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Abstract

This paper considers the estimation of approximate dynamic factor models when there is
temporal instability in the factor loadings. We characterize the type and magnitude of instabil-
ities under which the principal components estimator of the factors is consistent and find that
these instabilities can be larger than earlier theoretical calculations suggest. We also discuss
implications of our results for the robustness of regressions based on the estimated factors and
of estimates of the number of factors in the presence of parameter instability. Simulations cali-
brated to an empirical application indicate that instability in the factor loadings has a limited
impact on estimation of the factor space and diffusion index forecasting, whereas estimation of
the number of factors is more substantially affected.

1 Introduction

Dynamic factor models (DFMs) provide a flexible framework for simultaneously modeling a large
number of macroeconomic time series.1 In a DFM, a potentially large number of observed time series
variables are modeled as depending on a small number of unobserved factors, which account for the
widespread co-movements of the observed series. Although there is now a large body of theory for
the analysis of high-dimensional DFMs, nearly all of this theory has been developed for the case
in which the DFM parameters are stable, in particular, in which there are no changes in the factor
loadings (the coefficients on the factors); among the few exceptions are Stock and Watson (2002,
2009) and Breitung and Eickmeier (2011). This assumption of parameter stability is at odds with

∗We thank Gary Chamberlain, Herman van Dijk, Anna Mikusheva, Allan Timmermann and two anonymous
referees for helpful comments.

1The early work on DFMs considered a small number of time series. DFMs were introduced by Geweke (1977),
and early low-dimensional applications include Sargent and Sims (1977), Engle and Watson (1981), Watson and Engle
(1983), Sargent (1989) and Stock and Watson (1989). Work over the past fifteen years has focused on methods that
facilitate the analysis of a large number of time series, see Forni et al. (2000) and Stock and Watson (2002) for early
contributions. For recent contributions and discussions of this large literature see Bai and Ng (2008), Eickmeier and
Ziegler (2008), Chudik and Pesaran (2011) and Stock and Watson (2011).
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broad evidence of time variation in many macroeconomic forecasting relations. Recently, a number
of empirical DFM papers have explicitly allowed for structural instability, e.g., Banerjee et al.
(2008), Stock and Watson (2009), Eickmeier et al. (2011) and Korobilis (forthcoming). However,
theoretical guidance remains scant.

The goal of this paper is to characterize the type and magnitude of parameter instability that
can be tolerated by a standard estimator of the factors, the principal components estimator, in a
DFM when the coefficients of the model are unstable. In so doing, this paper contributes to a larger
debate about how best to handle the instability that is widespread in macroeconomic forecasting
relations. On the one hand, the conventional wisdom is that time series forecasts deteriorate when
there are undetected structural breaks or unmodeled time-varying parameters, see for example
Clements and Hendry (1998). This view underlies the large literatures on the detection of breaks
and on models that incorporate breaks and time variation, for example by modeling the breaks
as following a Markov process (Hamilton, 1989; Pesaran et al., 2006). In the context of DFMs,
Breitung and Eickmeier (2011) show that a one-time structural break in the factor loadings has
the effect of introducing new factors, so that estimation of the factors ignoring the break leads to
estimating too many factors.

On the other hand, a few recent papers have provided evidence that sometimes it can be better
to ignore parameter instability when forecasting. Pesaran and Timmermann (2005) point out
that whether to use pre-break data for estimating an autoregression trades off an increase in bias
against a reduction in estimator variance, and they supply empirical evidence supporting the use
of pre-break data for forecasting. Pesaran and Timmermann (2007) develop tools to help ascertain
in practice whether pre-break data should be used for estimation of single-equation time series
forecasting models. In DFMs, Stock and Watson (2009) provide an empirical example using U.S.
macroeconomic data from 1960–2007 in which full-sample estimates of the factors are preferable to
subsample estimates, despite clear evidence of a break in many factor loadings around the beginning
of the Great Moderation in 1984.

We therefore seek a precise theoretical understanding of the effect of instability in the factor
loadings on the performance of principal components estimators of the factors. Specifically, we
consider a DFM with N variables observed for T time periods and r � N factors, where the N × r
matrix of dynamic factor loadings Λ can vary over time. We write this time variation so that Λ
at date t equals its value at date 0, plus a deviation; that is, Λt = Λ0 + hNT ξt. The term ξt is a
possibly random disturbance, and hNT is a deterministic scalar sequence in N and T which governs
the scale of the deviation. Using this framework and standard assumptions in the literature (Bai
and Ng, 2002, 2006a), we obtain general conditions on hNT under which the principal components
estimates are mean square consistent for the space spanned by the true factors. We then specialize
these general results to three leading cases: i.i.d. deviations of Λt from Λ0, random walk deviations
that are independent across series, and an arbitrary one-time break that affects some or all of the
series.

For the case in which Λt is a vector of independent random walks, Stock and Watson (2002)
showed that the factor estimates are consistent if hNT = O(T−1). By using a different method of
proof (which builds on Bai and Ng, 2002), we are able to weaken this result considerably and
show that the estimated factors are consistent if hNT = o(T−1/2). We further show that, if
hNT = O(1/min{N1/4T 1/2, T 3/4}), the estimated factors achieve the mean square consistency
rate of 1/min{N,T}, a rate initially established by Bai and Ng (2002) in the case of no time varia-
tion. Because the elements of ξt in the random walk case are themselves Op(t

1/2), this means that
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deviations in the factor loadings on the order of op(1) do not break the consistency of the principal
components estimator. These rates are remarkable: as a comparison, if the factors were observed so
an efficient test for time variation could be performed, the test would have nontrivial power against
random walk deviations in a hNT ∝ T−1 neighborhood of zero (e.g., Stock and Watson, 1998b) and
would have power of one against parameter deviations of the magnitude tolerated by the principal
components estimator. Intuitively, the reason that the principal components estimator can handle
such large changes in the coefficients is that, if these shifts have limited dependence across series,
their effect can be reduced, and eliminated asymptotically, by averaging across series.

We further provide the rate of mean square consistency as a function of hNT , both in general
and specialized to the random walk case. The resulting consistency rate function is nonlinear and
reflects the tradeoff between the magnitude of the instability and, through the relative rate N/T
as T increases, the amount of cross-sectional information that can be used to “average out” this
instability. To elaborate on the practical implications of the theory, we conduct a simulation study
calibrated to the Stock and Watson (2009) dataset. The results confirm that the principal com-
ponents estimator and derived diffusion index forecasts are robust to empirically relevant degrees
of temporal instability in the factor loadings, although the precise quantitative conclusions depend
on the assumed type of structural instability and the persistence of the factors. Interestingly, the
robustness obtains even though the Bai and Ng (2002) information criterion estimator of the rank
of the factor space appears to be asymptotically biased for some of our parametrizations.

The rest of the paper proceeds as follows. Section 2 lays out the model, the assumptions, and
the three special cases. Our main result on consistency of the principal components estimator is
presented in Section 3. Rank selection and diffusion index forecasting are discussed in Section 4.
Section 5 provides Monte Carlo results, and Section 6 concludes.

2 Model and assumptions

2.1 Basic model and intuition

The model and notation follow Bai and Ng (2002) closely. Denote the observed data by Xit for
i = 1, . . . , N , t = 1, . . . , T . It is assumed that the observed series are driven by a small, fixed
number r of unobserved common factors Fpt, p = 1, . . . , r, such that

Xit = λ′itFt + eit.

Here λit ∈ Rr is the possibly time-varying factor loading of series i at time t, Ft = (F1t, . . . , Frt)
′,

and eit is an idiosyncratic error. Define vectors Xt = (X1t, . . . , XNt)
′, et = (e1t, . . . , eNt)

′, Λt =
(λ1t, . . . , λNt)

′ and data matrices X = (X1, . . . , XT )′, F = (F1, . . . , FT )′. The initial factor loadings
Λ0 are fixed. We write the cumulative drift in the parameter loadings as

Λt − Λ0 = hNT ξt,

where hNT is a deterministic scalar that may depend on N and T , while {ξt} is a possibly degenerate
random process of dimension N×r, ξt = (ξ1t, . . . , ξNt)

′ (in fact, it will be allowed to be a triangular
array). Observe that

Xt = ΛtFt + et = Λ0Ft + et + wt, (1)
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where wt = hNT ξtFt. Our proof technique will be to treat wt as another error term in the factor
model.2

To establish some intuition for why estimation of the factors is possible despite structural
instability, let the number of factors be r = 1 and consider an independent random walk model
for the time variation in the factor loadings, so that ξit = ξi,t−1 + ζit, where ζit is i.i.d. across i
and t with mean 0 and variance σ2

ζ , and suppose that Λ0 is known. In addition, we look ahead
to Assumption 2 and assume that Λ′0Λ0/N → D > 0. Because Λ0 is known, we can consider the
estimator F̂t(Λ0) = (Λ′0Λ0)−1Λ′0Xt. From (1),

F̂t(Λ0) = Ft + (Λ′0Λ0)−1Λ′0et + (Λ′0Λ0)−1Λ′0wt,

so

F̂t(Λ0)− Ft ≈ D−1N−1
N∑
i=1

λi0eit +D−1N−1
N∑
i=1

λi0wit.

The first term does not involve time-varying factor loadings and under limited cross-sectional
dependence it is Op(N

−1/2). Using the definition of wt, the second term can be written

D−1N−1
N∑
i=1

λi0wit = D−1

(
hNTN

−1
N∑
i=1

λi0ξit

)
Ft.

Since Ft is Op(1), this second term is the same order as the first, Op(N
−1/2), if hNTN

−1
∑N

i=1 λi0ξit
is Op(N

−1/2). Under the independent random walk model, ξit = Op(T
1/2), so

hNTN
−1

N∑
i=1

λi0ξit = Op(hNT (T/N)1/2),

which in turn is Op(N
−1/2) if hNT = O(T−1/2). This informal reasoning suggests that the estimator

F̂t(Λ0) satisfies F̂t(Λ0) = Ft +Op(N
−1/2) if hNT = cT−1/2.

