algorithms

This subsection details my posterior simulation algorithm and the optional reweighting step

that translates Whittle draws into draws from the exact likelihood.

2As noted by Hansen & Sargent (1981, p. 32), the computation time can be halved by exploiting ỹT−k = ỹk
and fT−k(Ψ) = fk(Ψ) for k = 1, 2, . . . , T .

3Again, computation time can be saved by exploiting CT−k(Ψ) = Ck(Ψ) for k = 1, 2, . . . , T .
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A.1.4.1 Implementation of Hamiltonian Monte Carlo algorithm

I here describe my implementation of the posterior simulation algorithm. First I outline

my method for obtaining an initial value. Then I discuss the modifications I make to the

Hoffman & Gelman (2014) algorithm. The calculations below require evaluation of the log

prior density, its gradient, the log likelihood, and the score. Evaluation of the multivari-

ate Gaussian log prior and its gradient is straight-forward; this is also the case for many

other choices of priors. Evaluation of the Whittle likelihood and its score is described in

Appendix A.1.3.2.

Initial value. The HMC algorithm produces draws from a Markov Chain whose long-run

distribution is the Whittle posterior of the SVMA parameters, regardless of the initial value

used for the chain. However, using an initial value near the mode of the posterior distribution

can significantly speed up the convergence to the long-run distribution. I approximate the

posterior mode using the following computationally cheap procedure:

1. Compute the empirical ACF of the data.

2. Run q steps of the Innovations Algorithm to obtain an invertible SVMA representation

that approximately fits the empirical ACF (Brockwell & Davis, 1991, Prop. 11.4.2).4

Denote these invertible parameters by (Θ̂, σ̂).

3. Let C denote the (finite) set of complex roots of the SVMA polynomial corresponding

to (Θ̂, σ̂), cf. Theorem A.1.

4. For each root γj in C (each complex conjugate pair of roots is treated as one root):

4In principle, the Innovations Algorithm could be run for more than q steps, but this tends to lead to
numerical instability in my trials. The output of the first q steps is sufficiently accurate in my experience.
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(a) Let (Θ̌(j), σ̌(j)) denote the result of flipping root γj, i.e., of applying transformation

(ii) in Theorem A.1 to (Θ̂, σ̂) with this root.

(b) Determine the orthogonal matrix Q(j) such that Θ̌(j) diag(σ̌)(j)Q(j) is closest to

the prior mean E(Θ diag(σ)) in Frobenius norm, cf. Footnote 47.

(c) Obtain parameters (Θ̃(j), σ̃(j)) such that Θ̌(j) diag(σ̌(j))Q(j) = Θ̃(j) diag(σ̃(j)), i.e.,

apply transformation (a) in Theorem A.1. Calculate the corresponding value of

the prior density π(Θ̃(j), σ̃(j)).

5. Let j̃ = arg maxj π(Θ̃(j), σ̃(j)).

6. If π(Θ̃(j̃), σ̃(j̃)) ≤ π(Θ̂, σ̂), go to Step 7. Otherwise, set (Θ̂, σ̂) = (Θ̃(j̃), σ̃(j̃)), remove γj

(and its complex conjugate) from C, and go back to Step 4.

7. Let the initial value for the HMC algorithm be the parameter vector of the form

((1− x)Θ̌ + xE(Θ), (1− x)σ̌ + xE(σ)) that maximizes the posterior density, where x

ranges over the grid {0, 0.01, . . . , 0.99, 1}, and (E(Θ), E(σ)) is the prior mean of (Θ, σ).

Step 2 computes a set of invertible parameters that yields a high value of the likelihood.

Steps 3–6 find a set of possibly noninvertible parameters that yields a high value of the

prior density while being observationally equivalent with the parameters from Step 2 (I use a

“greedy” search algorithm since it is computationally prohibitive to consider all combinations

of root flips). Because Steps 2–6 lexicographically prioritize maximizing the likelihood over

maximizing the prior, Step 7 allows the parameters to shrink toward the prior means.

HMC implementation. I use the HMC variant NUTS from Hoffman & Gelman (2014),

which automatically tunes the step size and trajectory length of HMC. See their paper for

details on the NUTS algorithm. I downloaded the code from Hoffman’s website. I make two

modifications to the basic NUTS algorithm, neither of which are essential, although they do
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tend to improve the mixing speed of the Markov chain in my trials. These modifications are

also used in the NUTS-based statistics software Stan (Stan Development Team, 2015).

First, I allow for step size jittering, i.e., continually drawing a new HMC step size from

a uniform distribution over some interval (Neal, 2011, Sec. 5.4.2.2). The jittering is started

after the stepsize has been tuned as described in Hoffman & Gelman (2014, Sec. 3.2). For

the applications in this paper, the step size is chosen uniformly at random from the interval

[0.5ε̂, 1.5ε̂], where ε̂ is the tuned step size.

Second, I allow for a diagonal “mass matrix”, where the entries along the diagonal are

estimates of the posterior standard deviations of the SVMA parameters (Neal, 2011, Sec.

5.4.2.4). I first run the NUTS algorithm for a number of steps with an identity mass matrix.

Then I calculate the sample standard deviations of the parameter draws over a window of

subsequent steps, after which I update the mass matrix accordingly.5 I update the mass

matrix twice more using windows of increasing length. Finally, I freeze the mass matrix for

the remainder of the NUTS algorithm. In this paper, the mass matrix is estimated over

steps 300–400, steps 401–600, and steps 601–1000, and it is fixed after step 1000.

A.1.4.2 Reweighting

An optional reweighting step may be used to translate draws obtained from theWhittle-based

HMC algorithm into draws from the exact Gaussian posterior density pΘ,σ|Y (Θ, σ | YT ). The

Whittle HMC algorithm yields draws (Θ(1), σ(1)), . . . , (Θ(N), σ(N)) (after discarding a burn-in

sample) from the Whittle posterior density pWΘ,σ|Y (Θ, σ | YT ). If desired, apply the following

reweighting procedure to the Whittle draws:

5The sample standard deviations are partially shrunk toward 1 before updating the mass matrix.
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1. For each Whittle draw k = 1, 2, . . . , N , compute the relative likelihood weight

wk = pΘ,σ|Y (Θ(k), σ(k) | YT )
pWΘ,σ|Y (Θ(k), σ(k) | YT ) = pY |Ψ(YT | Ψ(Θ(k), σ(k)))

pWY |Ψ(YT | Ψ(Θ(k), σ(k))) .

2. Compute normalized weights w̃k = wk/
∑N
b=1wb, k = 1, . . . , N .

3. Draw N samples (Θ̃(1), σ̃(1)), . . . , (Θ̃(N), σ̃(N)) from the multinomial distribution with

mass points (Θ(1), σ(1)), . . . , (Θ(N), σ(N)) and corresponding probabilities w̃1, . . . , w̃N .

Then (Θ̃(1), σ̃(1)), . . . , (Θ̃(N), σ̃(N)) constitute N draws from the exact posterior distribution.

This reweighting procedure is a Sampling-Importance-Resampling procedure (Rubin, 1988)

that uses the Whittle posterior as a proposal distribution. The reweighting step is fast, as it

only needs to compute the exact likelihood – not the score – for N different parameter values,

whereN is typically orders of magnitude smaller than the required number of likelihood/score

evaluations during the HMC algorithm.

A.1.5 Simulation study: Additional results

Here I provide diagnostics and additional results relating to the simulations in Section 1.4.

A.1.5.1 Diagnostics for simulations

I report diagnostics for the baseline ρij = 0.9 bivariate simulation, but diagnostics for other

specifications in this paper are similar. The average HMC acceptance rate is slightly higher

than 0.60, which is the rate targeted by the NUTS algorithm when tuning the HMC step

size. The score of the posterior was evaluated about 382,000 times. Figures A.1 and A.2

show the MCMC chains for the IRF and log shock standard deviation draws. Figures A.3

and A.4 show the autocorrelation functions of the draws.
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Figure A.1: MCMC chains for each IRF parameter (Θ) in the ρij = 0.9 simulations in Section 1.4.
Each jagged line represents a different impulse response parameter (two of them are normalized at
1). The vertical dashed line marks the burn-in time, before which all draws are discarded. The
horizontal axes are in units of MCMC steps, not stored draws (every 10th step is stored).
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Figure A.2: MCMC chains for each log shock standard deviation parameter (log σ) in the ρij = 0.9
simulations in Section 1.4. See caption for Figure A.1.
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Figure A.3: Autocorrelation functions for HMC draws of each IRF parameter (Θ) in the ρij = 0.9
simulations in Section 1.4. Each jagged line represents a different impulse response parameter. Only
draws after burn-in were used to computed these figures. The autocorrelation lag is shown on the
horizontal axes in units of MCMC steps.
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Figure A.4: Autocorrelation functions for HMC draws of each log shock standard deviation
parameter (log σ) in the ρij = 0.9 simulations in Section 1.4. See caption for Figure A.3.
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Figure A.5: Summary of posterior IRF (Θ) draws for the bivariate SVMA model with a prior that
is too persistent relative to the true parameter values. The plots show true values (thick lines), prior
90% confidence bands (shaded), posterior means (crosses), and posterior 5–95 percentile intervals
(vertical bars). The prior means (not shown) are the midpoints of the prior confidence bands, as
in Figure 1.4.

A.1.5.2 Simulations with misspecified priors

I here provide simulation results for two bivariate experiments with substantially misspecified

priors. I maintain the same prior on IRFs and shock standard deviations as the ρij = 0.9

prior in Section 1.4, cf. Figures 1.4 and 1.7. Here, however, I modify the true values of the

IRFs so they no longer coincide with the prior means.

Misspecified persistence. I first consider an experiment in which the prior overstates

the persistence of the shock effects, i.e., the true IRFs die out quicker than indicated by

the prior means µij,` in Figure 1.4. The true IRFs are set to Θij,` = cije
−0.25`µij,` for all

(i, j, `), where cij > 0 is chosen so that max` |Θij,`| = max` |µij,`| for each IRF. The true

shock standard deviations, the prior (ρij = 0.9), the sample size, and the HMC settings are

exactly as in Section 1.4. Figure A.5 compares these true IRFs to the prior distribution. The

figure also summarizes the posterior distribution for the IRFs. The posterior is not perfectly
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Figure A.6: Posterior auto- and cross-correlation draws for the bivariate SVMAmodel with a prior
that misspecifices the persistence of the IRFs. The displays plot draws of Corr(yi,t, yj,t−k | Θ, σ),
where i indexes rows, j indexes columns, and k runs along the horizontal axes. The top right
display, say, concerns cross-correlations between the FFR and lags of the output gap. The plots
show true values (thick lines), prior means (dashed lines) and 5–95 percentile confidence bands
(shaded), and posterior means (crosses) and 5–95 percentile intervals (vertical bars).

centered but is much closer to the truth than the prior is. Figure A.6 shows why this is the

case: The prior distribution on (Θ, σ) implies a distribution for auto- and cross-correlations

of observed variables that is at odds with the true ACF. Since the data is informative about

the ACF, the posterior distribution for IRFs puts higher weight than the prior on IRFs that

are consistent with the true auto- and cross-correlations.

Misspecified cross-correlations. The second experiment considers a prior that mis-

specifies the cross-correlations between the observed variables. I set the true IRFs equal to

the prior means in Figure 1.4, except that the true IRF of the output gap to a monetary

policy shock equals zero, i.e., Θ21,` = 0 for 0 ≤ ` ≤ q. The true shock standard deviations,

the prior (ρij = 0.9), the sample size, and the HMC settings are as above. Figure A.7

shows that posterior inference is accurate despite the misspecified prior. Again, Figure A.8

demonstrates how the data corrects the prior distribution on auto- and cross-correlations,
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Figure A.7: Summary of posterior IRF (Θ) draws for the bivariate SVMA model with a prior
that misspecifies the cross-correlations between variables. See caption for Figure A.5.
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Figure A.8: Posterior autocorrelation draws for the bivariate SVMA model with a prior that
misspecifies the cross-correlations between variables. See caption for Figure A.6.
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thus pulling the posterior on IRFs toward the true values (although here the true ACF is

not estimated as accurately as in Figure A.6).

A.1.6 Application: Additional results

This subsection presents additional results related to the empirical application in Section 1.5.

First, I show that the SVMA procedure accurately estimates IRFs on simulated data. Second,

I demonstrate how the Kalman smoother can be used to draw inference about the shocks.