In practice Λ0 is not known so F̂t(Λ0) is not feasible. The principal components estimator of
Ft is F̂t(Λ̂

r), where Λ̂r is the matrix of eigenvectors corresponding to the first r eigenvalues of the
sample second moment matrix of Xt. The calculations below suggest that the estimation of Λ0 by
Λ̂r reduces the amount of time variation that can be tolerated in the independent random walk
case; setting hNT = cT−1/2 results in an Op(1) mean square discrepancy between F̂t(Λ̂

r) and Ft.

2.2 Examples of structural instability

For concreteness, we highlight three special cases that will receive extra attention in the following
analysis. In these examples, the scalar hNT is left unspecified for now. We will continue to set the
number of factors r to 1 for ease of exposition.

2As pointed out by our referees, a straight-forward approach would be to treat e∗t = et + wt as a catch-all error
term and provide conditions on hNT and ξt such that e∗t satisfies Assumption C in Bai and Ng (2002). Some of the
examples below could be handled this way. However, in the case of random walk factor loadings, applying the Bai
and Ng assumption to e∗t would restrict the temporal dependence of ξt more severely than required by our Theorem
1 (cf. Assumption 3.2 below).
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Example 1 (white noise). All entries ξit are i.i.d. across i and t with mean zero and E(ξ4
it) <∞.

The factor loadings Λt are then equal to the initial loading matrix Λ0 plus uncorrelated noise.3

Example 2 (random walk). Entries ξit are given by ξit =
∑t

s=1 ζis, where {ζis} is a random
process that is i.i.d. across i and s with mean zero and E(ζ4

is) < ∞. In this example, the factor
loadings evolve as cross-sectionally uncorrelated random walks.4 Models of this type are often
referred to as time-varying parameter models in the literature. DFMs with time-varying parameters
have recently received attention in the empirical macro literature, cf. Eickmeier et al. (2011),
Korobilis (forthcoming) and references therein.

Example 3 (single large break). Let τ̄ ∈ (0, 1) be fixed and set κ = [τ̄T ], where [ · ] denotes
the integer part. Let ∆ ∈ RN be a shift parameter. We then define

ξt =

{
0 for t = 1, . . . , κ
∆ for t = κ+ 1, . . . , T

.

Breitung and Eickmeier (2011) demonstrate that a structurally unstable model of this kind may
equivalently be written as a stable DFM with 2r dynamic factors. Deterministic parameter shifts
have also been extensively studied in the context of structural break tests in the linear regression
model.

2.3 Principal components estimation

We are interested in the properties of the principal components estimator of the factors, where
estimation is carried out as if the factor loadings were constant over time. Let k denote the number
of factors that are estimated. The principal components estimators of the loadings and factors are
obtained by solving the minimization problem

V (k) = min
Λk,Fk

(NT )−1
N∑
i=1

T∑
t=1

(Xit − λki
′
F kt )2, (2)

where the supercripts on Λk and F k signify that there are k estimated factors. It is necessary to
impose a normalization on the estimators to uniquely define the minimizers (see Bai and Ng, 2008,
for a thorough treatment). Such restrictions are innocuous since the unobserved true factors F are
only identifiable up to multiplication by a non-singular matrix. One estimator of F is obtained by
first concentrating out Λk and imposing the normalization F k

′
F k/T = Ik. The resulting estimator

F̃ k is given by
√
T times the matrix of eigenvectors corresponding to the largest k eigenvalues of

the matrix XX ′. A second estimator is obtained by first concentrating out F k and imposing the
normalization Λk

′
Λk/N = Ik. This estimator equals F̄ k = XΛ̄k/N , where Λ̄k is

√
N times the

eigenvectors corresponding to the k largest eigenvalues of X ′X. Following Bai and Ng (2002), we
use a rescaled estimator

F̂ k = F̄ k(F̄ k
′
F̄ k/T )1/2

in the following.

3As is clear from the subsequent calculations, our conclusions remain true if the disturbances are weakly dependent
in the temporal and cross-sectional dimensions. In the interest of clarity we focus on the i.i.d. case.

4While conceptually clear, cross-sectional independence of the random walk innovations ζit is a stricter assumption
than necessary for the subsequent treatment. It is straight-forward to modify the example to allow m-dependence or
exponentially decreasing correlation across i, and all the results below go through for these modifications.
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2.4 Assumptions

Our assumptions on the factors, initial loadings and the idiosyncratic errors are the same as in Bai
and Ng (2002). The matrix norm is chosen to be the Frobenius norm ‖A‖ = [tr(A′A)]1/2. The
subscripts i, j will denote cross-sectional indices, s, t will denote time indices and p, q will denote
factor indices. M ∈ (0,∞) is a constant that is common to all the assumptions below. Finally,
define CNT = min{N1/2, T 1/2}. The following are Assumptions A–C in Bai and Ng (2002).

Assumption 1 (Factors). E‖Ft‖4 ≤ M and T−1
∑T

t=1 FtF
′
t

p→ ΣF as T → ∞ for some positive
definite matrix ΣF .

Assumption 2 (Initial factor loadings). ‖λi0‖ ≤ λ̄ <∞, and ‖Λ′0Λ0/N −D‖ → 0 as N →∞ for
some positive definite matrix D ∈ Rr×r.

Assumption 3 (Idiosyncratic errors). The following conditions hold for all N and T .

1. E(eit) = 0, E|eit|8 ≤M .

2. γN (s, t) = E(e′set/N) exists for all (s, t). |γN (s, s)| ≤M for all s, and T−1
∑T

s,t=1 |γN (s, t)| ≤
M .

3. τij,ts = E(eitejs) exists for all (i, j, s, t). |τij,tt| ≤ |τij | for some τij and for all t, while

N−1
∑N

i,j=1 |τij | ≤M . In addition, (NT )−1
∑N

i,j=1

∑T
s,t=1 |τij,ts| ≤M .

4. For every (s, t), E|N−1/2
∑N

i=1[eiseit − E(eiseit)]|4 ≤M .

As mentioned by Bai and Ng (2002), the above assumptions allow for weak cross-sectional and
temporal dependence of the idiosyncratic errors. Note that the factors do not need to be stationary
to satisfy Assumption 1.

The assumptions we need on the factor loading innovations hNT ξt are summarized below. For
now we require the existence of three envelope functions that bound the rates, in terms of N and
T , at which certain sums of higher moments diverge. Their interpretation will be made clear in
examples below. As we later state in Theorem 1, these rates determine the convergence rate of the
principal components estimator of the factors.

Assumption 4 (Factor loading innovations). There exist envelope functions Q1(N,T ), Q2(N,T )
and Q3(N,T ) such that the following conditions hold for all N , T and factor indices p1, q1, p2, q2 =
1, . . . , r.

1. sups,t≤T
∑N

i,j=1 |E(ξisp1ξjtq1Fsp1Ftq1)| ≤ Q1(N,T ).

2.
∑T

s,t=1

∑N
i,j=1 |E(ξisp1ξjsq1Fsp1Fsq1Ftp2Ftq2)| ≤ Q2(N,T ).

3.
∑T

s,t=1

∑N
i,j=1 |E(ξisp1ξjsq1ξitp2ξjtq2Fsp1Fsq1Ftp2Ftq2)| ≤ Q3(N,T ).

While consistency of the principal components estimator will require limited dependence between
the factor loading innovations and the factors themselves, full independence is not necessary. This is
empirically appealing, as it is reasonable to expect that breaks in the factor relationships may occur
at times when the factors deviate substantially from their long-run means. That being said, we
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remark that if the processes {ξt} and {Ft} are assumed to be independent (and given Assumption
1), two sufficient conditions for Assumption 4 are that there exist envelope functions Q̃1(N,T ) and
Q̃3(N,T ) such that for all factor indices,

sup
s,t≤T

N∑
i,j=1

|E(ξisp1ξjtq1)| ≤ Q̃1(N,T ) (3)

and
T∑

s,t=1

N∑
i,j=1

|E(ξisp1ξjsq1ξitp2ξjtq2)| ≤ Q̃3(N,T ). (4)

Under the above conditions, Assumption 4 holds if we set Q1(N,T ) ∝ Q̃1(N,T ), Q2(N,T ) ∝
T 2Q̃1(N,T ) and Q3(N,T ) ∝ Q̃3(N,T ).

Finally, rather than expanding the list of moment conditions in Assumption 4, we simply impose
independence between the idiosyncratic errors and the other variables. It is possible to relax this
assumption at the cost of added complexity.5

Assumption 5 (Independence). For all (i, j, s, t), eit is independent of (Fs, ξjs).

Examples (continued). For Examples 1 and 2 (white noise and random walk), assume that
{ξt} and {Ft} are independent.

In Example 1 (white noise), the supremum on the left-hand side of (3) reduces to NE(ξ2
it).

By writing out terms, it may be verified that the quadruple sum in condition (4) is bounded by
an O(NT 2) + O(N2T ) expression. Consequently, Assumption 4 holds with Q1(N,T ) = O(N),
Q2(N,T ) = O(NT 2) and Q3(N,T ) = O(NT 2) +O(N2T ).

In Example 2 (random walk), due to cross-sectional i.i.d.-ness we obtain

sup
s,t≤T

N∑
i=1

N∑
j=1

|E(ξisξjt)| = N sup
s,t≤T

|E(ξisξit)|

= N sup
s,t≤T

min{s, t}E(ζ2
i1)

= O(NT ),

so Assumptions 4.1–4.2 hold with Q1(N,T ) = O(NT ) and Q2(N,T ) = O(NT 3). A somewhat
lengthier calculation gives that the quadruple sum in condition (4) is O(N2T 4), so Assumption 4.3
holds with Q3(N,T ) = O(N2T 4).

In Example 3 (single large break), the supremum in inequality (3) evaluates as

N∑
i=1

|∆i|
N∑
j=1

|∆j |.

Assume that |∆i| ≤ M for some M ∈ (0,∞) that does not depend on N . We note for later
reference that if |∆i| > 0 for at most O(N1/2) values of i, the expression above is O(N). The same
condition ensures that the left-hand side of condition (4) is O(NT 2). Consequently, we can choose
Q1(N,T ) = O(N) and Q2(N,T ) = Q3(N,T ) = O(NT 2) if at most O(N1/2) series undergo a break.

5Bai and Ng (2006a) impose independence of {et} and {Ft} when providing inferential theory for regressions
involving estimated factors.
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3 Consistent estimation of the factor space

3.1 Main result

Our main result provides the mean square convergence rate of the usual principal components
estimator under Assumptions 1–5. After stating the general theorem, we give sufficient conditions
that ensure the same convergence rate that Bai and Ng (2002) obtained in a setting with constant
factor loadings.

Theorem 1. Let Assumptions 1–5 hold. For any fixed k,

T−1
T∑
t=1

‖F̂ kt −Hk′Ft‖2 = Op(RNT )

as N,T →∞, where

RNT = max

{
1

C2
NT

,
h2
NT

N2
Q1(N,T ),

h2
NT

N2T 2
Q2(N,T ),

h4
NT

N2T 2
Q3(N,T )

}
,

and the r × k matrix Hk is given by

Hk = (Λ′0Λ0/N)(F ′F̃ k/T ).

See the appendix for the proof. If RNT → 0 as N,T → ∞, the theorem implies that the r-
dimensional space spanned by the true factors is estimated consistently in mean square (averaging
over time) as N,T →∞. While we do not discuss it here, a similar statement concerning pointwise
consistency of the factors (Bai and Ng, 2002, p. 198) may be achieved by slightly modifying
Assumptions 3–4.

We now give sufficient conditions on the envelope functions in Assumption 4 such that the
principal components estimator achieves the same convergence rate as in Theorem 1 of Bai and Ng
(2002). This rate, C2

NT , turns out to be central for other results in the literature on DFMs (Bai
and Ng, 2002, 2006a). The following corollary is a straight-forward consequence of Theorem 1.

Corollary 1. Under the assumptions of Theorem 1, and if additionally

• h2
NTQ1(N,T ) = O(N),

• h2
NTQ2(N,T ) = O(NT 2),

• h4
NTC

2
NTQ3(N,T ) = O(N2T 2),

it follows that, as N,T →∞,

C2
NT

(
T−1

T∑
t=1

‖F̂ kt −Hk′Ft‖2
)

= Op(1).
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Examples (continued). In Section 2.4 we computed the envelope functions Q1(N,T ), Q2(N,T )
and Q3(N,T ) for our three examples. From these calculations we note that if hNT = 1, the model
in Example 1 (white noise) satisfies the conditions of Corollary 1. Hence, uncorrelated order-
Op(1) white noise disturbances in the factor loadings do not affect the consistency of the principal
components estimator.

Likewise, it follows from our calculations that the structural break process in Example 2 (random
walk) satisfies the conditions of Corollary 1 if hNT = O(1/min{N1/4T 1/2, T 3/4}). Moreover, a rate
of hNT = o(T−1/2) is sufficient to achieve RNT = o(1) in Theorem 1, i.e., that the factor space is
estimated consistently. This is a weaker rate requirement than the O(T−1) scale factor imposed
by Stock and Watson (2002).6 To elaborate on the convergence rate in Theorem 1, suppose we set
N = [Tµ] and hNT = cT−γ , µ, γ ≥ 0. Using the formula for RNT and the random walk calculations
in Section 2.4, we obtain

RNT = O(max{T−1, T−µ, T 1−2γ−µ, T 2−4γ}) = O(Tm(µ,γ)), (5)

where
m(µ, γ) = max{−1,−µ, 1− 2γ − µ, 2− 4γ} = max{−1,−µ, 2− 4γ}. (6)

This convergence rate exponent reflects the influence of the magnitude of the random walk devia-
tions, as measured by γ, and the relative sizes of the cross-sectional and temporal dimensions, as
measured by µ. Evidently, increasing the number of available series relative to the sample size im-
proves the worst-case convergence rate, but only up to a point. The dependence of the convergence
rate on γ is monotonic, as expected, but nonlinear.

For Example 3 (single large break), Corollary 1 and our calculations in Section 2.4 yield that if we
set hNT = 1, the principal components estimator achieves the Bai and Ng (2002) convergence rate,
provided at most O(N1/2) series undergo a break. A fraction O(N−1/2) of the series may therefore
experience an order-O(1), perfectly correlated shift in their factor loadings without affecting the
consistency of the estimator.

3.2 Detailed calculations for special cases

Theorem 1 shows the convergence rate of the principal components estimator but does not offer
any information on the constant of proportionality, which in general will depend on the size of the
various moments in Assumptions 1–4. In this subsection we consider examples in which we can say
more about the speed of convergence.

For analytical tractability, we assume in this subsection that the initial factor loadings Λ0 are
0 and the true number of factors r is 1. When Λ0 = 0, the matrix Hk in Theorem 1 is equal to
zero, so that consistency of the principal components estimator hinges on how fast the norm of F̂ kt
tends to zero in mean square.7 As shown in the appendix, when Λ0 = 0 and r = 1,

T−1
T∑
t=1

‖F̂ kt −Hk ′Ft‖2 = (NT )−2
k∑
l=1

ω2
l ,

were ωl is the l-th largest eigenvalue of the T × T matrix XX ′.

6Empirical implementations of principal components estimation of structurally unstable DFMs, such as Eickmeier
et al. (2011) and Korobilis (forthcoming), rely on robustness of the estimator to small degrees of instability. Our
theorem shows that the asymptotically allowable amount of instability is larger than hitherto assumed.

7Note that while Λ0 = 0 violates Assumption 2, the proof of Theorem 1 does not rely on the matrix D =
plim Λ′0Λ0/N being positive definite.
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Example 1 (white noise, continued). Suppose the single factor is identically 1 (Ft ≡ 1), and
N and T tend to infinity at the relative rate θ = limN→∞ T/N , θ ∈ (0,∞). Let the idiosyncratic
errors eit be i.i.d. across i and t with E(e2

it) = σ2
e . Denote σ2

ξ = E(ξ2
it). The appendix shows that

if the number of estimated factors is k = 1, then

T−1
T∑
t=1

‖F̂ kt −Hk ′Ft‖2 = T−2(σ2
e + h2

NTσ
2
ξ )

2(1 +
√
θ)4(1 + op(1)). (7)

When hNT = 1, the right-hand side quantity is Op(T
−2), which is stronger than the Op(C

−2
NT ) rate

bound in Theorem 1. Introducing cross-sectional and temporal dependence in the idiosyncratic
errors causes the left-hand side above to achieve the worst-case rate asymptotically, as noted by
Bai and Ng (2002, pp. 199–200). According to the expression on the right-hand side of equation (7),
h2
NT measures the importance of the factor loading disturbance variance relative to the idiosyncratic

error variance. Furthermore, for given T , the mean square error of the principal components
estimator increases with the ratio θ ≈ T/N .

Example 2 (random walk, continued). Suppose that the idiosyncratic errors are cross-
sectionally i.i.d. Denote σ2

ζ = E(ζ2
it). If the number of estimated factors is k = 1, we show in

the appendix that

E

(
T−1

T∑
t=1

‖F̂ kt −Hk ′Ft‖2
)
≥

T−2
T∑

s,t=1

[
γN (s, t) + h2

NTσ
2
ζ min{s, t}E(FsFt)

]
2

, (8)

where γN (s, t) is defined in Assumption 3. This lower bound on the expectation of the mean square
error of the principal components estimator complements the upper rate bound in Theorem 1. The
expression reinforces the intuition that the factor space will be poorly estimated in models with
persistent errors (here eit and hNT ξ

′
itFt).

Without prior knowledge about the factor process, a conservative benchmark sets E(FsFt) =
O(1). Note that

∑T
s,t=1 min{s, t} = 1

3T
3 +O(T 2), and

∑T
s,t=1 γN (s, t) = O(T ) by Assumption 3. If

hNT ≥ T−1 asymptotically, the right-hand side of inequality (8) is then of order h4
NTT

2. Together
with Theorem 1, this establishes that there exist constants C,C > 0 such that

C ≤ (h2
NTT )−2E

(
T−1

T∑
t=1

‖F̂ kt −Hk ′Ft‖2
)
≤ C max{(h2

NTTCNT )−2, 1}

for sufficiently large N and T .8 The maximum on the right-hand side above tends to 1 as long
as hNT ≥ (TCNT )−1/2 = 1/min{N1/4T 1/2, T 3/4} asymptotically.9 Thus, unless we have special
knowledge about the factor process, we generically need hNT = o(T−1/2) for mean square consis-
tency of the factors, while hNT = O(1/min{N1/4T 1/2, T 3/4}) is generically necessary to achieve
the Bai and Ng (2002) convergence rate.

8The rate bound in Theorem 1 is in probability, but the proof given in the appendix shows that the bound holds
in expectation as well.

9Recall that such rates for hNT are exactly the ones we are most interested in, since any faster rate of decay for
hNT will lead to RNT = C−2

NT in Theorem 1.
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Example 3 (single large break, continued). Here we consider a limiting case with eit ≡ 0, so
that all the variance in the observed data is due to structural instability. Suppose the single factor
Ft satisfies (T − κ)−1

∑T
t=κ+1 F

2
t

p→ Σ̃F as T → ∞. Then, regardless of the number of estimated
factors k,

T−1
T∑
t=1

‖F̂ kt −Hk ′Ft‖2 =
h4
NT

N2
‖∆‖4(1− τ̄)2Σ̃2

F (1 + op(1)), (9)

as shown in the appendix. The result indicates that the mean square error of the principal compo-
nents estimator is larger the smaller is τ̄ (the break fraction), the larger is Σ̃F (the post-break factor
second moment), and the larger is ‖∆‖ (the size of the break vector). Note that if the elements of
∆ are uniformly bounded, |∆i| ≤M , then ‖∆‖2 is on the order of the number of series undergoing
a break. Denote this number by BNT . The right-hand side above is then Op

(
(h2
NTBNT /N)2

)
,

which is also the rate stated in the bound in Theorem 1, provided that hNT = 1.