Third, I examine the sensitivity of posterior inference with respect to the choice of prior.

Fourth, I assess the model’s fit and suggest ways to improve it.

A.1.6.1 Consistency check with simulated data

I show that the SVMA approach, with the same prior and HMC settings as in Section 1.5,

can recover the true IRFs when applied to data generated by the log-linearized Sims (2012)

DSGE model. I simulate data for the three observed variables from an SVMA model with

i.i.d. Gaussian shocks. The true IRFs are those implied by the log-linearized Sims (2012)

model (baseline calibration) out to horizon q = 16, yielding a noninvertible representation.

The true shock standard deviations are set to σ = (0.5, 0.5, 0.5)′. Note that the prior for

the IRF of TFP growth to the news shock is not centered at the true IRF, as explained in

Section 1.5. The sample size is the same as for the actual data (T = 213).

Figures A.9 and A.10 summarize the posterior draws produced by the HMC algorithm

when applied to the simulated data set. The posterior means accurately locate the true

parameter values. The equal-tailed 90% posterior credible intervals are tightly concentrated

around the truth in most cases. In particular, inference about the shock standard deviation

parameters is precise despite the very diffuse prior.
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Figure A.9: Summary of posterior IRF (Θ) draws, simulated news shock data. See caption for
Figure 1.6.
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Figure A.10: Summary of posterior shock standard deviation (σ) draws, simulated news shock
data. See caption for Figure 1.7.
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Figure A.11: Posterior means of standardized structural shocks (εjt/σj) at each point in time,
news shock application.

A.1.6.2 Inference about shocks

Figure A.11 shows the time series of posterior means for the structural shocks given the

real dataset. For each posterior draw of the structural parameters (Θ, σ), I compute E(εt |

Θ, σ, YT ) using the smoothing recursions corresponding to the Gaussian state-space repre-

sentation in Appendix A.1.3.1 (Durbin & Koopman, 2012, p. 157), and then I average over

draws. If the structural shocks are in fact non-Gaussian, the smoother still delivers mean-

square-error-optimal linear estimates of the shocks. If desired, draws from the full joint

posterior distribution of the shocks can be obtained from a simulation smoother (Durbin &

Koopman, 2012, Ch. 4.9). It is also straight-forward to draw from the predictive distribution

of future values of the data using standard methods for state-space models.
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A.1.6.3 Prior sensitivity

To gauge the robustness of posterior inference with respect to the choice of prior, I compute

the sensitivity measure “PS” of Müller (2012). This measure captures the first-order ap-

proximate effect on the posterior means of changing the prior mean hyperparameters. Let θ

denote the vector containing all impulse responses and log shock standard deviations of the

SVMA model, and let ek denote the k-th unit vector. Because my prior for θ is a member

of an exponential family, the Müller (2012) PS measure for parameter θk equals

PSk = max
ν :
√
ν′Var(θ)−1ν=1

∂E(θk | YT )
∂E(θ)′ ν =

√
e′kVar(θ | YT )Var(θ)−1Var(θ | YT )ek. (A.4)

This is the largest (local) change that can be induced in the posterior mean of θk from

changing the prior means of the components of θ by the multivariate equivalent of 1 prior

standard deviation.6 PSk depends only on the prior and posterior variance matrices Var(θ)

and Var(θ | YT ), which are easily obtained from the HMC output.

Figure A.12 plots the posterior means of the impulse responses along with ±PSk intervals

(where the index k corresponds to the (i, j, `) combination for each impulse response). The

wider the band around an impulse response, the more sensitive is the posterior mean of

that impulse response to (local) changes in the prior. In economic terms, most of the

posterior means are seen to be insensitive to changes in the prior means of magnitudes smaller

than 1 prior standard deviation. The most prior-sensitive posterior inferences, economically

speaking, concern the IRF of GDP growth to a news shock, but large changes in the prior

means are necessary to alter the qualitative features of the posterior mean IRF.

6In particular, PSk ≥ maxb |∂E(θk | YT )/∂E(θb)|
√
Var(θb). Whereas PSk is a local measure, the effects

of large changes in the prior can be evaluated using reweighting (Lopes & Tobias, 2011, Sec. 2.4).
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Figure A.12: PSk measure of the sensitivity of the posterior IRF means with respect to changes in
the prior means of all parameters, cf. (A.4), in the news shock application. The symmetric vertical
bars have length 2PSk and are centered around the corresponding posterior means (crosses).

A.1.6.4 Posterior predictive analysis

I conduct a posterior predictive analysis to identify ways to improve the fit of the Gaussian

SVMA model (Geweke, 2010, Ch. 2.4.2). For each posterior parameter draw produced by

HMC, I simulate an artificial dataset of sample size T = 213 from a Gaussian SVMA model

with the given parameters. On each artificial dataset I compute four checking functions.

First and second, the skewness and excess kurtosis of each series. Third, the long-run

autocorrelation of each series, defined as the Newey-West long-run variance estimator (20

lags) divided by the sample variance. Fourth, I run a reduced-form VAR regression of the

three-dimensional data vector yt on its 8 first lags and a constant; then I compute the first

autocorrelation of the squared VAR residuals for each of the three series. The third measure

captures persistence, while the fourth measure captures volatility clustering in forecast errors.

Figure A.13 shows the distribution of checking function values across simulated datasets,
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Figure A.13: Posterior predictive checks, news shock application. Observed variables along rows,
checking functions along columns. Histograms show the distribution of checking function values
on simulated datasets based on the posterior parameter draws; thick vertical lines mark checking
function values on actual data. Checking functions from left to right: skewness; excess kurtosis;
Newey-West long-run variance estimate (20 lags) divided by sample variance; first autocorrelation
of squared residuals from a VAR regression of yt on a constant and 8 lags.

as well as the corresponding checking function values for the actual data. The Gaussian

SVMA model does not capture the skewness and kurtosis of GDP growth; essentially, the

model does not generate recessions that are sufficiently severe relative to the size of booms.

The model somewhat undershoots the persistence and kurtosis of the real interest rate.

The fourth column suggests that forecast errors for TFP and GDP growth exhibit volatility

clustering in the data, which is not captured by the Gaussian SVMA model.

The results point to three fruitful model extensions. First, introducing stochastic volatil-

ity in the SVMA model would allow for better fit along the dimensions of kurtosis and

forecast error volatility clustering. Second, nonlinearities or skewed shocks could capture

the negative skewness of GDP growth. Finally, increasing the MA lag length q would allow

the model to better capture the persistence of the real interest rate, although this is not a
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major concern, as I am primarily interested in shorter-run impulse responses.

A.1.7 Asymptotic theory: Mathematical details

I here give additional details concerning the frequentist asymptotics of Bayes procedures.

First I provide high-level sufficient conditions for posterior consistency. Then I state the

functional form for the Whittle ACF likelihood mentioned in Section 1.6.2. Finally, I prove

posterior consistency for the parameters in the Wold decomposition of a q-dependent time

series, which is useful for proving posterior consistency for the ACF (Theorem 1.1). I allow for

misspecification of the likelihood functions used to compute the various posterior measures.

All stochastic limits below are taken as T →∞, and all stochastic limits and expectations

are understood to be taken under the true probability measure of the data. The abbreviation

“w.p.a. 1” means “with probability approaching 1 as T →∞”.

A.1.7.1 General conditions for posterior consistency

Following Ghosh & Ramamoorthi (2003, Thm. 1.3.4), I give general sufficient conditions for

assumption (ii) of Lemma 1.1. Let ΠΓ(·) denote the marginal prior measure for parameter

Γ, with parameter space ΞΓ. Let pY |Γ(YT | Γ) denote the (possibly misspecified) likelihood

function. The posterior measure is given by

PΓ|Y (A | YT ) =
∫
A pY |Γ(YT | Γ)ΠΓ(dΓ)∫
ΞΓ
pY |Γ(YT | Γ)ΠΓ(dΓ)

for measurable sets A ⊂ ΞΓ.7

Lemma A.2. Define the normalized log likelihood ratio φ̂(Γ) = T−1 log pY |Γ(YT |Γ)
pY |Γ(YT |Γ0) for all

Γ ∈ ΞΓ. Assume there exist a function φ : ΞΓ → R, a neighborhood K of Γ0 in ΞΓ, and a

7I assume throughout the paper that integrals in the definitions of posterior measures are well-defined.
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scalar ζ < 0 such that the following conditions hold.

(i) supΓ∈K |φ̂(Γ)− φ(Γ)| p→ 0.

(ii) φ(Γ) is continuous at Γ = Γ0.

(iii) φ(Γ) < 0 for all Γ 6= Γ0.

(iv) supΓ∈Kc φ̂(Γ) < ζ w.p.a. 1.

(v) Γ0 is in the support of ΠΓ(·).

Then for any neighborhood U of Γ0 in ΞΓ, PΓ|Y (U | YT ) p→ 1.

Remarks:

1. The uniform convergence assumption (i) on the log likelihood ratio can often be ob-

tained from pointwise convergence using stochastic equicontinuity (Andrews, 1992).

2. If the likelihood pY |Γ(YT | Γ) is correctly specified (i.e., pY |Γ(YT | Γ0) is the true den-

sity of the data) and assumption (i) holds, φ(Γ) equals the negative Kullback-Leibler

divergence and assumptions (ii)–(iii) will typically be satisfied automatically if Γ is

identified (Ghosh & Ramamoorthi, 2003, Ch. 1.2–1.3). Even if the likelihood is mis-

specified, such as with the use of a Whittle likelihood in time series models, it may

still be possible to prove the uniform convergence in assumption (i) to some φ(·) func-

tion that uniquely identifies the true parameter Γ0 through assumptions (ii)–(iii), as in

Theorem 1.1. This phenomenon is analogous to the well-known consistency property

of quasi maximum likelihood estimators under certain types of misspecification.

A.1.7.2 Whittle likelihood for a q-dependent process

I now state the functional form for the Whittle ACF likelihoods for q-dependent pro-

cesses mentioned in Section 1.6.2. Define the spectral density for a q-dependent process
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parametrized in terms of its ACF:

f(ω; Γ) = 1
2π

(
Γ(0) +

q∑
k=1
{e−ıkωΓ(k) + eıkωΓ(k)′}

)
, Γ ∈ Tn,q.

Let Γ̂(k) = T−1∑T−k
t=1 yt+ky

′
t, k = 0, 1, . . . , T − 1, be the k-th sample autocovariance, and set

Γ̂(k) = Γ̂(−k)′ for k = −1,−2, . . . , 1− T . Define the periodogram

Î(ω) = 1
2πT

(
T∑
t=1

e−ıtωyt

)(
T∑
t=1

eıtωy′t

)
= 1

2π

T−1∑
k=−(T−1)

e−ıkωΓ̂(k), ω ∈ [−π, π].

The Whittle ACF log likelihood is given by

log pWY |Γ(YT | Γ) = −nT log(2π)− T

4π

∫ π

−π
log det(f(ω; Γ)) dω − T

4π

∫ π

−π
tr{f(ω; Γ)−1Î(ω)} dω.

As in Appendix A.1.3.2, it is common to use a discretized Whittle log likelihood that replaces

integrals of the form (2π)−1 ∫ π
−π g(ω) dω (for some 2π-periodic function g(·)) with correspond-

ing sums T−1∑T−1
k=0 g(ωk), where ωk = 2πk/T for 0 ≤ k ≤ T − 1. The discretization makes it

possible to compute the periodogram from the DFT ỹk of the data (see Appendix A.1.3.2),

since Î(ωk) = ỹkỹ
∗
k for 0 ≤ k ≤ T − 1. The proof of Theorem 1.1 shows that posterior

consistency also holds when the discretized Whittle likelihood is used.

A.1.7.3 Posterior consistency for Wold parameters

The proof of Theorem 1.1 relies on a posterior consistency result for the Wold IRFs and

prediction covariance matrix in a MA model with q lags. I state this result below. The

posterior for the reduced-form parameters is computed using the Whittle likelihood and thus

under the working assumption of a MA model with i.i.d. Gaussian innovations. However,

consistency only requires Assumption 1.3, so the true data distribution need not be Gaussian

or q-dependent. The result in this subsection concerns (invertible) reduced-form IRFs, not
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(possibly noninvertible) structural IRFs. While the consistency result may be of general

interest, in this paper I use it only as a stepping stone for proving Theorem 1.1.