4 Rank selection and diffusion index forecasting

4.1 Estimating the number of factors

Bai and Ng (2002, 2006b) introduce a class of information criteria that consistently estimate the
true number r of factors when the factor loadings are constant through time. Specifically, define
the two classes of criteria

PC (k) = V (k) + kg(N,T ), IC (k) = log V (k) + kg(N,T ), (10)

where V (k) is the sum of squared residuals defined by (2), and g(N,T ) is a deterministic function
satisfying g(N,T )→ 0, C2

NT g(N,T )→∞ as N,T →∞. Let kmax ≥ r be an upper bound on the
estimated rank. With constant factor loadings, a consistent estimate of r is then given by either
k̂ = arg min0≤k≤kmax PC (k) or k̂ = arg min0≤k≤kmax IC (k).

Lemma 2 of Amengual and Watson (2007) establishes that these information criteria remain
consistent for r when the data X are measured with an additive error, i.e., if the researcher instead
observes X̃ = X + b for a T × N error matrix b that satisfies (NT )−1

∑N
i=1

∑T
t=1 b

2
it = Op(C

−2
NT ).

By our decomposition (1) of Xt, time variation in the factor loadings may be seen as contributing
an extra error term wt to the usual terms Λ0Ft + et. The following result is therefore a direct
consequence of Lemma 2 of Amengual and Watson (2007) and Markov’s inequality.

Observation 1. Let assumptions (A1)–(A9) in Amengual and Watson (2007) hold. If in addition

h2
NT

N∑
i=1

T∑
t=1

E[(ξ′itFt)
2] = O(max{N,T}), (11)

then arg min0≤k≤kmax PC (k)
p→ r and arg min0≤k≤kmax IC (k)

p→ r as N,T →∞.

In the interest of brevity we do not state the precise Amengual and Watson conditions here but
remark that they are very similar to our Assumptions 1–3 and 5. We now comment on how
the sufficient condition in Observation 1 bears on our three examples of structural breaks. The
finite-sample performance of the information criteria will be explored in Section 5.
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Examples (continued). If r = 1 and ξit is independent of Ft, the left-hand side of condition
(11) is of order h2

NT

∑N
i=1

∑T
t=1E(ξ2

it). In Example 1 (white noise),
∑N

i=1

∑T
t=1E(ξ2

it) = O(NT ),
so condition (11) holds if hNT = O(C−1

NT ). The white noise disturbances must therefore vanish
asymptotically, albeit slowly, for the Amengual and Watson (2007) result to ensure consistent
estimation of the factor rank.

For Example 2 (random walk),
∑N

i=1

∑T
t=1E(ξ2

it) = O(NT 2), implying that we need hNT =
O(1/min{T, (NT )1/2}) to fulfill condition (11). In particular, the Stock and Watson (2002) as-
sumption hNT = O(1/T ) admits consistent estimation of the true number of factors using the Bai
and Ng (2002) information criteria.

In Example 3 (single large break), we set hNT = 1 as before. If (T−κ)−1
∑T

t=κ+1E(F 2
t ) = O(1),

we get
∑N

i=1

∑T
t=1E(ξ2

it) = O(T‖∆‖2), so ‖∆‖2 = O(max{N/T, 1}) is needed to satisfy condition
(11). As previously explained, if the elements of ∆ are uniformly bounded, ‖∆‖2 is on the order
of the number BNT of series undergoing a break at time t = κ+ 1. The fraction BNT /N of series
undergoing a break must therefore be of order at most C−2

NT for the Amengual and Watson (2007)
result to apply. The conclusion that large breaks are more problematic for rank estimation than for
mean square consistency is not surprising given Breitung and Eickmeier’s (2011) insight that the
large break model (with non-vanishing break parameter) is equivalent to a DFM with 2r factors.

In summary, in all three of our examples we need more stringent assumptions on hNT in order to
ensure consistent estimation of r than we did for consistency of the principal components estimator.
It is a topic for future research to determine whether these tentative results can be improved upon.

4.2 Diffusion index forecasting

As an application of Corollary 1, consider the diffusion index model of Stock and Watson (1998a,
2002) and Bai and Ng (2006a). For ease of exposition we assume that the factors are the only
explanatory variables, so the model is

yt+h = α′Ft + εt+h.

Here yt+h is the scalar random variable that we seek to forecast, while εt+h is an idiosyncratic
forecast error term that is independent of all other variables. We shall assume that the true
number of factors r is known. Because the true factors Ft are not observable, one must forecast
yt+h using the estimated factors F̂t. Does the sampling variability in F̂ influence the precision and
asymptotic normality of the feasible estimates of α?

Let F̂ be the principal components estimator with k = r factors estimated and denote the
r × r matrix Hr from Theorem 1 by H. Define δ = H−1α (note that due to the factors being
unobservable, α is only identified up to multiplication by a nonsingular matrix) and let δ̂ be the
least squares estimator in the feasible diffusion index regression of yt+h on F̂t. Bai and Ng (2006a)
show that

√
T (δ̂ − δ) = (T−1F̂ ′F̂ )−1T−1/2F̂ ′ε− (T−1F̂ ′F̂ )−1[T−1/2F̂ ′(F̂ − FH)]H−1α, (12)

where ε = (ε1+h, . . . , εT+h)′. Under the assumptions of Corollary 1, the Cauchy-Schwarz inequality
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yields

‖T−1/2F̂ ′(F̂ − FH)‖2 ≤ T

(
T−1

T∑
t=1

‖F̂t‖2
)(

T−1
T∑
t=1

‖F̂t −H ′Ft‖2
)

= TOp(1)Op(C
−2
NT )

= Op(max{1, T/N}).

Similarly,

T−1/2F̂ ′ε = T−1/2H ′F ′ε+ T−1/2(F̂ − FH)′ε = T−1/2H ′F ′ε+Op(max{1, T/N}).

Suppose T−1/2F ′ε = Op(1), as implied by Assumption E in Bai and Ng (2006a). It is easy to

show that H = Op(1). Provided T = O(N), we thus obtain δ̂ − δ = Op(T
−1/2), i.e., under the

conditions of Corollary 1, the feasible diffusion regression estimator is consistent at the usual rate.
The restrictions on hNT for the three examples are discussed immediately following Corollary 1.10

5 Simulations

5.1 Design

To illustrate our results and assess their finite sample validity we conduct a Monte Carlo simulation
study. Stock and Watson (2002) and Eickmeier et al. (2011) numerically evaluate the performance of
the principal components estimator when the factor loadings evolve as random walks, and Banerjee
et al. (2008) focus in particular on the effect of time variation in short samples.11 We provide
additional evidence on the necessary scale factor hNT for the random walk case (our Example 2).
Moreover, we consider data generating processes (DGPs) in which the factor loadings are subject
to white noise disturbances (as in Example 1), as well as DGPs for which a subset of the series
undergo one large break in their factor loadings (an analog of Example 3).

The design broadly follows Stock and Watson (2002):

Xit = λ′itFt + eit, Ftp = ρFt−1,p + utp, (1− aL)eit = vit, yt+1 =
r∑
q=1

Ftq + εt+1,

where i = 1, . . . , N , t = 1, . . . , T , p = 1, . . . , r. The processes {utp}, {vit} and {εt+1} are mu-
tually independent, with utp and εt+1 being i.i.d. standard normally distributed. To capture
cross-sectional dependence of the idiosyncratic errors, we let vt = (v1t, . . . , vNt)

′ be i.i.d. nor-
mally distributed with covariance matrix Ω = (β|i−j|)ij , as in Amengual and Watson (2007). The

10If α = 0, which is often an interesting null hypothesis in applied work, the second term on the right-hand side
of the decomposition (12) vanishes. Assume that {εt+h} is independent of all other variables. Then, conditional on
F̂ , the first term on the right-hand side of (12) will (under weak conditions) obey a central limit theorem, and so δ̂
should be unconditionally asymptotically normally distributed under the null H0 : α = 0. Bai and Ng (2006a) prove
that if the factor loadings are not subject to time variation, δ̂ will indeed be asymptotically normal, regardless of the
true value of α, as long as

√
T/N → 0. We expect that a similar result can be proved formally in our framework but

leave this for future research.
11The Eickmeier et al. (2011) Monte Carlo study appears in the updated version of their paper dated October 15,

2012.
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scalar ρ is the common AR(1) coefficient for the r factors, while a is the AR(1) coefficient for the
idiosyncratic errors.

The initial values F0 and e0 for the factors and idiosyncratic errors are drawn from their re-
spective stationary distributions. The initial factor loading matrix Λ0 was chosen based on the
population R2 for the regression of Xi0 = λ′i0F0 + ei0 on F0. Specifically, for each i we draw a value
R2
i uniformly at random from the interval [0, 0.8]. We then set λi0p = λ∗(R2

i )λ̄i0j , where λ̄i0j is
i.i.d. standard normal and independent of all other disturbances.12 The scalar λ∗(R2

i ) is given by
the value for which E[(λ′0iF0)2|R2

i ]/E[X2
i0|R2

i ] = R2
i , given the draw of R2

i .
13

We consider three different specifications for the evolution of factor loadings over time. In the
white noise model the loadings are given by

λitp = λi0p + dξitp,

i = 1, . . . , N , t = 1, . . . , T , p = 1, . . . , r, where d is a constant and the disturbances ξitp are i.i.d.
standard normal and independent of all other disturbances. Note that the standard deviation of
λitp − λi0p is d for all t.

In the random walk model we set

λitp = λi,t−1,p + cT−3/4ζitp,

i = 1, . . . , N , t = 1, . . . , T , p = 1, . . . , r, where c is a constant and the innovations ζitp are i.i.d.
standard normal and independent of everything. Note that the T 3/4 rate is different from the rate
of T used by Stock and Watson (2002) and Banerjee et al. (2008). In our design, the standard
deviation of λiTp − λi0p is cT−1/4.

In the large break model we select a subset J of size [bN1/2] uniformly at random from the
integers {1, . . . , N}, where b is a constant. For i /∈ J , we simply let λitp = λi0p for all t. For i ∈ J ,
we set

λitp =

{
λi0p for t ≤ [0.5T ]
λi0p + ∆p for t > [0.5T ]

.