Definitions. Fix a finite q ∈ N, and let β0(L) = In + ∑q
`=1 β0,`L

` and Σ0 denote the

MA lag polynomial and prediction covariance matrix, respectively, in the Wold decompo-

sition (Hannan, 1970, Thm. 2′′, p. 158) of a q-dependent stationary n-dimensional pro-

cess with ACF given by {Γ0(k)}0≤k≤q ∈ Tn,q, i.e., the true ACF out to lag q. That is,

β0 = (β0,1, . . . , β0,q) ∈ Bn,q and Σ0 ∈ Sn are the unique parameters such that Γ0(k) =∑q−k
`=0 β0,`+kΣ0β

′
0,` for 0 ≤ k ≤ q, where β0,0 = In. Here Sn denotes the space of symmetric

positive definite n× n matrices, while Bn,q is the space of coefficients for which the MA lag

polynomial β0(L) has all its roots outside the unit circle, i.e.,

Bn,q =
{
β = (β1, . . . , βq) ∈ Rn×nq : det(Φ(z; β)) 6= 0 ∀ |z| ≤ 1

}
,

Φ(z; β) = In +
q∑
`=1

β`z
`, z ∈ C.

Define the MA spectral density parametrized in terms of (β,Σ):

f̃(ω; β,Σ) = 1
2πΦ(e−ıω; β)ΣΦ(eıω; β)′, ω ∈ [−π, π], (β,Σ) ∈ Bn,q × Sn.

Using the notation introduced in Appendix A.1.7.2 for the periodogram Î(ω), the Whittle

MA log likelihood is given by

log pWY |β,Σ(YT | β,Σ) = −nT log(2π)− T

4π

∫ π

−π
log det(f̃(ω; β,Σ)) dω

− T

4π

∫ π

−π
tr{f̃(ω; β,Σ)−1Î(ω)} dω.

174



As shown in the proof, the result below goes through if the integrals in the Whittle likelihood

are replaced with discretized sums (cf. Appendix A.1.7.2).

Result. I now state the posterior consistency result for (β0,Σ0). Let Πβ,Σ(·) be a prior

measure for (β0,Σ0) on Bn,q × Sn. Define the Whittle posterior measure

PW
β,Σ|Y (A | YT ) =

∫
A p

W
Y |β,Σ(YT | β,Σ)Πβ,Σ(dβ, dΣ)∫

Bn,q×Sn p
W
Y |β,Σ(YT | β,Σ)Πβ,Σ(dβ, dΣ)

for any measurable set A ⊂ Bn,q × Sn. Note that the lemma below does not require the true

data distribution to be Gaussian or q-dependent.

Lemma A.3. Let Assumption 1.3 hold. Assume that the pseudo-true parameters (β0,Σ0) ∈

Bn,q × Sn are in the support of the prior Πβ,Σ(·). Then the Whittle posterior for (β0,Σ0) is

consistent, i.e., for any neighborhood Ũ of (β0,Σ0) in Bn,q × Sn,

PW
β,Σ|Y (Ũ | YT ) p→ 1.

A.2 Material for Chapter 2

A.2.1 Detailed calculations for the case Λ0 = 0

Using the definitions of F̂ k and Hk, we get

T−1
T∑
t=1
‖F̂ k

t −Hk ′Ft‖2 = tr
{

(F̂ k − FHk)(F̂ k − FHk)′
}

= N−2T−3tr
{
F̃ k′(XX ′ − FΛ′0Λ0F

′)(XX ′ − FΛ′0Λ0F
′)′F̃ k

}
.

Let Λ0 = 0. By definition, F̃ k equals
√
T times the T × k matrix whose columns are

the eigenvectors of XX ′ corresponding to its k largest eigenvalues. That is, if we write
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(XX ′)R = RC, where R is the orthogonal matrix of eigenvectors and C the diagonal matrix

of eigenvalues (in descending order), we have
√
TR = (F̃ k, F̆ k) for a T × (T − k) matrix F̆ k

that satisfies F̃ k′F̆ k = 0. Observe that

F̃ k =
√
TR(Ik, 0k×(T−k))′,

so

(XX ′)F̃ k =
√
T (XX ′)R(Ik, 0k×(T−k))′ =

√
TRC(Ik, 0k×(T−k))′,

and

F̃ k′(XX ′)(XX ′)F̃ k = T (Ik, 0k×(T−k))CR′RC(Ik, 0k×(T−k))′

= TC2
k ,

where Ck = (Ik, 0k×(T−k))C(Ik, 0k×(T−k))′ denotes the diagonal matrix containing the k

largest eigenvalues ω1, . . . , ωk of XX ′. Hence,

T−1
T∑
t=1
‖F̂ k

t −Hk ′Ft‖2 = (NT )−2tr{C2
k}

= (NT )−2
k∑
l=1

ω2
l . (A.5)

Example 1 (white noise, continued). Under the assumptions in the main text, the

T ×N data matrix X has elements xit = eit +hNT ξit that are i.i.d. across i and t with mean

0 and variance ΩNT = σ2
e +h2

NTσ
2
ξ . Let Z be a T ×N matrix with elements zit = xit/

√
ΩNT .

Then zit is i.i.d. across i and t with mean zero and unit variance. Let ω̃1 denote the largest

eigenvalue of the sample covariance matrix N−1ZZ ′. By Theorem 5.8 of Bai & Silverstein

(2009), ω̃1
a.s.→ (1 +

√
θ)2. Because the largest eigenvalue of N−1XX ′ satisfies ω1 = ΩNT ω̃1,

the result (2.7) follows from (A.5).
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Example 2 (random walk, continued). Let 1T denote the T -vector of ones. Setting

k = 1 in equation (A.5), we obtain

T−1
T∑
t=1
‖F̂ k

t −Hk ′Ft‖2 = (NT )−2
(

max
v∈RT

v′XX ′v

v′v

)2

≥ (NT )−2
(

1′TXX ′1T
T

)2

= 1
N2T 4

 N∑
i=1

(
T∑
t=1

xit

)22

.

Jensen’s inequality and cross-sectional i.i.d.-ness of xit imply

E

 N∑
i=1

(
T∑
t=1

xit

)22

≥

NE ( T∑
t=1

xit

)22

,

so inequality (2.8) follows.

Example 3 (single large break, continued). In the large break model, wit =

∆iFt1{t≥κ+1}. Denote the last (T − κ) elements of the T -vector F by Fκ+1:T . Then we

can write

w = (w1, . . . , wT )′ = hNT

 0κ×N

Fκ+1:T ⊗∆′

 ,
so that

ww′ = h2
NT

 0κ×κ 0κ×(T−κ)

0(T−κ)×κ (Fκ+1:TF
′
κ+1:T )‖∆‖2

 .
It follows that the eigenvalues of ww′ are 0 (with multiplicity κ) along with h2

NT‖∆‖2 times

the (T−κ) eigenvalues of Fκ+1:TF
′
κ+1:T . But the eigenvalues of Fκ+1:TF

′
κ+1:T are just ‖Fκ+1:T‖2

(with multiplicity 1) and 0 (with multiplicity T −κ−1). The k largest eigenvalues ω1, . . . , ωk
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of XX ′ = ww′ are therefore

ω1 = h2
NT‖∆‖2‖Fκ+1:T‖2, ω2 = ω3 = · · · = ωk = 0.

Consequently, regardless of the number of estimated factors k,

T−1
T∑
t=1
‖F̂ k

t −Hk ′Ft‖2 = (NT )−2
k∑
l=1

ω2
l

= h4
NT

(NT )2‖∆‖
4‖Fκ+1:T‖4

= h4
NT

N2 ‖∆‖
4(1− τ̄)2

(
1

T − κ

T∑
t=κ+1

F 2
t + op(1)

)2

where the last equality uses T − κ = (1− τ̄)T (1 + o(1)). Expression (2.9) follows.

A.2.2 Comparison of our Monte Carlo calibration with Eickmeier,

Lemke & Marcellino (2015)

Eickmeier et al. (2015) use a two-step maximum likelihood procedure to estimate a five-

factor DFM with time-varying parameters on quarterly U.S. data from 1972 to 2007. As in

some of our simulations, the factor loadings in their model evolve as independent random

walks. From their smoothed estimates of the factor loading paths (restricting attention to the

paths that exhibit non-negligible time variation) one obtains a median standard deviation

of the innovations equal to 0.0165 for loadings on the first factor, which has the largest

median loading innovation standard deviation of the five factors. Because their sample size

is T = 140, the random walk specification implies a median standard deviation of λiT1−λi01

of about 0.20; the 95th percentile of the implied standard deviation of λiT1 − λi01 is about
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0.75. The 5–95 percentile range of estimated initial factor loadings is [−0.87, 0.28].8 As

explained in the main text, in our random walk design with a = β = ρ = 0, c = 2 and

T = 200, the standard deviation of λiT1 − λi01 is 0.53 for all i, while the 5–95 percentile

range for initial factor loadings is [−0.74, 0.74]. Our c = 2 calibration is therefore similar to

the Eickmeier et al. (2015) estimated amount of factor loading time variation in U.S. data,

while our c = 3.5 simulations appear to exhibit substantially more instability.

A.3 Material for Chapter 3

A.3.1 Notation

For x ∈ R, define x+ = max{x, 0}. In is the n × n identity matrix. Denote the space of

symmetric positive semidefinite n × n matrices by Sn and the subspace of positive definite

matrices by Sn+. For A ∈ Sn, let ρ(A) be its largest eigenvalue. For A ∈ Sn+ and B ∈ Rm×n,

define the weighted Frobenius norm ‖B‖A =
√

tr(B′AB), the usual Frobenius norm ‖B‖ =

‖B‖In , and the max norm ‖B‖∞ = maxk,` |Bk`|. For B ∈ Rm×n, denote the rank of B by

rk(B), and let span(B) be the linear space spanned by the columns of B. Denote the trace

of a square matrix C by tr(C). The 1−α quantile of the χ2(1) distribution is denoted z1,1−α.

A.3.2 Data and empirical specification

The data used in Sections 3.1, 3.2 and 3.5 is from the replication files for Gertler & Karadi

(2015), which are available on the American Economic Association Website.9 The specifi-

cation for the non-smooth Jordà local projection IRF estimate follows Ramey (2016, Sec.

3.5.3). The response variable is the Gilchrist & Zakrajšek (2012) excess bond premium. The

8We are grateful to Wolfgang Lemke and Massimiliano Marcellino for helping us obtain these figures.

9https://www.aeaweb.org/articles?id=10.1257/mac.20130329. Downloaded April 11, 2016.
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shock variable is the Gertler & Karadi (2015) monetary policy shock identified from high-

frequency changes in 3-month-ahead Federal Funds Futures prices around Federal Open

Market Committee announcements. The regressions control for two lags of the response and

shock variables, as well as two lags of the following: log industrial production, log consumer

price index, and the interest rate on 1-year Treasury bills. Unlike Ramey, I additionally

control for a quadratic time trend. The regression sample is January 1991 through June

2012, but data points from late 1990 are used by lagged series.

In IRF plots, the shock is normalized to have unit standard deviation, corresponding to

4.9 basis points. To interpret the units, a monthly regression without controls of the first

difference of the Effective Federal Funds Rate (in basis points) on a 1-standard-deviation

monetary policy shock yields a coefficient of 11 on the 1991–2012 sample.

A.3.3 Details for projection shrinkage estimator

Here I provide analytic derivations and quantile simulation strategies for the projection

shrinkage estimators. Let P be a symmetric and idempotent matrix. Then ‖β − β̂‖2 =

‖P (β − β̂)‖2 + ‖(In − P )(β − β̂)‖2, implying that β̂P (λ) defined in (3.6) satisfies

Pβ̂P (λ) = 1
1 + λ

P β̂, (In − P )β̂P (λ) = (In − P )β̂.

URE. The URE simplifies in the case of projection shrinkage. The matrix ΘP (λ) :=

ΘP,In(λ) = (In +λP )−1 satisfies PΘP (λ) = (1 +λ)−1P and (In−P )ΘP (λ) = In−P . Hence,

for M = P and W = W̃ = In, the URE (3.7) can be written

R̂P,In,In(λ) = T‖P (β̂P (λ)− β̂)‖2 + T‖(In − P )(β̂P (λ)− β̂)‖2

+ 2 tr{PΘP (λ)Σ̂}+ 2 tr{(In − P )ΘP (λ)Σ̂}
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=
(

λ

1 + λ

)2

T‖Pβ̂‖2 +
(

1− λ

1 + λ

)
tr(Σ̂P ) + constant,

where Σ̂P = P Σ̂P . The value of λ ≥ 0 that minimizes the above quadratic form satisfies

λ̂P

1 + λ̂P
= min

 tr(Σ̂P )
T‖Pβ̂‖2

, 1

 .
Quantile simulation. For projection shrinkage, the simulation of the quantile functions

in Section 3.2.4 simplifies drastically, since θ̂M,W,W̃ (η,Σ) defined in (3.9) reduces to

θ̂P,In,In(η,Σ) = η −min
{

tr(PΣ)
‖Pη‖2 , 1

}
Pη.

Conditional quantile bound. In the notation of Section 3.2.4, qs,1−α,P,In,In(θ,Σ) is the

1− α quantile of {s′θ̂P,In,In(ζu+ θ,Σ)− s′θ}2, u ∼ N(0, s′Σs). By an argument in the proof

of Proposition 3.2, ‖θ̂P,In,In(η,Σ)− η‖ ≤
√

tr(PΣ) for all η,Σ. Using s′ζ = 1, it follows that

|s′θ̂P,In,In(ζu+ θ,Σ)− s′θ| ≤ |s′(ζu+ θ)− s′θ|+ ‖s‖
√

tr(PΣ) = |u|+ ‖s‖
√

tr(PΣ),

implying
√
qs,1−α,P,In,In(θ,Σ) ≤

√
(s′Σs)z1,1−α + ‖s‖

√
tr(PΣ) for all θ,Σ.

A.3.4 URE and the bias-variance tradeoff

The URE (3.7) can also be motivated from the bias-variance perspective used by Claeskens

& Hjort (2003) to derive their Focused Information Criterion. Informally, suppose that

E(β̂) = β† and E[(β̂−β†)(β̂−β†)′] = T−1Σ, and set W = W̃ = In to simplify notation. For

given λ ≥ 0, the MSE of β̂M,In(λ) can be decomposed into bias and variance terms:

RM,In,In(λ) = TE[β̂M,In(λ)− β†]′E[β̂M,In(λ)− β†]

+ tr
{
TE[(β̂M,In(λ)− E[β̂M,In(λ)])(β̂M,In(λ)− E[β̂M,In(λ)])′]

}
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= T tr
{

[In −ΘM,In(λ)]2β†β†′
}

+ tr
{

ΘM,In(λ)2Σ
}
.

Since E(β̂β̂′) = β†β†′+T−1Σ, consider the estimator of RM,In,In(λ) obtained by substituting

in the unbiased estimator β̂β̂′ − T−1Σ̂ of β†β†′, and substituting Σ̂ for Σ:

R̃M(λ) := tr
{

[In −ΘM,In(λ)]2(T β̂β̂′ − Σ̂)
}

+ tr
{

ΘM,In(λ)2Σ̂
}

= T‖β̂M,In(λ)− β̂‖2 + tr
{(

ΘM,In(λ)2 − [In −ΘM,In(λ)]2
)
Σ̂
}

= T‖β̂M,In(λ)− β̂‖2 + tr
{

(2ΘM,In(λ)− In)Σ̂
}

= R̂M,In,In(λ)− tr(Σ̂).

Hence, the criterion R̃M(λ) is equivalent with the URE criterion R̂M,In,In(λ) for the purposes

of selecting the shrinkage parameter λ.

A.3.5 Supplemental simulation results

Supplementing the analysis in Section 3.5, I provide simulation results for the SmIRF esti-

mator and plot the true IRF in the VAR DGP.

Table A.1 shows that the MSE performance of the SmIRF estimator is similar to that of

the quadratic projection shrinkage estimator. The SmIRF estimator is given by θ̂M,In,In , as

defined in Section 3.4.1, whereM is the (n−2)×n second difference matrix (3.5). Quadratic

projection shrinkage tends to do slightly better than SmIRF when K = 0 or 0.5, but SmIRF

does better for K = 1 or 2, i.e., when the true IRF is more jagged. This is unsurprising, as

the second difference penalty in the SmIRF objective function (3.2) is more lenient toward

a sine curve than is the quadratic projection penalty in (3.6).

Table A.2 illustrates the performance of the SmIRF-based confidence sets for three of

the DGPs considered in Table 3.1 in Section 3.5.1. The results in this table are based on a

smaller number of simulations than other results in this paper due to the computational cost
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Simulation results: SmIRF MSE
Joint Marginal

Parameters
MSE Var

MSE
n K κ σ0 ϕ Imp Mid

10 0.5 0.5 0.2 3 0.72 0.67 1.93 0.66
25 0.5 0.5 0.2 3 0.43 0.41 1.66 0.39
50 0.5 0.5 0.2 3 0.26 0.24 1.02 0.22
25 0 0.5 0.2 3 0.34 0.34 0.82 0.26
25 1 0.5 0.2 3 0.51 0.47 1.81 0.39
25 2 0.5 0.2 3 0.65 0.61 1.70 0.54
25 0.5 0 0.2 3 0.22 0.21 0.71 0.18
25 0.5 0.9 0.2 3 0.87 0.84 1.95 0.88
25 0.5 0.5 0.1 3 0.43 0.41 1.50 0.39
25 0.5 0.5 0.4 3 0.38 0.36 1.38 0.33
25 0.5 0.5 0.2 1 0.41 0.39 0.83 0.35
25 0.5 0.5 0.2 5 0.42 0.40 2.88 0.38

Table A.1: Simulation results for MSE of SmIRF estimator. See caption for Table 3.1. 5000
simulations per DGP. Numerical optimization: Matlab’s fmincon, algorithm “interior-point”.

Simulation results: SmIRF confidence sets
Joint Marginal

Parameters
MSE Var CV

MSE Lng Ĉs,1−δ
n K κ σ0 ϕ Imp Mid Imp Mid

25 0 0.5 0.2 3 0.32 0.32 0.56 0.84 0.23 0.85 0.81
25 0.5 0.5 0.2 3 0.43 0.41 0.84 1.59 0.37 0.95 0.82
25 1 0.5 0.2 3 0.54 0.49 0.91 2.32 0.39 1.08 0.82

Table A.2: Simulation results for SmIRF confidence sets. See caption for Table 3.1. 1000 simula-
tions per DGP, 500 simulations to compute quantiles, 30 grid points to compute marginal confidence
set length, α = 0.1, δ = 0.01. Numerical optimization: Matlab’s fmincon, algorithm “active-set”.
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True IRF in time series regression simulations
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Figure A.14: True VAR-implied IRF in time series regression simulations.

of computing the URE-minimizing shrinkage parameter for the SmIRF estimator. The table

shows that the SmIRF confidence sets do as well as or better than the quadratic projection

shrinkage confidence sets.

Figure A.14 shows the true IRF implied by the data generating VAR(2) model used in

the simulations in Section 3.5.2.
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Appendix B

Proofs

B.1 Proofs for Chapter 1

B.1.1 Proof of Theorem A.1

As in Lippi & Reichlin (1994, p. 311), define the rational matrix function

R(γ, z) =


z−γ
1−γ̄z 0

0 In−1

 , γ, z ∈ C.

Transformation (ii) corresponds to the transformation Ψ̌(z) = Ψ(z)QR(γk, z)−1 if γk is

real. If γk is not real, the transformation corresponds to Ψ̌(z) = Ψ̃(z)Q̌, where Ψ̃(z) =

Ψ(z)QR(γk, z)−1Q̃R(γk, z)−1 and Q̌ = Ψ̃(0)−1J is a unitary matrix. I proceed in three steps.

Step 1. Consider the first claim of the theorem. Let f(ω; Γ) = (2π)−1∑q
k=−q Γ(k)e−ıkω,

ω ∈ [−π, π], denote the spectral density matrix function associated with the ACF Γ(·). Since

Ψ(z) = Θ(z) diag(σ) with (Θ, σ) ∈ S(Γ), we must have Ψ(e−ıω)Ψ(e−ıω)∗ = 2πf(ω; Γ) for all

ω by the usual formula for the spectral density of a vector MA process (Brockwell & Davis,

1991, Example 11.8.1). Because R(γ, e−ıω)R(γ, e−ıω)∗ = In for any (γ, ω), it is easy to verify

that Ψ̌(z) – constructed by applying transformation (i) or transformation (ii) to Ψ(z) – also
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satisfies Ψ̌(e−ıω)Ψ̌(e−ıω)∗ = 2πf(ω; Γ). Hence, Ψ̌(z) = ∑q
`=0 Ψ̌`z

` is a matrix MA polynomial

satisfying ∑q−k
`=0 Ψ̌`+kΨ̌`

∗
= Γ(k) for all k = 0, 1, . . . , q. In Step 2 below I show that Ψ̌(z) is

a matrix polynomial with real coefficients. By construction of Θ̌(z) = ∑q
`=0 Θ̌`z

` and σ̌, we

then have ∑q−k
`=0 Θ̌`+k diag(σ̌)2Θ̌`

′
= Γ(k) for all k = 0, 1, . . . , q, so (Θ̌, σ̌) ∈ S(Γ), as claimed.

Step 2. I now show that transformation (ii) yields a real matrix polynomial Ψ̌(z). This

fact was asserted by Lippi & Reichlin (1994, pp. 317–318). I am grateful to Professor Marco

Lippi for providing me with the proof arguments for Step 2; all errors are my own.

Ψ̌(z) is clearly real if the flipped root γk is real (since η and Q can be chosen to be real

in this case), so consider the case where we flip a pair of complex conjugate roots γk and γk.

Recall that in this case, Ψ̌(z) = Ψ̃(z)Q̌, where Ψ̃(z) = Ψ(z)QR(γk, z)−1Q̃R(γk, z)−1 and Q̌

is unitary. It follows from the same arguments as in Step 1 that the complex-valued matrix

polynomial Ψ̃(z) = ∑q
`=0 Ψ̃`z

` satisfies ∑q−k
`=0 Ψ̃`+kΨ̃`

∗ = Γ(k) for all k = 0, 1, . . . , q

Let ¯̃Ψ(z) = ∑q
`=0 Ψ̃`z

` denote the matrix polynomial obtained by conjugating the coef-

ficients of the polynomial Ψ̃(z). By construction, the roots of det(Ψ̃(z)) are real or appear

as complex conjugate pairs, so det( ¯̃Ψ(z)) has the same roots as det(Ψ̃(z)). Furthermore, for

k = 0, 1, . . . , q,
q−k∑
`=0

¯̃Ψ`+k
¯̃Ψ`

∗
= Γ(k) = Γ(k) =

q−k∑
`=0

Ψ̃`+kΨ̃∗` .

By Theorem 3(b) of Lippi & Reichlin (1994), there exists a unitary n×n matrix ˜̃Q such that
¯̃Ψ(z) = Ψ̃(z) ˜̃Q for z ∈ R. The matrix polynomial Ψ̃(z)Ψ̃(0)−1 then has real coefficients:1

For all z ∈ R,

Ψ̃(z)Ψ̃(0)−1 =
(
Ψ̃(z) ˜̃Q

) (
Ψ̃(0) ˜̃Q

)−1
= ¯̃Ψ(z) ¯̃Ψ(0)−1 = Ψ̃(z)Ψ̃(0)−1.

1Ψ̃(0) is nonsingular because det(Ψ(0)) 6= 0.
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Consequently, with the real matrix J defined as in the theorem, Ψ̌(z) = Ψ̃(z)Ψ̃(0)−1J is a

matrix polynomial with real coefficients. Finally, since ˜̃Q is unitary, the matrix

Ψ̃(0)Ψ̃(0)∗ =
(

¯̃Ψ(0) ˜̃Q
)(

¯̃Ψ(0) ˜̃Q
)∗

= Ψ̃(0)Ψ̃(0)∗

is real, symmetric, and positive definite, so J is well-defined.