The shift ∆p (which is the same for all i ∈ J) is distributedN (0, [λ∗(0.4)]2), i.i.d. across p = 1, . . . , r,
so that the shift is of the same magnitude as the initial loading λi0p.

14 The fraction of series that
undergo a shift in the large break model is [bN1/2]/N ≈ bN−1/2.

The principal components estimator F̂ k described earlier is used to estimate the factors. Esti-
mation of the factor rank r is done using the “ICp2” information criterion of Bai and Ng (2002)
with a maximum rank of rmax = 10, and, for simplicity, a minimum estimated rank of 1. The
criterion is of the IC type in definition (10) with g(N,T ) = (logC2

NT )(N + T )/(NT ). We also
consider principal components estimates that impose the true rank k = r. To evaluate the prin-
cipal components estimator’s performance, we compute a trace R2 statistic for the multivariate
regression of F̂ onto F ,

R2
F̂ ,F

=
Ê‖PF F̂‖2

Ê‖F̂‖2
,

12We assumed above that Λ0 is fixed for simplicity. It is not difficult to verify that Λ0 could instead be random,
provided that it is independent of all other random variables, N−1Λ′0Λ0

p→ D for an r × r non-singular matrix D,
and E‖λi‖4 < M , as in Bai and Ng (2006a).

13Specifically, [λ∗(R2
i )]

2 = 1−ρ2
r(1−a2)

R2
i

1−R2
i
.

14This shift process satisfies Assumption 4 with envelope functions of the same order as was used for the determin-
istic break in Example 3.
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where Ê denotes averaging over Monte Carlo repetitions and PF = F (F ′F )−1F ′. Corollary 1 states
that this measure tends to 1 as T →∞. In each repetition we compute the feasible out-of-sample
forecast ŷT+1|T = δ̂′F̂T , where δ̂ are the OLS coefficients in the regression of yt+1 onto F̂t for

t ≤ T − 1, as well as the infeasible forecast ỹT+1|T = δ̃′FT , where δ̃ is obtained by regressing yt+1

on the true factors Ft, t ≤ T − 1. The closeness of the feasible and infeasible forecasts is measured
by the statistic

S2
ŷ,ỹ = 1−

Ê(ŷT+1|T − ỹT+1|T )2

Ê(ŷ2
T+1|T )

.

The measures R2
F̂ ,F

and S2
ŷ,ỹ were also used by Stock and Watson (2002).

5.2 Calibration

The free parameters are T , N , r, ρ, a, β, b, c and d. We set r = 5 throughout. In line with
Stock and Watson (2002) and Amengual and Watson (2007), we consider ρ = 0, 0.9, a = 0, 0.5 and
β = 0, 0.5.

To guide our choice of the crucial parameters b, c and d, we turn to the empirical analysis of
Stock and Watson (2009). They fit a DFM to 144 quarterly U.S. macroeconomic time series from
1959 to 2006, splitting the sample at the first quarter of 1984. Using their results, we compare the
pre- and post-break estimated factor loadings. The ratio of the mean square changes in the factor
loadings to the mean square pre-break factor loadings is 0.21. Assuming that the break date and
factor loadings are known, the corresponding ratio in our large break DGP is

(Nr)−1
∑N

i=1

∑r
p=1 ∆2

p

(Nr)−1
∑N

i=1

∑r
p=1 λ

2
i0p

=
bN−1/2[λ∗(0.4)]2∫ 0.8
0 [λ∗(x)]2dx/0.8

+ op(1) = 0.66bN−1/2 + op(1),

regardless of the values of r, ρ, a and β. For N = 144 series, the value of the parameter b
that brings the theoretical ratio in line with the observed one in the Stock and Watson (2009)
dataset is b =

√
144 · 0.21/0.66 = 3.7. While we have ignored estimation error, it therefore seems

empirically relevant to consider large break DGPs with a b of this magnitude. We pick b = 3.5 to
be our benchmark value, which for N = 100 implies that bN−1/2 = 35% of the loadings undergo
a break (for N = 200 and N = 400 the fraction is 25% and 18%, respectively). To stress test our
conclusions, we also examine the extreme choice b = 7.

When calibrating the values of c and d, we take the following steps. Focusing on the parametriza-
tion N = T = 200 and a = β = ρ = 0, we first record the trace R2 statistics for the large break
DGPs with b = 3.5 and b = 7, respectively. We then determine round values of c and d such that
the corresponding trace R2 statistics for the random walk and white noise DGPs approximately
match the above-mentioned two figures for the large break model. This yields c = 2, 3.5 and
d = 0.4, 0.7. To compare the time variation with the scale of the initial factor loadings, note that
with a = β = ρ = 0 and r = 5, the unconditional standard deviation of each initial factor loading

is
√∫ 0.8

0 [λ∗(x)]2dx/0.8 = 0.45. Because d is the standard deviation of λitp − λi0p in the white
noise model, the choice d = 0.4 creates fluctuations of about the same magnitude as the initial
factor loadings. Similarly, the standard deviation of λiTp − λi0p in the random walk model equals
cT−1/4 = 0.53 for T = 200 and c = 2. In the appendix we show that this amount of random walk
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parameter variation is of the same magnitude as the estimates for U.S. data presented in Eickmeier
et al. (2011), while our c = 3.5 parametrization exhibits substantially more instability.15

5.3 Results

We perform 5,000 Monte Carlo repetitions for each DGP. To graphically illustrate the convergence
properties of the principal components estimator, we first focus on the baseline set-up with a = β =
ρ = 0, N = T and k = r (the true number of factors is known). We run simulations for a fine grid
of T values, T = 50, 100, 150, . . . , 400. The results are plotted in Figures 1–3, corresponding to the
white noise, random walk and large break models, respectively. Each figure has two panels. The
top panel shows the R2

F̂ ,F
statistic as a function of the sample size T , for the three different choices

of b, c or d. Similarly, the bottom panel shows the S2
ŷ,ỹ statistic. All figures confirm that, while

time variation in the factor loadings, vanishing at the appropriate rate, does impact the precision
of the principal components estimator, the performance improves as T increases, both in absolute
terms and relative to the no-instability benchmark.

Tables 1–3 display a more comprehensive range of simulation results for the white noise, random
walk and large break models, respectively. As explained above, we consider two values each for
the instability parameters b, c and d, and each table compares those results to the no-instability
benchmark (b = c = d = 0). The columns marked “k = r” impose knowledge of the true number
of factors, while the columns marked “IC ” correspond to simulations in which the factor rank is
estimated using an information criterion. Ê(k̂) denotes the average estimated rank. We focus on
dataset dimensions that are especially relevant for macroeconomic analyses with quarterly data,
namely T = 50, 100, 200 and N either equal to, half of or double the value of T .

Our first set of simulations has a = β = ρ = 0, i.e., no serial or cross-sectional dependence
in the factors or idiosyncratic errors. For the empirically calibrated amount of instability (the
middle five columns in each table), the R2

F̂ ,F
and S2

ŷ,ỹ statistics are close to the no-instability

benchmark as long as N ≥ T ≥ 100. The average estimated rank is also close to the truth r = 5
in these cases. Throughout Table 3 and Figure 2, the large break model does remarkably well
in terms of the closeness S2

ŷ,ỹ of the feasible and infeasible forecasts, even when a majority of
factor loadings undergo a break. As Figure 1 already demonstrated, the white noise model gives
comparatively poor results for small T and when N < T , as predicted by our Λ0 = 0 calculation,
cf. expression (7). Increasing the amount of structural instability to extreme values (the right-
most five columns of each table) substantially affects the results, more so than the introduction of
moderate serial and cross-sectional correlation. The white noise model fares particularly poorly for
d = 0.7, except when N > T ≥ 200, and the estimated factor rank tends to severely undershoot
the target for small sample sizes, as the common component in the data is diluted by the loading
disturbances. For the random walk DGP, while the average estimated rank is hardly affected
by moving from c = 0 to c = 2, extreme structural instability c = 3.5 does lead to significant
deterioration of the performance of the information criterion; the continual evolution of the factor
loadings over time causes overestimation of the number of common factors. For the large break
model the information criterion does much better, although it overshoots somewhat, as established
by Breitung and Eickmeier (2011).

We consider separately the effects of introducing serial (a = 0.5) or cross-sectional (β = 0.5)

15For T ≥ 67 our worst-case random walk DGP, c = 3.5, exhibits more time variation in factor loadings than any
of the parametrizations considered by Stock and Watson (2002) and Banerjee et al. (2008).
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dependence in the idiosyncratic errors. Moderate serial correlation in the errors is clearly a second-
order issue.16 Exponentially decreasing cross-sectional correlation of the above-mentioned magni-
tude has only a slightly larger impact. Furthermore, there appears to be no interesting interaction
between dependence in the idiosyncratic errors and instability in the factor loadings.

Introducing persistence in the factors (ρ = 0.9) dramatically worsens the results for the white
noise DGP. For the empirically calibrated amount of instability, d = 0.4, the R2

F̂ ,F
and S2

ŷ,ỹ statistics

are unacceptably poor, except perhaps for large sample sizes, and the estimated rank is much too
low. For the random walk model, factor persistence has a more moderate, but still noticeable,
effect. It causes overestimation of the number of factors, which only becomes worse as the sample
size increases, and the convergence to 1 of the R2

F̂ ,F
and S2

ŷ,ỹ statistics is not evident for T ≤ 200.17

However, the absolute impact of the factor loading instability is not alarming, even for c = 3.5,
unless consistent estimation of r is viewed as a goal in and of itself. In contrast to the first two
models, the large break model does not exhibit noticeable sensitivity to the persistence of the
factors. Since serial correlation in the factors tends to bias downward the estimate of the factor
rank, it actually partially corrects for the upward bias induced by the one-time loading break.18

The last seven rows in the tables display results for the most empirically relevant case in
which the factors are persistent and the idiosyncratic errors are both serially and cross-sectionally
correlated (a = β = 0.5, ρ = 0.9). As expected based on the discussion above, these figures are
similar to those for a = β = 0, ρ = 0.9, and we find no interesting compounding effects of the
various departures from the baseline parametrization.