Step 3. Finally, I prove the second claim of the theorem. Suppose we have a fixed element

(Θ̌, σ̌) of the identified set that we want to end up with after transforming the initial element

(Θ, σ) appropriately. Define Ψ̌(z) = Θ̌(z) diag(σ̌). Since (Θ, σ), (Θ̌, σ̌) ∈ S(Γ), the two

sets of SVMA parameters correspond to the same spectral density, i.e., Ψ(e−ıω)Ψ(e−ıω)∗ =

Ψ̌(e−ıω)Ψ̌(e−ıω)∗ for all ω ∈ [−π, π]. As in the proof of Theorem 2 in Lippi & Reichlin (1994),

we can apply transformation (ii) finitely many (say, b) times to Ψ(z), flipping all the roots

that are inside the unit circle, thus ending up with a polynomial

B(z) = Ψ(z)Q1R(γk1 , z)−1 · · ·QbR(γkb , z)−1Qb+1

for which all roots of det(B(z)) lie on or outside the unit circle. Likewise, denote the

(finitely many) roots of det(Ψ̌(z)) by γ̌k, k = 1, 2, . . . , and apply to Ψ̌(z) a finite sequence

of transformation (ii) to arrive at a polynomial

B̌(z) = Ψ̌(z)Q̌1R(γ̌ǩ1
, z)−1 · · · Q̌b̌R(γ̌ǩb̌ , z)

−1Q̌b̌+1

for which all roots of det(B̌(z)) lie on or outside the unit circle. Since det(B(z)) and

det(B̌(z)) have all roots on or outside the unit circle, and we have B(e−ıω)B(e−ıω)∗ =

B̌(e−ıω)B̌(e−ıω)∗ = 2πf(ω; Γ) for all ω, there must exist an orthogonal matrix Q such that
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B̌(z) = B(z)Q (Lippi & Reichlin, 1994, p. 313; Hannan, 1970, p. 69). Thus,

Ψ̌(z) = Ψ(z)Q1R(γk1 , z)−1 · · ·QbR(γkb , z)−1Qb+1QQ̌
∗
b̌+1R(γ̌ǩb̌ , z)Q̌

∗
b̌
· · ·R(γ̌ǩ1

, z)Q̌∗1,

and

det(Ψ̌(z)) = det(Ψ(z))
(z − γ̌ǩ1

) · · · (z − γ̌ǩb̌)(1− γk1z) · · · (1− γkbz)
(z − γk1) · · · (z − γkb)(1− γ̌ǩ1

z) · · · (1− γ̌ǩb̌z)
,

so any root γ̌ǩ of det(Ψ̌(z)) must either equal γk or it must equal 1/γk, where γk is some root

of det(Ψ(z)). It follows that we can apply a finite sequence of transformation (ii) (i.e., an

appropriate sequence of root flips) to Ψ(z) to obtain a real matrix polynomial ˜̃Ψ(z) satisfying

det( ˜̃Ψ(z)) = det(Ψ̌(z)) for all z ∈ C. Theorem 3(b) in Lippi & Reichlin (1994) then implies

that Ψ̌(z) can be obtained from ˜̃Ψ(z) through transformation (i) (i.e., an orthogonal rotation,

which clearly must be real). Finally, obtain (Θ̌, σ̌) from Ψ̌(z) by transformation (a).

B.1.2 Proof of Lemma A.1

Suppressing the arguments (Ψ), let Lk = log det(fk) + ỹ∗kf
−1
k ỹk. Then

∂Lk
∂(f ′k)

= f−1
k − f−1

k ỹkỹ
∗
kf
−1
k = Ck.

Writing f ′k = Ψ̃kΨ̃′k, we have

∂ vec(f ′k)
∂ vec(Ψ`)′

= (Ψ̃k ⊗ In)eıωk` + (In ⊗ Ψ̃k)K ′ne−ıωk`,

where Kn is the n2 × n2 commutation matrix such that vec(B′) = Kn vec(B) for any n× n

matrix B (Magnus & Neudecker, 2007, Ch. 3.7). Using vec(ABC) = (C ′ ⊗ A) vec(B),

∂Lk
∂ vec(Ψ`)′

= ∂Lk
∂ vec(f ′k)′

∂ vec(f ′k)
∂ vec(Ψ`)′

= vec
(
CkΨ̃ke

ıωk` + C∗kΨ̃keıωk`
)′
.
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Since C∗k = Ck, we get ∂Lk/∂Ψ` = 2 Re
(
CkΨ̃ke

ıωk`
)
, so

∂ log pWY |Ψ(YT | Ψ)
∂Ψ`

= −1
2

T−1∑
k=0

∂Lk
∂Ψ`

= −
T−1∑
k=0

Re
Ck q+1∑

˜̀=1

e−ıωk(˜̀−1)Ψ˜̀−1e
ıωk`


= −

q∑
˜̀=0

Re
(
T−1∑
k=0

Cke
−ıωk(˜̀−`)

)
Ψ˜̀.

Finally, ∑T−1
k=0 Cke

−ıωk(˜̀−`) = ∑T−1
k=0 Cke

−ıω˜̀−`k = C̃˜̀−` for ˜̀ ≥ `, and ∑T−1
k=0 Cke

−ıωk(˜̀−`) =∑T−1
k=0 Cke

−ıωk(T+˜̀−`) = ∑T−1
k=0 Cke

−ıωT+˜̀−`k = C̃˜̀−` for ˜̀< `.

B.1.3 Proof of Lemma 1.1

By the triangle inequality,

‖Pθ|Y (· | YT )−Πθ|Γ(· | Γ̂)‖L1 ≤ ‖Πθ|Γ(· | Γ̂)−Πθ|Γ(· | Γ0)‖L1 + ‖Pθ|Y (· | YT )−Πθ|Γ(· | Γ0)‖L1 .

If Γ̂ p→ Γ0, the first term above tends to 0 in probability by assumption (i) and the continuous

mapping theorem. Hence, the statement of the lemma follows if I can show that the second

term above tends to 0 in probability.

Let ε > 0 be arbitrary. By assumption (i), there exists a neighborhood U of Γ0 in ΞΓ such

that ‖Πθ|Γ(· | Γ)−Πθ|Γ(· | Γ0)‖L1 < ε/2 for all Γ ∈ U . By assumption (ii), PΓ|Y (U c | YT ) < ε/4

w.p.a. 1. The decomposition (1.10) then implies

‖Pθ|Y (· | YT )− Πθ|Γ(· | Γ0)‖L1 =
∥∥∥∥∫ [Πθ|Γ(· | Γ)− Πθ|Γ(· | Γ0)]PΓ|Y (dΓ | YT )

∥∥∥∥
L1

≤
∫
U
‖Πθ|Γ(· | Γ)− Πθ|Γ(· | Γ0)‖L1PΓ|Y (dΓ | YT )

+
∫
Uc
‖Πθ|Γ(· | Γ)− Πθ|Γ(· | Γ0)‖L1PΓ|Y (dΓ | YT )
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≤
∫
U

ε

2PΓ|Y (dΓ | YT ) + 2PΓ|Y (U c | YT )

≤ ε

2 + 2 ε4
= ε

w.p.a. 1. Here I use that the L1 distance between probability measures is bounded by 2.

B.1.4 Proof of Lemma A.2

I follow the proof of Theorem 1.3.4 in Ghosh & Ramamoorthi (2003). Set κ2 = supΓ∈Uc φ(Γ).

Notice that φ̂(Γ0) = 0 and assumption (i) together imply φ(Γ0) = 0. By assumptions (ii)–

(iii), we can therefore find a small neighborhood V of Γ0 in ΞΓ such that κ1 = infΓ∈V φ(Γ)

satisfies max{κ2, ζ} < κ1 < 0. We may shrink V to ensure that it also satisfies V ⊂ U ∩ K.

Choose δ > 0 such that κ1 − δ > max{κ2 + δ, ζ}. Write

PΓ|Y (U | YT ) =
1 +

∫
Uc e

T φ̂(Γ)ΠΓ(dΓ)∫
U e

T φ̂(Γ)ΠΓ(dΓ)

−1

≥

1 +
∫
Kc e

T φ̂(Γ)ΠΓ(dΓ) +
∫
Uc∩K e

T φ̂(Γ)ΠΓ(dΓ)∫
V e

T φ̂(Γ)ΠΓ(dΓ)

−1

.

Assumptions (i) and (iv) imply that the following three inequalities hold w.p.a. 1:

sup
Γ∈V

φ̂(Γ) > κ1 − δ, sup
Γ∈Uc∩K

φ̂(Γ) < κ2 + δ, sup
Γ∈Kc

φ̂(Γ) < ζ.

We then have

PΓ|Y (U | YT ) ≥
(

1 +
∫
Kc e

ζTΠΓ(dΓ) +
∫
Uc∩K e

(κ2+δ)TΠΓ(dΓ)∫
V e

(κ1−δ)TΠΓ(dΓ)

)−1

≥
(

1 + eζT + e(κ2+δ)T

ΠΓ(V)e(κ1−δ)T

)−1

190



w.p.a. 1. Since ΠΓ(V) > 0 by assumption (v), and κ1 − δ > max{κ2 + δ, ζ}, I conclude that

PΓ|Y (U | YT ) p→ 1 as T →∞.

B.1.5 Proof of Theorem 1.1

The proof exploits the one-to-one mapping between the ACF Γ0 and the Wold parameters

(β0,Σ0) defined in Appendix A.1.7.3, which allows me to use Lemma A.3 to infer posterior

consistency for Γ0 under the Whittle likelihood.

Let M : Tn,q → Bn,q × Sn denote the function that maps a q-dependent ACF Γ(·) into

its Wold representation (β(Γ),Σ(Γ)) (Hannan, 1970, Thm. 2′′, p. 158). By construction,

the map M(·) is continuous (and measurable). The inverse map M−1(·) is given by Γ(k) =∑q−k
`=0 β`+kΣβ′` (with β0 = In) and so also continuous. The prior ΠΓ(·) for the ACF Γ induces

a particular prior measure for the Wold parameters (β,Σ) on Bn,q × Sn given by Πβ,Σ(A) =

ΠΓ(M−1(A)) for any measurable set A. Let PW
β,Σ|Y (· | YT ) be the posterior measure for (β,Σ)

computed using the induced prior Πβ,Σ(·) and the Whittle MA likelihood pWY |β,Σ(YT | β,Σ),

cf. Appendix A.1.7.3.

I first show that the induced posterior for (β0,Σ0) is consistent. Let Ũ be any neighbor-

hood of (β0,Σ0) = M({Γ0(k)}0≤k≤q) in Bn,q × Sn. Since M(·) is continuous, M−1(Ũ) is a

neighborhood of {Γ0(k)}0≤k≤q in Tn,q. Hence, since {Γ0(k)}0≤k≤q is in the support of ΠΓ(·),

(β0,Σ0) is in the support of Πβ,Σ(·):

Πβ,Σ(Ũ) = ΠΓ(M−1(Ũ)) > 0.

Due to Assumption 1.3 and the fact that (β0,Σ0) is in the support of Πβ,Σ(·), Lemma A.3

implies that Pβ,Σ|Y (Ũ | YT ) p→ 1 for any neighborhood Ũ of (β0,Σ0) in Bn,q × Sn.

I now prove posterior consistency for Γ0. Since f̃(ω;M(Γ)) = f(ω; Γ) for all ω ∈ [−π, π]

and Γ ∈ Tn,q, we have pWY |β,Σ(YT | M(Γ)) = pWY |Γ(YT | Γ) for all Γ ∈ Tn,q. Consequently,
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PW
Γ|Y (A | YT ) = PW

β,Σ|Y (M(A) | YT ) for all measurable sets A. Let U be an arbitrary

neighborhood of {Γ0(k)}0≤k≤q in Tn,q. Since M−1(·) is continuous at (β0,Σ0), the set Ũ =

M(U) is a neighborhood of (β0,Σ0) in Bn,q × Sn. It follows from Step 1 that

PW
Γ|Y (U | YT ) = PW

β,Σ|Y (Ũ | YT ) p→ 1.

Moreover, the proof of Lemma A.3 implies that the Whittle posterior is consistent regardless

of whether the Whittle likelihood is based on integrals or discretized sums.

B.1.6 Proof of Theorem 1.2

By the calculation in Eqn. 11 of Moon & Schorfheide (2012), the Whittle posterior PW
θ|Y (· |

YT ) satisfies a decomposition of the form (1.10), where the posterior measure for the ACF

Γ is given by PW
Γ|Y (· | YT ). By Theorem 1.1, the latter posterior measure is consistent for Γ0

provided that the induced prior ΠΓ(·) has Γ0 in its support.

Γ0 is indeed in the support of ΠΓ(·), for the following reason. Let Γ(Θ, σ) denote the map

(1.7) from structural parameters (Θ, σ) ∈ ΞΘ × Ξσ to ACFs Γ ∈ Tn,q. There exists a (non-

unique) set of IRFs and shock standard deviations (Θ̌, σ̌) ∈ ΞΘ×Xσ such that Γ0 = Γ(Θ̌, Σ̌)

(Hannan, 1970, pp. 64–66). Let U be an arbitrary neighborhood of Γ0 in Tn,q. The map

Γ(·, ·) is continuous, so Γ−1(U) is a neighborhood of (Θ̌, σ̌) in ΞΘ × Ξσ. Because ΠΘ,σ(·) has

full support on ΞΘ × Ξσ, we have ΠΓ(U) = ΠΘ,σ(Γ−1(U)) > 0. Since the neighborhood U

was arbitrary, Γ0 lies in the support of the induced prior ΠΓ(·).

Finally, note that the empirical autocovariances Γ̂ are consistent for the true ACF Γ0

under Assumption 1.3. Hence, the assumptions of the general Lemma 1.1 are satisfied for

the Whittle SVMA posterior, and Theorem 1.2 follows.
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B.1.7 Proof of Lemma A.3

The proof closely follows the steps in Dunsmuir & Hannan (1976, Sec. 3) for proving con-

sistency of the Whittle maximum likelihood estimator in a reduced-form identified VARMA

model. Note that the only properties of the data generating process used in Dunsmuir &

Hannan (1976, Sec. 3) are covariance stationarity and ergodicity for second moments, as in

Assumption 1.3. Dunsmuir & Hannan also need T−1yty
′
t+T−k

p→ 0 for fixed t and k, which

follows from Markov’s inequality under covariance stationarity. Where Dunsmuir & Hannan

(1976) appeal to almost sure convergence, I substitute convergence in probability.

Define the normalized log likelihood ratio

φ̂(β,Σ) = T−1 log
pWβ,Σ(YT | β,Σ)
pWβ,Σ(YT | β0,Σ0) .

By the Kolmogorov-Szegö formula, for any (β,Σ) ∈ Bn,q × Sn,

1
2π

∫ π

−π
log det(f̃(ω; β,Σ)) dω = log det(Σ)− n log(2π). (B.1)

Hence,

φ̂(β,Σ) = 1
2 log det(Σ0Σ−1) + 1

4π

∫ π

−π
tr
{

[f̃(ω; β0,Σ0)−1 − f̃(ω; β,Σ)−1]Î(ω)
}
dω. (B.2)

Define also the function

φ(β,Σ) = 1
2 log det(Σ0Σ−1) + 1

2

∫ π

−π
tr{In − f̃(ω; β,Σ)−1f̃(ω; β0,Σ0)} dω.

φ(β,Σ) is continuous. By the argument in Dunsmuir & Hannan (1976, p. 5) (see also Brock-

well & Davis, 1991, Prop. 10.8.1, for the univariate case), we have φ(β,Σ) ≤ φ(β0,Σ0) = 0

for all (β,Σ) ∈ Bn,q × Sn, with equality if and only if (β,Σ) = (β0,Σ0).
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The remainder of the proof verifies the conditions of Lemma A.2 in five steps.

Step 1. I first show that there exists a neighborhood K of (β0,Σ0) in Bn,q × Sn such that

sup
(β,Σ)∈K

|φ̂(β,Σ)− φ(β,Σ)| = op(1). (B.3)

By definition of the Wold decomposition of a time series with a non-singular spectral den-

sity, all the roots of z 7→ det(Φ(β0; z)) lie strictly outside the unit circle. f̃(ω; β,Σ)−1 =

Φ(β; eıω)−1′Σ−1Φ(β; e−ıω)−1 is therefore uniformly continuous in (ω, β,Σ) for all ω ∈ [−π, π]

and (β,Σ) in a small neighborhood of (β0,Σ0). Denoting this neighborhood by K, the

discussion around Lemma 1 in Dunsmuir & Hannan (1976, p. 350) implies (B.3).

Step 2. For any (β,Σ) ∈ Bn,q × Sn and z ∈ C, define the adjoint of Φ(β; z) as

Φadj(β; z) = Φ(β; z)−1 det(Φ(β; z)),

so f̃(ω; β,Σ) = | det(Φ(β; e−ıω))|2Φadj(β; e−ıω)−1ΣΦadj(β; e−ıω)−1∗. The elements of Φadj(β; z)

are polynomials in z, each polynomial of order κ ≤ q(n− 1) (Dunsmuir & Hannan, 1976, p.

354). Write the matrix polynomial as Φadj(β; z) = In + ∑κ
`=1 βadj,`z

`, and define Φ̃adj(β) =

(∑κ
`=1 ‖βadj,`‖2)1/2.

Now define, for δ ≥ 0,

f̃δ(ω; β,Σ) = (| det(Φ(β; e−ıω))|2 + δ)Φadj(β; e−ıω)−1ΣΦadj(β; e−ıω)−1∗,

φ̂δ(β,Σ) = 1
2 log det(Σ0Σ−1) + 1

4π

∫ π

−π
tr
{

[f̃(ω; β0,Σ0)−1 − f̃δ(ω; β,Σ)−1]Î(ω)
}
dω,

and

φδ(β,Σ) = 1
2 log det(Σ0Σ−1) + 1

2

∫ π

−π
tr{In − f̃δ(ω; β,Σ)−1f̃(ω; β0,Σ0)} dω.
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Because Î(ω) is positive semidefinite for each ω ∈ [−π, π], we have φ̂(β,Σ) ≤ φ̂δ(β,Σ) for all

(β,Σ) ∈ Bn,q × Sn and δ > 0.

Finally, for any c1, c2, c3 > 0, define the set

K̃(c1, c2, c3) = {(β,Σ) ∈ Bn,q × Sn : λmin(Σ) ≥ c1, ‖Σ‖ ≤ c2, Φ̃adj(β) ≤ c3},

where λmin(Σ) is the smallest eigenvalue of Σ.

The discussion surrounding Lemma 3 in Dunsmuir & Hannan (1976, p. 351) then gives

sup
(β,Σ)∈K̃(c1,c2,c3)

|φ̂δ(β,Σ)− φδ(β,Σ)| = op(1),

for any c1, c2, c3 > 0. Because φδ(β,Σ) is continuous in (β,Σ, δ) at (β = β0,Σ = Σ0, δ = 0),

and φ(β,Σ) = φδ=0(β,Σ) is uniquely maximized at (β0,Σ0),

inf
δ>0

sup
(β,Σ)/∈K

φδ(β,Σ) < φ(β0,Σ0) = 0.

I conclude that for all c1, c2, c3 > 0 there exist δ > 0 and ζ > 0 such that

sup
(β,Σ)∈K̃(c1,c2,c3)∩Kc

φ̂(β,Σ) ≤ sup
(β,Σ)∈K̃(c1,c2,c3)∩Kc

φ̂δ(β,Σ) ≤ −ζ + op(1).

Step 3. Let ζ > 0 be the scalar found in the previous step. The proof of Theorem 4(i)

in Dunsmuir & Hannan (1976, pp. 354–355) (see also the beginning of the proof of their

Theorem 3, pp. 352–353) shows that there exist c1, c2, c3 > 0 such that

sup
(β,Σ)∈(Bn,q×Sn)∩K̃(c1,c2,c3)c

φ̂(β,Σ) ≤ −ζ.

Step 4. Steps 1–3 imply that the sufficient conditions in Lemma A.2 hold. I conclude that

PW
β,Σ|Y (Ũ | YT ) p→ 1 for any neighborhood Ũ of (β0,Σ0) in Bn,q × Sn.
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Step 5. Finally, I prove an assertion in Appendix A.1.7.3: Lemma A.3 holds for the

discretized Whittle likelihood that replaces integrals (2π)−1 ∫ π
−π g(ω) dω (for a 2π-periodic

function g(·)) in the definition of log pWY |β,Σ(YT | β,Σ) with sums T−1∑T−1
k=0 g(ωk), ωk =

2πk/T .

The proof of Theorem 4(ii) of Dunsmuir & Hannan (1976, p. 356) shows that steps

1–3 above carry through if the integral in expression (B.2) is replaced with a discretized

sum. The only other effect of discretizing the integrals in the Whittle likelihood is that the

Kolmogorov-Szegö formula (B.1) does not hold exactly. Instead,

T−1
T−1∑
j=0

log det(f̃(ωj; β,Σ)) = log det(Σ)− n log(2π) + T−1
T−1∑
j=0

log | det(Φ(β; e−ıωj))|2.

The posterior consistency result for the discretized Whittle posterior follows from steps 1–4

above if I show
T−1∑
j=0

log | det(Φ(β; e−ıωj))|2 ≤ 2nq log 2 (B.4)

for all (β,Σ) ∈ Bn,q × Sn, and furthermore,

T−1∑
j=0

log | det(Φ(β; e−ıωj))|2 = op(1) (B.5)

uniformly in a small neighborhood of (β0,Σ0) in Bn,q × Sn.

For any β ∈ Bn,q and z ∈ C, write det(Φ(z; β)) = det(In +∑q
`=1 β`z

`) = ∏nq
b=1(1− ab(β)z)

for some complex scalars {ab(β)}1≤b≤nq that depend on β and satisfy |ab(β)| < 1 (Brockwell

& Davis, 1991, p. 191). From the Taylor series log(1 − z) = −∑∞s=1 z
s/s (valid for z ∈ C

inside the unit circle) we get, for all β ∈ Bn,q,

T−1∑
k=0

log det(Φ(e−ıωk ; β)) = −
T−1∑
k=0

nq∑
b=1

∞∑
s=1

(ab(β)e−ıωk)s
s

= −
nq∑
b=1

∞∑
s=1

(ab(β))s
s

T−1∑
k=0

e−ıωks.
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Since ∑T−1
k=0 e

−ıωks equals T when s is an integer multiple of T , and equals 0 otherwise,

T−1∑
k=0

log det(Φ(e−ıωk ; β)) = −
nq∑
b=1

∞∑
s=1

(ab(β))sT
s

=
nq∑
b=1

log
(
1− (ab(β))T

)
.

Hence,

T−1∑
k=0

log | det(Φ(e−ıωk ; β))|2 =
T−1∑
k=0

log det(Φ(e−ıωk ; β)) +
T−1∑
k=0

log det(Φ(e−ıωk ; β)∗)

=
nq∑
b=1

log
∣∣∣1− (ab(β))T

∣∣∣2
≤ nq log 4,

where the inequality uses |1− (ab(β))T | < 2. Claim (B.4) follows. For β in a small neighbor-

hood of β0, maxb |ab(β)| is uniformly bounded away from 1. This implies claim (B.5).

B.2 Proofs for Chapter 2

B.2.1 Proof of Theorem 2.1

To lighten the notation, we denote ∑i = ∑N
i=1 (the same for j) and ∑s = ∑T

s=1 (the same

for t). A double sum ∑N
i=1

∑N
j=1 is denoted ∑i,j.

We extend the proof of Theorem 1 in Bai & Ng (2002). By the definition of the estimator

F̂ k, we have F̂ k = (NT )−1XX ′F̃ k, where F̃ k′F̃ k/T = Ik (Bai & Ng, 2008). Define e =

(e1, . . . , eT )′ and w = (w1, . . . , wT )′. Since

XX ′ = FΛ′0Λ0F
′ + FΛ′0(e+ w)′ + (e+ w)Λ0F

′ + (e+ w)(e+ w)′,
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we can write

F̂ k
t −Hk′Ft = (NT )−1

{
F̃ k′FΛ′0et + F̃ k′eΛ0Ft + F̃ k′eet + F̃ k′FΛ′0wt

+ F̃ k′wΛ0Ft + F̃ k′wwt + F̃ k′ewt + F̃ k′wet

}
.

Label the eight terms on the right-hand side A1t, . . . , A8t, respectively. By Loève’s inequality,

T−1∑
t

‖F̂ k
t −Hk′Ft‖2 ≤ 8

8∑
n=1

(
T−1∑

t

‖Ant‖2
)
. (B.6)

Bai & Ng (2002) have shown that the terms corresponding to n = 1, 2, 3 are Op(C−2
NT ) under

Assumptions 2.1 to 2.3. We proceed to bound the remaining terms in probability.

We have

‖A4t‖2 ≤
(
T−1∑

s

‖F̃ k
s ‖2

)(
T−1∑

s

‖Fs‖2
)∥∥∥N−1Λ′0wt

∥∥∥2
.