We summarize the findings of the simulation study as follows.

• Empirically calibrated structural instability of the random walk or large break variety does
not, on average, markedly impact the estimation of the factor space or diffusion index fore-
casts. Increasing the temporal instability by an order of magnitude does not overturn this
conclusion.

• The impact of white noise disturbances is a lot more sensitive to the sample size, to the ratio of
N to T (higher is better), and to the persistence of the factors (lower is better). The numbers
in Table 1 arguably overstate this sensitivity, since d was calibrated based on a setting with
ρ = 0 and N = T = 200, which is relatively favorable for the white noise model. In a sense,
Table 1 documents how well the principal components estimator deals with substantial white
noise disturbances when the sample size and relative dimension N/T are both large.

• The correlation structure of the idiosyncratic errors is not an important concern in the ex-
ponential design we consider here. We have also tried the linearly decreasing correlation
structure of Bai and Ng (2002, section 6). As expected, such a set-up yields worse conver-
gence rates than those exhibited in Table 1–3, although the results are sensitive to the choice
of correlation parameters.

• Estimation of the factor rank r is governed by somewhat different forces than estimation of
the factor space or diffusion index forecasting, as we anticipated in Section 4.1. Relative

16In fact, relative to the i.i.d. benchmark, the a = 0.5 results are somewhat better in cases in which the estimated
rank is much too low.

17In unreported simulations, we have confirmed that these statistics do begin to improve for larger values of T .
18In Table 3, the large break model often performs better for ρ = 0.9 than for ρ = 0. The reason is that the

denominators in the R2
F̂ ,F

and S2
ŷ,ỹ statistics tend to increase with the persistence of the factors. For the two other

models, the detrimental impact on the numerators outweigh this effect.
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to the no-instability benchmark, the Bai and Ng (2002) information criterion estimator is
generally biased downward in the white noise model, whereas it is biased upward in the large
break model and (especially) the random walk model. In the latter two models, there is no
indication that this bias vanishes as N,T → ∞ for the choices of hNT and ‖∆‖2 that we
have considered here. However, overestimation of r is not a problem, on average, for diffusion
index forecasting.

5.4 Rate of convergence

We now turn to the more detailed asymptotic rates stated in Theorem 1. Our method of proof
and the calculations in Section 3.2 suggest that it may not in general be possible to improve upon
the RNT rate for our three examples of break processes. To investigate this claim, we carry out
two exercises. First, we set N = T and execute a separate set of simulations in which λitp− λi0p =
dT 1/4ξitp for the white noise model, λitp − λi,t−1,p = cT−1/2ζitp for the random walk model, and
the number of shifting series in the large break model is set to [bN ]. These three rates all (just)
violate the conditions for mean square consistency in Theorem 1. To make the results comparable
to Figures 2–3, we scale down our choices of b, c and d so that the amount of time variation
in the two experiments coincide for T = 200. All other parameters are unchanged. See Figures
4–6 for the results. As hypothesized, for the random walk and large break models the trace R2

curve flattens out for large T , instead of converging with the no-instability curve as in Figures 2–3.
For the white noise model, convergence seems to still obtain with hNT = dT 1/4.19 It would be
interesting to explore whether temporal or cross-sectional dependence in the disturbances ξit would
make Theorem 1 tight also for the white noise model.

Second, we construct a “rate frontier” that corresponds to the predictions of Theorem 1 for the
special case of the random walk model, which is the break process that has received most attention
in the literature. Consider the explicit rate expression (5)–(6) for the random walk model under the
assumptions N = [Tµ] and hNT = cT−γ . In the following we set µ = 1 so that the rate exponent
(6) reduces to

m(γ) = m(1, γ) = max{−1, 2− 4γ}.

The flat profile of the trace R2 statistic in Figure 5 is fully consistent with m(1/2) = 0. These
calculations pertain to the worst-case rate stated in Theorem 1. While Section 3.2 showed suggestive
calculations for the special case Λ0 = 0, we have not been able to prove that the convergence rate
RNT is sharp, in the sense that a generic DFM with random walk factor loadings that satisfies
Assumptions 1–5 achieves the RNT rate. Instead, we provide simulation evidence indicating that
the independent random walk model achieves the stated bound. We maintain the simulation
design described in Section 5.1 with a = β = ρ = 0 and N = T , except that we set hNT = 5T−γ

and vary γ over the range 0.25, 0.30, 0.35, . . . , 1.50. For each value of γ and each sample size
T = 200, 300, . . . , 700 we compute the statistic

M̂SE (γ, T ) = T−1(Ê‖F̂‖2 − Ê‖PF F̂‖2),

where Ê denotes the average over 500 Monte Carlo repetitions. This statistic is a close analog of
the mean square error that is the object of study in Theorem 1. Our theoretical results suggest

19This is consistent with the calculations in Section 3.2, which showed that hNT = o(T 1/2) is necessary and sufficient
for mean square consistency when Λ0 = 0, Ft ≡ 1, k = r = 1 and T/N → θ ∈ (0,∞), cf. equation (7).
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that M̂SE (γ, T ) should grow or decay at rate Tm(γ). We verify this by regressing, for each γ,

log M̂SE (γ, T ) = constantγ +mγ log T,

using our six observations T = 200, . . . , 700. Figure 7 plots the estimates m̂γ against γ along
with the theoretical values m(γ). The estimated rate frontier is strikingly close to the theoretical
one, although some finite-sample issues remain for intermediate values of γ. This corroborates our
conjecture that Theorem 1 provides sharp rates for the independent random walk case.

6 Discussion and conclusions

The theoretical results of Section 3 and the simulation study of Section 5 point towards a consid-
erable amount of robustness of the principal components estimator of the factors when the factor
loading matrix varies over time. Although we have not proved that the consistency rate function
presented in Section 3.1 is tight in a formal sense, inspection of our proof, as well as calculations
for special cases and Monte Carlo evidence, do not suggest any room for improvement, particularly
for the random walk and large break models. In this sense our rate function represents an upper
bound on the parameter instability that can be tolerated by the principal components estima-
tor. The amount of such instability is quite large when calibrated to values of N and T typically
used in applied work, which is reassuring for the nascent empirical research agenda that allows for
structural instability in estimation of DFMs (Eickmeier et al., 2011; Korobilis, forthcoming).

Our evidence concerning the robustness of the principal components estimator raises a tension
with the results in Breitung and Eickmeier (2011), who stress the harmful effect of undetected
factor loading breaks on rank estimation. Our simulations show that diffusion index forecasting
using principal components estimates can be effective even when the rank of the factor space is not
estimated consistently. Indeed, we conjecture (but do not prove) that the principal components
estimator and feasible diffusion index regression will be consistent under sequences of breaks for
which the Breitung and Eickmeier (2011) test rejects. Furthermore, our simulations indicate that
the direction of the rank estimation bias depends on the type of structural instability. Sorting
out the relative importance of these countervailing forces for the sampling distribution of forecasts
would be of independent interest and would also return the large-dimensional discussion here to
the bias-variance tradeoffs associated with ignoring breaks tackled in a low-dimensional setting by
Pesaran and Timmermann (2005, 2007).

In some applications, such as with data on asset returns, accurate estimation of the number of
factors is of direct concern. Our results suggest that the allowable amount of structural instability
in these cases is smaller than for forecasting purposes. More work is needed to establish necessary
conditions for consistent rank estimation, and if necessary, to develop rank estimators that are
more robust to different types of instability.
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A Appendix

A.1 Proof of Theorem 1

To lighten the notation, we denote
∑

i =
∑N

i=1 (the same for j) and
∑

s =
∑T

s=1 (the same for t).

A double sum
∑N

i=1

∑N
j=1 is denoted

∑
i,j .

Proof of Theorem 1. We extend the proof of Theorem 1 in Bai and Ng (2002). By the definition
of the estimator F̂ k, we have F̂ k = (NT )−1XX ′F̃ k, where F̃ k

′
F̃ k/T = Ik (Bai and Ng, 2008).

Define e = (e1, . . . , eT )′ and w = (w1, . . . , wT )′. Since

XX ′ = FΛ′0Λ0F
′ + FΛ′0(e+ w)′ + (e+ w)Λ0F

′ + (e+ w)(e+ w)′,

we can write

F̂ kt −Hk′Ft = (NT )−1
{
F̃ k
′
FΛ′0et + F̃ k

′
eΛ0Ft + F̃ k

′
eet + F̃ k

′
FΛ′0wt

+ F̃ k
′
wΛ0Ft + F̃ k

′
wwt + F̃ k

′
ewt + F̃ k

′
wet

}
.

Label the eight terms on the right-hand side A1t, . . . , A8t, respectively. By Loève’s inequality,

T−1
∑
t

‖F̂ kt −Hk′Ft‖2 ≤ 8

8∑
n=1

(
T−1

∑
t

‖Ant‖2
)
. (13)

Bai and Ng (2002) have shown that the terms corresponding to n = 1, 2, 3 are Op(C
−2
NT ) under

Assumptions 1–3. We proceed to bound the remaining terms in probability.
We have

‖A4t‖2 ≤

(
T−1

∑
s

‖F̃ ks ‖2
)(

T−1
∑
s

‖Fs‖2
)∥∥N−1Λ′0wt

∥∥2
.

The first factor equals tr(F̃ k
′
F̃ k/T ) = tr(Ik) = k. The second factor is Op(1) by Assumption 1.

Also,

E

∥∥∥∥Λ′0wt
N

∥∥∥∥2

≤ N−2
∑
i,j

|E(witwjt)λ
′
i0λj0|

≤ λ̄2h2
NTN

−2
∑
i,j

|E(ξitFtξitFt)|

≤ r2λ̄2 sup
p,q

h2
NTN

−2
∑
i,j

|E(ξitpFtpξitqFtq)|

= O(h2
NTN

−2Q1(N,T )),

uniformly in t, by Assumption 4.1. Hence,

T−1
∑
t

‖A4t‖2 = Op(h
2
NTN

−2Q1(N,T )).