The first factor equals tr(F̃ k′F̃ k/T ) = tr(Ik) = k. The second factor is Op(1) by Assump-

tion 2.1. Also,

E

∥∥∥∥∥Λ′0wt
N

∥∥∥∥∥
2

≤ N−2∑
i,j

|E(witwjt)λ′i0λj0|

≤ λ̄2h2
NTN

−2∑
i,j

|E(ξitFtξitFt)|

≤ r2λ̄2 sup
p,q

h2
NTN

−2∑
i,j

|E(ξitpFtpξitqFtq)|

= O(h2
NTN

−2Q1(N, T )),

uniformly in t, by Assumption 2.4.1. Hence,

T−1∑
t

‖A4t‖2 = Op(h2
NTN

−2Q1(N, T )).
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Similarly,

‖A5t‖2 ≤
(
T−1∑

s

‖F̃ k
s ‖2

)(
(N2T )−1∑

s

(w′sΛ0Ft)2
)
,

where the first term is O(1) and

(N2T )−1E
∑
s

(w′sΛ0Ft)2 ≤ (N2T )−1∑
s

∑
i,j

|E(wiswjsλ′i0Ftλ′j0Ft)|

≤ r4λ̄2 sup
p1,q1,p2,q2

h2
NT (N2T )−1∑

s

∑
i,j

|E(ξisp1ξjsq1Fsp1Fsq1Ftp2Ftq2)|.

By summing over t, dividing by T and using Assumption 2.4.2 we obtain

T−1∑
t

‖A5t‖2 = Op(h2
NTN

−2T−2Q2(N, T )).

For the sixth term,

E‖A6t‖2 ≤ E

{(
T−1∑

s

‖F̃ k
s ‖2

)(
(N2T )−1∑

s

(w′swt)2
)}

= k(N2T )−1∑
s

∑
i,j

E(wiswitwjswjt)

≤ kr4 sup
p1,q1,p2,q2

h4
NT

N2T

∑
s

∑
i,j

|E(ξisp1ξjsq1ξitp2ξjtq2Fsp1Fsq1Ftp2Ftq2)|.

By Assumption 2.4.3, it follows that

T−1∑
t

‖A6t‖2 = Op(h4
NTN

−2T−2Q3(N, T )).

Regarding the seventh term, using Assumption 2.5,

E‖A7t‖2 ≤ E

{(
T−1∑

s

‖F̃ k
s ‖2

)(
(N2T )−1∑

s

(e′swt)2
)}

= k(N2T )−1∑
s

∑
i,j

E(eisejs)E(witwjt)
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≤ k(N2T )−1∑
s

∑
i,j

(E(e2
is)E(e2

js))1/2|E(witwjt)|

≤ kr2M sup
p,q

h2
NT (N2T )−1∑

s

∑
i,j

|E(ξitpξjtqFtpFtq)|

= O(h2
NTN

−2Q1(N, T )),

uniformly in t. The second-to-last line uses E(e2
it) ≤ M , whereas the last follows from

Assumption 2.4.1. We conclude that

T−1∑
t

‖A7t‖2 = Op(h2
NTN

−2Q1(N, T )).

A similar argument gives

T−1∑
t

‖A8t‖2 = Op(h2
NTN

−2Q1(N, T )).

Hence, the right-hand side of inequality (B.6) is the sum of variables of four stochastic orders:

Op(C−2
NT ), Op(h2

NTN
−2Q1(N, T )), Op(h2

NTN
−2T−2Q2(N, T )) and Op(h4

NTN
−2T−2Q3(N, T )).

The statement of the theorem follows.

B.3 Proofs for Chapter 3

B.3.1 Proof of Proposition 3.1

To simplify notation, I write β†T without the T subscript. Expand

‖β̂M,W (λ)− β†‖2
W̃ = ‖β̂M,W (λ)− β̂‖2

W̃ + 2β̂M,W (λ)′W̃ (β̂ − β†) + ‖β†‖2
W̃ − ‖β̂‖

2
W̃

= ‖β̂M,W (λ)− β̂‖2
W̃ + 2 tr{W̃ΘM,W (λ)β̂(β̂ − β†)′}+ ‖β†‖2

W̃ − ‖β̂‖
2
W̃

= T−1R̂M,W,W̃ (λ) + 2T−1 tr
{
W̃ΘM,W (λ)[T β̂(β̂ − β†)′ − Σ̂]

}
+ ‖β†‖2

W̃ − ‖β̂‖
2
W̃ .
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Since ΘM,W (λ)(In − PM) = In − PM , the following random variable does not depend on λ:

Ĉ = 2 tr
{
W̃ΘM,W (λ)(In − PM)[T β̂(β̂ − β†)′ − Σ̂]

}
+ T‖β†‖2

W̃ − T‖β̂‖
2
W̃ .

We have

∣∣∣RM,W,W̃ (λ)− E
(
R̂M,W,W̃ (λ) + Ĉ

)∣∣∣ =
∣∣∣tr{W̃ΘM,W (λ)PME[T β̂(β̂ − β†)′ − Σ̂]

}∣∣∣
≤ ‖W̃‖‖ΘM,W (λ)‖

∥∥∥E[TPM β̂(β̂ − β†)′ − PM Σ̂]
∥∥∥ .

Note that ‖ΘM,W (λ)‖ ≤
√
n‖W‖ρ((W + λM ′M)−1) ≤

√
n‖W‖ρ(W−1) for all λ ≥ 0. It

remains to show that E[TPM β̂(β̂ − β†)′ − PM Σ̂]→ 0. Write

TPM β̂(β̂ − β†)′ − PM Σ̂ = TPM(β̂ − β†)(β̂ − β†)′ − PM Σ̂ +
√
TPMβ

†
√
T (β̂ − β†)′.

By Assumption 3.1, the first term above converges in distribution to PMUU ′, where U ∼

N(0,Σ), with uniformly integrable norm; hence, its expectation converges to E(PMUU ′) =

PMΣ. Similarly, the expectation of the second term above converges to −PMΣ. The last

term above converges in distribution to hU ′, and uniform integrability of its norm follows

easily from Assumption 3.1; hence, its expectation converges to E(hU ′) = 0.

B.3.2 Proof of Proposition 3.2

I proceed in three steps.

Step 1. By the continuous mapping theorem,

√
T (β̂P (τ̂)− β†) =

√
T (β̂ − β†)

−min
{

τ̂

‖P
√
T (β̂ − β†) +

√
TPβ†‖2

, 1
}
{P
√
T (β̂ − β†) +

√
TPβ†}
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d→ V,

where

V = U −min
{

τ

‖PU + h‖2 , 1
}

(PU + h), U ∼ N(0,Σ).

Note that min{τ/x2, 1}x ≤
√
τ for all τ, x ≥ 0, implying that

‖
√
T (β̂P (τ̂)− β̂)‖ ≤

√
τ̂ .

Hence, T‖β̂P (τ̂)−β†‖2 ≤ 2(T‖β̂−β†‖2 + τ̂), so that the left-hand side is uniformly integrable

by assumption. It follows that

lim
T→∞

E
(
T‖β̂P (τ̂)− β†‖2

)
= E‖V ‖2.

The rest of the proof calculates an upper bound for the right-hand side above.

Step 2. Define the random variable

Ṽ = U − τ

‖PU + h‖2 (PU + h).

I now show that E‖V ‖2 ≤ E‖Ṽ ‖2 using the proof of Theorem 5.4, p. 356, in Lehmann

& Casella (1998). Define the scalar random variable B = τ/‖PU + h‖2. Then PV + h =

(1−B)+(PU + h) and PṼ + h = (1−B)(PU + h), so that ‖PṼ + h‖2 ≥ ‖PV + h‖2. Since

(In − P )V = (In − P )Ṽ , we have

E‖Ṽ ‖2 − E‖V ‖2 = E‖PṼ ‖2 + E‖PV ‖2

= E‖PṼ + h‖2 − E‖PV + h‖2 − 2E[h′P (Ṽ − V )]

≥ −2E[h′P (Ṽ − V )]
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= 2E[(B − 1)h′(PU + h) | B > 1] Pr(B > 1),

where the last equality uses that Ṽ = V on the event {B ≤ 1}, while PV + h = 0 on the

complementary event {B > 1}. We have E‖Ṽ ‖2 ≥ E‖V ‖2 if I show that E[h′(PU+h) | B =

b] ≥ 0 for all b > 1, which in turn would be implied by E[h′(PU + h) | ‖PU + h‖2 = c] ≥ 0

for all c > 0.

Note that Ph = limT→∞
√
TP 2β† = h. Let m̃ = rk(P ), and write P = AA′ for some

A ∈ Rn×m̃ with full column rank and satisfying A′A = Im̃. Diagonalize A′ΣA = QDQ′, where

QQ′ = Im̃ and D ∈ Rm̃×m̃ is diagonal. Let h̃ = Q′A′h. Then (h′(PU +h), ‖PU +h‖) has the

same distribution as (h̃′(Ũ + h̃), ‖Ũ + h̃‖), where Ũ ∼ N(0, D). Denote the i-th element of

Ũ by Ũi. To show E‖Ṽ ‖2 ≥ E‖V ‖2, it suffices to show h̃iE[Ũi+ h̃i |
∑m̃
j=1(Ũj + h̃j)2 = c] ≥ 0

for all i = 1, . . . , m̃. The latter follows from essentially the same arguments as Lehmann &

Casella (1998, bottom of p. 356) use for the case D = Im̃.

Step 3. It remains to bound E‖Ṽ ‖2. From here on I follow the proof of Theorem 2 in

Hansen (2016b). Using E‖U‖2 = tr(Σ), we have

E‖Ṽ ‖2 = tr(Σ) + τ 2E

(
1

‖PU + h‖2

)
− 2τE[η(U + h)′PU ], (B.7)

where η(x) = x/‖Px‖2 for x ∈ Rn. By Stein’s Lemma (Hansen, 2016b, Lem. 2),

E[η(U + h)′PU ] = E

[
tr
(
∂

∂x
η(U + h)′PΣ

)]

= E

[
tr
{(

1
‖PU + h‖2 In −

2
‖PU + h‖4P (U + h)(U + h)′

)
PΣ

}]

= E

[
tr(ΣP )
‖PU + h‖2 −

2 tr{(PU + h)′ΣP (PU + h)}
‖PU + h‖4

]

≥ E

[
tr(ΣP )
‖PU + h‖2 −

2ρ(ΣP )‖PU + h‖2

‖PU + h‖4

]
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= E

[
tr(ΣP )− 2ρ(ΣP )
‖PU + h‖2

]
.

Inserting this into equation (B.7), we obtain

E‖Ṽ ‖2 ≤ tr(Σ)− τE
(

2(tr(ΣP )− 2ρ(ΣP ))− τ
‖PU + h‖2

)

≤ tr(Σ)− τ 2(tr(ΣP )− 2ρ(ΣP ))− τ
E‖PU + h‖2 ,

where the last line uses Jensen’s inequality and the assumption 0 ≤ τ ≤ 2(tr(ΣP )−2ρ(ΣP )).

Finally, observe that E‖PU + h‖2 = tr(ΣP ) + ‖h‖2.

B.3.3 Proof of Corollary 3.1

I verify the conditions of Proposition 3.2. With τ̂ = tr(Σ̂P ), Assumption 3.1 implies τ =

plimT→∞τ̂ = tr(ΣP ). It remains to show that {T‖β̂ − β†T‖2 + τ̂}T≥1 is uniformly integrable,

which follows from Assumption 3.1 and τ̂ = tr(Σ̂P ) ≤ ‖Σ̂P‖ ≤ ‖Σ̂‖ρ(P ) = ‖Σ̂‖.