Similarly,

‖A5t‖2 ≤

(
T−1

∑
s

‖F̃ ks ‖2
)(

(N2T )−1
∑
s

(w′sΛ0Ft)
2

)
,
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where the first term is O(1) and

(N2T )−1E
∑
s

(w′sΛ0Ft)
2 ≤ (N2T )−1

∑
s

∑
i,j

|E(wiswjsλ
′
i0Ftλ

′
j0Ft)|

≤ r4λ̄2 sup
p1,q1,p2,q2

h2
NT (N2T )−1

∑
s

∑
i,j

|E(ξisp1ξjsq1Fsp1Fsq1Ftp2Ftq2)|.

By summing over t, dividing by T and using Assumption 4.2 we obtain

T−1
∑
t

‖A5t‖2 = Op(h
2
NTN

−2T−2Q2(N,T )).

For the sixth term,

E‖A6t‖2 ≤ E

{(
T−1

∑
s

‖F̃ ks ‖2
)(

(N2T )−1
∑
s

(w′swt)
2

)}
= k(N2T )−1

∑
s

∑
i,j

E(wiswitwjswjt)

≤ kr4 sup
p1,q1,p2,q2

h4
NT

N2T

∑
s

∑
i,j

|E(ξisp1ξjsq1ξitp2ξjtq2Fsp1Fsq1Ftp2Ftq2)|.

By Assumption 4.3, it follows that

T−1
∑
t

‖A6t‖2 = Op(h
4
NTN

−2T−2Q3(N,T )).

Regarding the seventh term, using Assumption 5,

E‖A7t‖2 ≤ E

{(
T−1

∑
s

‖F̃ ks ‖2
)(

(N2T )−1
∑
s

(e′swt)
2

)}
= k(N2T )−1

∑
s

∑
i,j

E(eisejs)E(witwjt)

≤ k(N2T )−1
∑
s

∑
i,j

(E(e2
is)E(e2

js))
1/2|E(witwjt)|

≤ kr2M sup
p,q

h2
NT (N2T )−1

∑
s

∑
i,j

|E(ξitpξjtqFtpFtq)|

= O(h2
NTN

−2Q1(N,T )),

uniformly in t. The second-to-last line uses E(e2
it) ≤M , whereas the last follows from Assumption

4.1. We conclude that
T−1

∑
t

‖A7t‖2 = Op(h
2
NTN

−2Q1(N,T )).

A similar argument gives

T−1
∑
t

‖A8t‖2 = Op(h
2
NTN

−2Q1(N,T )).

We conclude that the right-hand side of inequality (13) is the sum of variables of four stochastic or-
ders: Op(C

−2
NT ), Op(h

2
NTN

−2Q1(N,T )), Op(h
2
NTN

−2T−2Q2(N,T )) and Op(h
4
NTN

−2T−2Q3(N,T )).
The statement of the theorem follows. �
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A.2 Detailed calculations for the case Λ0 = 0

Using the definitions of F̂ k and Hk, we get

T−1
T∑
t=1

‖F̂ kt −Hk ′Ft‖2 = tr
{

(F̂ k − FHk)(F̂ k − FHk)′
}

= N−2T−3tr
{
F̃ k′(XX ′ − FΛ′0Λ0F

′)(XX ′ − FΛ′0Λ0F
′)′F̃ k

}
.

Let Λ0 = 0. By definition, F̃ k equals
√
T times the T×k matrix whose columns are the eigenvectors

of XX ′ corresponding to its k largest eigenvalues. That is, if we write (XX ′)R = RC, where R
is the orthogonal matrix of eigenvectors and C the diagonal matrix of eigenvalues (in descending
order), we have

√
TR = (F̃ k, F̆ k) for a T × (T − k) matrix F̆ k that satisfies F̃ k′F̆ k = 0. Observe

that
F̃ k =

√
TR(Ik, 0k×(T−k))

′,

so
(XX ′)F̃ k =

√
T (XX ′)R(Ik, 0k×(T−k))

′ =
√
TRC(Ik, 0k×(T−k))

′,

and

F̃ k′(XX ′)(XX ′)F̃ k = T (Ik, 0k×(T−k))CR
′RC(Ik, 0k×(T−k))

′

= TC2
k ,

where Ck = (Ik, 0k×(T−k))C(Ik, 0k×(T−k))
′ denotes the diagonal matrix containing the k largest

eigenvalues ω1, . . . , ωk of XX ′. Hence,

T−1
T∑
t=1

‖F̂ kt −Hk ′Ft‖2 = (NT )−2tr{C2
k}

= (NT )−2
k∑
l=1

ω2
l .

(14)

Example 1 (white noise, continued). Under the assumptions in the main text, the T × N
data matrix X has elements xit = eit + hNT ξit that are i.i.d. across i and t with mean 0 and
variance ΩNT = σ2

e + h2
NTσ

2
ξ . Let Z be a T ×N matrix with elements zit = xit/

√
ΩNT . Then zit is

i.i.d. across i and t with mean zero and unit variance. Let ω̃1 denote the largest eigenvalue of the
sample covariance matrix N−1ZZ ′. By Theorem 5.8 of Bai and Silverstein (2009), ω̃1

a.s.→ (1+
√
θ)2.

Because the largest eigenvalue of N−1XX ′ satisfies ω1 = ΩNT ω̃1, the result (7) follows from (14).
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Example 2 (random walk, continued). Let 1T denote the T -vector of ones. Setting k = 1 in
equation (14), we obtain

T−1
T∑
t=1

‖F̂ kt −Hk ′Ft‖2 = (NT )−2

(
max
v∈RT

v′XX ′v

v′v

)2

≥ (NT )−2

(
1′TXX

′1T
T

)2

=
1

N2T 4

 N∑
i=1

(
T∑
t=1

xit

)2
2

.

Jensen’s inequality and cross-sectional i.i.d.-ness of xit implies

E

 N∑
i=1

(
T∑
t=1

xit

)2
2

≥

NE( T∑
t=1

xit

)2
2

,

so inequality (8) follows.

Example 3 (single large break, continued). In the large break model, wit = ∆iFt1{t≥κ+1}.
Denote the last (T − κ) elements of the T -vector F by Fκ+1:T . Then we can write

w = (w1, . . . , wT )′ = hNT

(
0κ×N

Fκ+1:T ⊗∆′

)
,

so that

ww′ = h2
NT

(
0κ×κ 0κ×(T−κ)

0(T−κ)×κ (Fκ+1:TF
′
κ+1:T )‖∆‖2

)
.

It follows that the eigenvalues of ww′ are 0 (with multiplicity κ) along with h2
NT ‖∆‖2 times the

(T − κ) eigenvalues of Fκ+1:TF
′
κ+1:T . But the eigenvalues of Fκ+1:TF

′
κ+1:T are just ‖Fκ+1:T ‖2

(with multiplicity 1) and 0 (with multiplicity T − κ − 1). The k largest eigenvalues ω1, . . . , ωk of
XX ′ = ww′ are therefore

ω1 = h2
NT ‖∆‖2‖Fκ+1:T ‖2, ω2 = ω3 = · · · = ωk = 0.

Consequently, regardless of the number of estimated factors k,

T−1
T∑
t=1

‖F̂ kt −Hk ′Ft‖2 = (NT )−2
k∑
l=1

ω2
l

=
h4
NT

(NT )2
‖∆‖4‖Fκ+1:T ‖4

=
h4
NT

N2
‖∆‖4(1− τ̄)2

(
1

T − κ

T∑
t=κ+1

F 2
t + op(1)

)2

where the last equality uses T − κ = (1− τ̄)T (1 + o(1)). Expression (9) follows.
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A.3 Comparison of our Monte Carlo calibration with Eickmeier et al. (2011)

Eickmeier et al. (2011) use a two-step maximum likelihood procedure to estimate a five-factor
DFM with time-varying parameters on quarterly U.S. data from 1972 to 2007. As in some of our
simulations, the factor loadings in their model evolve as independent random walks. From their
smoothed estimates of the factor loading paths (restricting attention to the paths that exhibit
non-negligible time variation) one obtains a median standard deviation of the innovations equal to
0.0165 for loadings on the first factor, which has the largest median loading innovation standard
deviation of the five factors. Because their sample size is T = 140, the random walk specification
implies a median standard deviation of λiT1−λi01 of about 0.20; the 95th percentile of the implied
standard deviation of λiT1 − λi01 is about 0.75. The 5–95 percentile range of estimated initial
factor loadings is [−0.87, 0.28].20 As explained in the main text, in our random walk design with
a = β = ρ = 0, c = 2 and T = 200, the standard deviation of λiT1 − λi01 is 0.53 for all i, while the
5–95 percentile range for initial factor loadings is [−0.74, 0.74]. Our c = 2 calibration is therefore
similar to the Eickmeier et al. (2011) estimated amount of factor loading time variation in U.S.
data, while our c = 3.5 simulations appear to exhibit substantially more instability.
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Figure 1: Simulation results for the white noise model, benchmark parameter and rate choices.
Actual observations are marked with “x.” Each is based on 5,000 Monte Carlo repetitions. The
lines are piecewise linear interpolations.
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Figure 2: Simulation results for the random walk model, benchmark parameter and rate choices.
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Figure 3: Simulation results for the large break model, benchmark parameter and rate choices.
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Figure 4: Simulation results for the white noise model, alternative rates.
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Figure 5: Simulation results for the random walk model, alternative rates.
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Figure 6: Simulation results for the large break model, alternative rates.
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Figure 7: Rate frontiers for the random walk model with c = 5, N = T and hNT = cT−γ . The solid
line interpolates between the finite-sample rate exponent estimates m̂γ (observations are marked
with “x”), while the dotted line represents the theoretical rate exponent m(γ).