B.3.4 Proof of Proposition 3.3

I follow the proofs of Theorem 1 in Andrews & Guggenberger (2010) and of “Theorem Bonf”

in McCloskey (2015). There exist a sequence {βT ,ΣT , γT}T≥1 ∈ Rn×S×Γ and a subsequence

{kT}T≥1 of {T}T≥1 such that the left-hand side of (3.14) equals

lim
T→∞

ProbFkT (βkT ,ΣkT ,γkT )

(
Ŝ(βkT ) ≤ q1−α(

√
kTβkT , Σ̂)

)
. (B.8)

Define β̃kT = PβkT , and let β̃i,kT denote its i-th element, i = 1, . . . , n. For an index i, either

(a) lim supT→∞ |
√
kT β̃i,kT | < ∞ or (b) lim supT→∞ |

√
kT β̃i,kT | = ∞. In case (a), there exist
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an hi ∈ R and a further subsequence {k̃T}T≥1 of {kT}T≥1 such that

lim
T→∞

√
k̃T β̃i,k̃T = hi. (B.9)

In case (b), there exists a further subsequence {k̃T}T≥1 of {kT}T≥1 such that

lim
T→∞

√
k̃T β̃i,k̃T ∈ {−∞,∞}. (B.10)

Moreover, since S is compact, there exist Σ̃ ∈ S and a further subsequence {k̃T}T≥1 of

{kT}T≥1 such that

lim
T→∞

Σk̃T
= Σ̃. (B.11)

By sequentially choosing further subsequences for each i = 1, . . . , n, we can find a subse-

quence {k̃T}T≥1 of {kT}T≥1 such that – for every i = 1, . . . , n – either (B.9) or (B.10) holds,

and such that (B.11) holds. Since any subsequence of a convergent sequence converges to

the same limit, expression (B.8) equals

lim
T→∞

ProbFk̃T (βk̃T ,Σk̃T ,γk̃T )

(
Ŝ(βk̃T ) ≤ q1−α(

√
k̃Tβk̃T , Σ̂)

)
. (B.12)

Write

Ŝ(βk̃T ) = g
(√

k̃T (β̂ − βk̃T )

− f(‖P
√
k̃T (β̂ − βk̃T ) +

√
k̃T β̃k̃T ‖

2, Σ̂)
{
P
√
k̃T (β̂ − βk̃T ) +

√
k̃T β̃k̃T

}
, Σ̂
)
.

(B.13)

There are now two cases to consider.
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Case I. Suppose first that (B.10) holds for some i. Then limT→∞ ‖
√
k̃T β̃k̃T ‖ =∞, and by

Assumption 3.2 and equation (B.11),

‖P
√
k̃T (β̂ − βk̃T ) +

√
k̃T β̃k̃T ‖

p−→
Fk̃T

(βk̃T ,Σk̃T ,γk̃T )
∞.

Hence, by Assumptions 3.2 and 3.3,

∥∥∥∥f(‖P
√
k̃T (β̂ − βk̃T ) +

√
k̃T β̃k̃T ‖

2, Σ̂)(P
√
k̃T (β̂ − βk̃T ) +

√
k̃T β̃k̃T )

∥∥∥∥
≤
∣∣∣f(‖P

√
k̃T (β̂ − βk̃T ) +

√
k̃T β̃k̃T ‖

2, Σ̂)
∣∣∣∥∥∥P√k̃T (β̂ − βk̃T ) +

√
k̃T β̃k̃T )

∥∥∥
p−→

Fk̃T
(βk̃T ,Σk̃T ,γk̃T )

0.

Consequently, using Assumption 3.2 on expression (B.13),

Ŝ(βk̃T ) d−→
Fk̃T

(βk̃T ,Σk̃T ,γk̃T )
g(U, Σ̃), U ∼ N(0, Σ̃).

A similar argument shows that q1−α(
√
k̃Tβk̃T , Σ̂) converges in probability under the sequence

Fk̃T (βk̃T ,Σk̃T
, γk̃T ) to the 1−α quantile of g(U, Σ̃), where U ∼ N(0, Σ̃). It follows that (B.12)

– and thus the left-hand side of (3.14) – equals 1− α.

Case II. Suppose instead that (B.9) holds for all i = 1, . . . , n. Let h = (h1, . . . , hn)′, and

note that Ph = h. By expression (B.13) and Assumptions 3.2 and 3.3

Ŝ(βk̃T ) d−→
Fk̃T

(βk̃T ,Σk̃T ,γk̃T )
g
(
U − f(‖PU + h‖2, Σ̃)(PU + h), Σ̃

)
, U ∼ N(0, Σ̃).

Moreover, using the continuous mapping theorem and q1−α(θ,Σ) = q1−α(Pθ,Σ) for all θ,Σ,

q1−α(
√
k̃Tβk̃T , Σ̂) = q1−α(

√
k̃T β̃k̃T , Σ̂) p−→

Fk̃T
(βk̃T ,Σk̃T ,γk̃T )

q1−α(h, Σ̃).
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The definition of q1−α(·, ·) implies that (B.12) – and thus the left-hand side of (3.14) – equals

1− α.

B.3.5 Proof of Proposition 3.4

I focus on the proof of (3.15), although I remark at the end how (3.16) can be obtained

from similar arguments. Using the same steps as in the proof of Proposition 3.3, find a

subsequence {k̃T}T≥1 of {T}T≥1 and a sequence {βk̃T ,Σk̃T
, γk̃T }T≥1 such that the left-hand

side of (3.15) equals

lim
T→∞

ProbFk̃T (βk̃T ,Σk̃T ,γk̃T )

(
Ŝs(s′βk̃T ) ≤ qs,1−α

(√
k̃T (ζ̂(s′βk̃T ) + ν̂), Σ̂

))
, (B.14)

and – for all i = 1, . . . , n – either (B.9) or (B.10) holds, and moreover (B.11) holds, where

β̃i,k̃T is the i-th element of Pβ̃k̃T . Write

Ŝs(s′βk̃T ) =
(√

k̃T s
′(β̂ − βk̃T )

− f(‖P
√
k̃T (β̂ − βk̃T ) +

√
k̃T β̃k̃T ‖

2, Σ̂)
{
s′P

√
k̃T (β̂ − βk̃T ) +

√
k̃T s

′β̃k̃T

})2
.

(B.15)

There are two cases to consider.

Case I. Suppose that (B.10) holds for some i = 1, . . . , n. As in the proof of Proposition 3.3,

∣∣∣∣f(‖P
√
k̃T (β̂ − βk̃T ) +

√
k̃T β̃k̃T ‖

2, Σ̂)
{
s′P

√
k̃T (β̂ − βk̃T ) +

√
k̃T s

′β̃k̃T

}∣∣∣∣
≤
∣∣∣f(‖P

√
k̃T (β̂ − βk̃T ) +

√
k̃T β̃k̃T ‖

2, Σ̂)
∣∣∣∥∥∥P√k̃T (β̂ − βk̃T ) +

√
k̃T s

′β̃k̃T

∥∥∥‖s‖
p−→

Fk̃T
(βk̃T ,Σk̃T ,γk̃T )

0.
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Thus, from (B.15),

Ŝs(s′βk̃T ) d−→
Fk̃T

(βk̃T ,Σk̃T ,γk̃T )
(s′Σ̃s)χ2(1).

Moreover,

qs,1−α
(√

k̃T (ζ̂(s′βk̃T ) + ν̂), Σ̂
)

= qs,1−α
(√

k̃T (P̂ βk̃T + (In − P̂ )β̂), Σ̂
)

= qs,1−α
(√

k̃Tβk̃T + (In − P̂ )
√
k̃T (β̂ − βk̃T ), Σ̂

)
= qs,1−α

(√
k̃T β̃k̃T + P (In − P̂ )

√
k̃T (β̂ − βk̃T ), Σ̂

)
(B.16)

p−→
Fk̃T

(βk̃T ,Σk̃T ,γk̃T )
(s′Σ̃s)z1,1−α,

since qs,1−α(θ,Σ) = qs,1−α(Pθ,Σ) for all θ,Σ, and

‖
√
k̃T β̃k̃T + P (In − P̂ )

√
k̃T (β̂ − βk̃T )‖ p−→

Fk̃T
(βk̃T ,Σk̃T ,γk̃T )

∞.

The above displays imply that (B.14) – and thus the left-hand side of (3.15) – equals 1−α.

Case II. Suppose now that (B.9) holds for all i = 1, . . . , n. Let h = (h1, . . . , hn)′, and note

that Ph = h. Then

Ŝs(s′βk̃T ) d−→
Fk̃T

(βk̃T ,Σk̃T ,γk̃T )
V,

where

V =
{
s′U − f(‖PU + h‖2, Σ̃)(s′PU + s′h)

}2
, U ∼ N(0, Σ̃). (B.17)

Jointly with the above convergence, expression (B.16) yields

qs,1−α
(√

k̃T (ζ̂(s′βk̃T ) + ν̂), Σ̂
)

d−→
Fk̃T

(βk̃T ,Σk̃T ,γk̃T )
qs,1−α

(
h+ (In − P̃ )U, Σ̃

)
,
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where P̃ = ζ̃s′, ζ̃ = (s′Σ̃s)−1Σ̃s. I will have shown that (B.14) – and thus the left-hand side

of (3.15) – equals 1− α if I show that

Prob
(
V ≤ qs,1−α

(
h+ (In − P̃ )U, Σ̃

))
= 1− α. (B.18)

Using U = P̃U + (In − P̃ )U = ζ̃(s′U) + (In − P̃ )U , write

V =
{

(s′U)− f(‖P{ζ̃(s′U) + h+ (In − P̃ )U}‖2, Σ̃)s′P{ζ̃(s′U) + h+ (In − P̃ )U}
}2
.

The two jointly Gaussian variables s′U and (In−P̃ )U are uncorrelated and thus independent:

E[s′UU ′(In − P̃ )′] = s′Σ(In − P̃ )′ = s′(In − P̃ )Σ = 0,

using ΣP̃ ′ = P̃Σ and s′P̃ = s′. By the independence,

Prob
(
V ≤ qs,1−α

(
h+ (In − P̃ )U, Σ̃

) ∣∣∣ (In − P̃ )U = ν
)

= Prob
({

(s′U)− f(‖P{ζ̃(s′U) + h+ ν}‖2, Σ̃)s′P{ζ̃(s′U) + h+ ν}
}2

≤ qs,1−α
(
h+ ν, Σ̃

))
= 1− α,

where the last equality holds by definition of qs,1−α(·, ·). The above conditional result implies

the unconditional statement (B.18).
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Proof of (3.16). As in the above proof of (3.15), pick a subsequence of parameters such

that the left-hand side of (3.16) equals

lim
T

ProbFk̃T (βk̃T ,Σk̃T ,γk̃T )

(
Ŝs,W (s′βk̃T ) ≤ ĉ2

1−δ, Ŝs(s′βk̃T ) ≤ q̃s, 1−α1−δ

(√
k̃T (ζ̂(s′βk̃T ) + ν̂), Σ̂, ĉ1−δ

))
.

(B.19)

As above, there are two cases. In “Case I”, the limit (B.19) equals

Prob
(
u2 ≤ c2

1−δ, u
2 ≤ z̃ 1−α

1−δ
(s′Σ̃s, c1−δ)

)
,

where u ∼ N(0, s′Σ̃s), c1−δ =
√

(s′Σ̃s)z1,1−δ, and z̃ 1−α
1−δ

(s′Σ̃s, c1−δ) equals the 1−α
1−δ quantile of

the distribution of the square of a truncated normal variable with mean 0, variance parameter

s′Σ̃s and truncation interval |u| ≤ c1−δ. The above display equals, by definition of z̃ 1−α
1−δ

(·, ·),

Prob
(
u2 ≤ c2

1−δ

)
Prob

(
u2 ≤ z̃ 1−α

1−δ
(s′Σ̃s, c1−δ)

∣∣∣u2 ≤ c2
1−δ

)
= (1− δ)1− α

1− δ = 1− α.

In “Case II”, the limit (B.19) equals

Prob
(

(s′U)2 ≤ c2
1−δ, V ≤ q̃s, 1−α1−δ

(
h+ (In − P̃ )U, Σ̃, c1−δ

))
, (B.20)

where U ∼ N(0, Σ̃) and V is given by (B.17). The variables s′U and (In − P̃ )U are inde-

pendent. Hence, conditional on (In − P̃ )U = ν, the event in (B.20) has probability

Prob
(
(s′U)2 ≤ c2

1−δ

)
Prob

({
(s′U)− f(‖P{ζ̃(s′U) + h+ ν}‖2, Σ̃)s′P{ζ̃(s′U) + h+ ν}

}2

≤ q̃s, 1−α1−δ

(
h+ ν, Σ̃, c1−δ

) ∣∣∣ (s′U)2 ≤ c2
1−δ

)
,

which equals 1− α by definition of q̃s, 1−α1−δ
(·, ·, ·). Thus, the unconditional probability (B.20)

also equals 1− α.
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