32



Monte Carlo simulations: White noise model
d = 0 d = 0.4 d = 0.7

k = r IC k = r IC k = r IC

T N R2
F̂ ,F

S2
ŷ,ỹ R2

F̂ ,F
S2
ŷ,ỹ Ê(k̂) R2

F̂ ,F
S2
ŷ,ỹ R2

F̂ ,F
S2
ŷ,ỹ Ê(k̂) R2

F̂ ,F
S2
ŷ,ỹ R2

F̂ ,F
S2
ŷ,ỹ Ê(k̂)

a = 0, β = 0, ρ = 0

50 50 0.93 0.83 0.94 0.50 3.4 0.86 0.64 0.91 −0.83 1.6 0.71 0.25 0.84 −2.77 1.0
50 100 0.96 0.93 0.96 0.88 4.7 0.92 0.84 0.94 0.35 2.9 0.81 0.59 0.89 −1.72 1.1

100 100 0.96 0.94 0.96 0.93 5.0 0.93 0.88 0.93 0.66 3.9 0.84 0.70 0.90 −1.88 1.3
100 200 0.98 0.97 0.98 0.97 5.0 0.96 0.94 0.96 0.93 5.0 0.91 0.86 0.93 0.13 2.7
200 100 0.96 0.94 0.96 0.94 5.0 0.93 0.89 0.93 0.86 4.8 0.86 0.77 0.88 −0.20 2.4
200 200 0.98 0.97 0.98 0.97 5.0 0.96 0.95 0.96 0.95 5.0 0.92 0.90 0.93 0.70 4.1
200 400 0.99 0.99 0.99 0.99 5.0 0.98 0.97 0.98 0.97 5.0 0.96 0.95 0.96 0.94 5.0

a = 0.5, β = 0, ρ = 0

50 50 0.91 0.77 0.93 0.53 3.7 0.86 0.64 0.91 −0.42 2.0 0.75 0.38 0.86 −2.39 1.1
50 100 0.95 0.90 0.95 0.88 4.8 0.92 0.84 0.93 0.57 3.6 0.84 0.68 0.91 −1.01 1.4

100 100 0.96 0.93 0.96 0.92 5.0 0.93 0.89 0.93 0.78 4.4 0.87 0.77 0.91 −0.70 1.9
100 200 0.98 0.97 0.98 0.97 5.0 0.96 0.95 0.96 0.94 5.0 0.93 0.89 0.93 0.65 3.8
200 100 0.96 0.94 0.96 0.94 5.0 0.93 0.90 0.93 0.90 4.9 0.88 0.82 0.89 0.41 3.4
200 200 0.98 0.97 0.98 0.97 5.0 0.96 0.95 0.96 0.95 5.0 0.93 0.92 0.94 0.87 4.8
200 400 0.99 0.99 0.99 0.99 5.0 0.98 0.98 0.98 0.98 5.0 0.96 0.96 0.96 0.96 5.0

a = 0, β = 0.5, ρ = 0

50 50 0.91 0.76 0.93 0.53 3.7 0.85 0.58 0.90 −0.87 1.7 0.70 0.22 0.83 −3.09 1.0
50 100 0.95 0.91 0.96 0.87 4.7 0.92 0.83 0.93 0.39 3.0 0.80 0.57 0.89 −1.58 1.1

100 100 0.96 0.92 0.96 0.92 5.0 0.92 0.87 0.93 0.66 4.0 0.84 0.70 0.89 −1.90 1.3
100 200 0.98 0.97 0.98 0.97 5.0 0.96 0.94 0.96 0.93 5.0 0.91 0.86 0.93 0.15 2.7
200 100 0.96 0.94 0.95 0.94 5.0 0.92 0.88 0.92 0.86 4.8 0.85 0.76 0.88 −0.19 2.4
200 200 0.98 0.97 0.98 0.97 5.0 0.96 0.95 0.96 0.95 5.0 0.92 0.90 0.92 0.70 4.1
200 400 0.99 0.99 0.99 0.99 5.0 0.98 0.97 0.98 0.97 5.0 0.96 0.95 0.96 0.94 5.0

a = 0, β = 0, ρ = 0.9

50 50 0.95 0.81 0.97 0.43 2.3 0.61 0.03 0.84 −1.18 1.0 0.32 −0.96 0.52 −2.94 1.0
50 100 0.97 0.91 0.98 0.69 2.9 0.70 0.37 0.91 −0.75 1.0 0.38 −0.38 0.67 −1.74 1.0

100 100 0.97 0.94 0.97 0.81 3.9 0.75 0.43 0.89 −1.46 1.0 0.39 −0.43 0.67 −2.48 1.0
100 200 0.98 0.97 0.98 0.94 4.6 0.84 0.65 0.94 −0.75 1.3 0.48 −0.00 0.80 −1.60 1.0
200 100 0.97 0.94 0.97 0.93 4.9 0.79 0.55 0.88 −1.68 1.2 0.43 −0.50 0.68 −3.19 1.0
200 200 0.98 0.97 0.98 0.97 5.0 0.88 0.80 0.93 −0.52 1.7 0.57 0.11 0.81 −2.02 1.0
200 400 0.99 0.99 0.99 0.99 5.0 0.94 0.90 0.95 0.40 2.7 0.69 0.45 0.88 −1.99 1.0

a = 0.5, β = 0.5, ρ = 0.9

50 50 0.94 0.74 0.95 0.65 3.7 0.71 0.24 0.88 −1.05 1.0 0.41 −0.55 0.66 −1.91 1.0
50 100 0.97 0.86 0.97 0.83 4.5 0.80 0.51 0.93 −0.52 1.2 0.49 −0.09 0.79 −1.40 1.0

100 100 0.96 0.90 0.97 0.88 4.6 0.82 0.56 0.92 −1.05 1.3 0.50 −0.07 0.77 −2.04 1.0
100 200 0.98 0.96 0.98 0.95 4.9 0.90 0.76 0.95 −0.07 1.9 0.61 0.25 0.87 −1.51 1.0
200 100 0.96 0.93 0.96 0.92 5.0 0.84 0.66 0.90 −0.66 1.8 0.55 −0.07 0.76 −2.91 1.0
200 200 0.98 0.97 0.98 0.96 5.0 0.91 0.85 0.94 0.19 2.5 0.70 0.39 0.86 −1.93 1.0
200 400 0.99 0.98 0.99 0.98 5.0 0.95 0.93 0.96 0.71 3.6 0.80 0.64 0.92 −1.79 1.0

Table 1: Simulation results for DGPs with white noise disturbances in the factor loadings.
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Monte Carlo simulations: Random walk model
c = 0 c = 2 c = 3.5

k = r IC k = r IC k = r IC

T N R2
F̂ ,F

S2
ŷ,ỹ R2

F̂ ,F
S2
ŷ,ỹ Ê(k̂) R2

F̂ ,F
S2
ŷ,ỹ R2

F̂ ,F
S2
ŷ,ỹ Ê(k̂) R2

F̂ ,F
S2
ŷ,ỹ R2

F̂ ,F
S2
ŷ,ỹ Ê(k̂)

a = 0, β = 0, ρ = 0

50 50 0.93 0.83 0.94 0.50 3.4 0.91 0.90 0.91 0.89 4.8 0.87 0.89 0.87 0.90 5.2
50 100 0.96 0.93 0.96 0.88 4.7 0.93 0.93 0.93 0.93 5.0 0.89 0.92 0.88 0.91 5.7

100 100 0.96 0.94 0.96 0.93 5.0 0.94 0.94 0.94 0.95 5.0 0.89 0.94 0.89 0.94 5.4
100 200 0.98 0.97 0.98 0.97 5.0 0.95 0.96 0.95 0.96 5.0 0.90 0.94 0.89 0.94 6.8
200 100 0.96 0.94 0.96 0.94 5.0 0.94 0.95 0.94 0.95 5.0 0.90 0.94 0.90 0.94 5.6
200 200 0.98 0.97 0.98 0.97 5.0 0.96 0.97 0.96 0.97 5.0 0.91 0.95 0.91 0.95 7.0
200 400 0.99 0.99 0.99 0.99 5.0 0.97 0.98 0.97 0.97 5.0 0.92 0.96 0.91 0.96 9.5

a = 0.5, β = 0, ρ = 0

50 50 0.91 0.77 0.93 0.53 3.7 0.91 0.90 0.91 0.87 4.7 0.88 0.89 0.88 0.90 5.1
50 100 0.95 0.90 0.95 0.88 4.8 0.94 0.94 0.94 0.94 5.0 0.90 0.92 0.89 0.92 5.5

100 100 0.96 0.93 0.96 0.92 5.0 0.94 0.95 0.94 0.95 5.0 0.90 0.94 0.90 0.94 5.2
100 200 0.98 0.97 0.98 0.97 5.0 0.96 0.96 0.96 0.96 5.0 0.91 0.95 0.91 0.94 6.1
200 100 0.96 0.94 0.96 0.94 5.0 0.95 0.95 0.95 0.95 5.0 0.92 0.95 0.91 0.95 5.2
200 200 0.98 0.97 0.98 0.97 5.0 0.97 0.97 0.97 0.97 5.0 0.93 0.96 0.92 0.96 5.8
200 400 0.99 0.99 0.99 0.99 5.0 0.98 0.98 0.98 0.98 5.0 0.93 0.96 0.93 0.96 8.4

a = 0, β = 0.5, ρ = 0

50 50 0.91 0.76 0.93 0.53 3.7 0.91 0.89 0.91 0.89 4.8 0.87 0.89 0.87 0.90 5.3
50 100 0.95 0.91 0.96 0.87 4.7 0.93 0.93 0.93 0.93 5.0 0.89 0.92 0.88 0.91 5.8

100 100 0.96 0.92 0.96 0.92 5.0 0.94 0.94 0.94 0.95 5.0 0.89 0.94 0.89 0.94 5.5
100 200 0.98 0.97 0.98 0.97 5.0 0.95 0.96 0.95 0.96 5.0 0.90 0.94 0.89 0.94 6.9
200 100 0.96 0.94 0.95 0.94 5.0 0.94 0.95 0.94 0.95 5.0 0.90 0.95 0.90 0.94 5.8
200 200 0.98 0.97 0.98 0.97 5.0 0.96 0.97 0.96 0.97 5.0 0.91 0.95 0.91 0.95 7.1
200 400 0.99 0.99 0.99 0.99 5.0 0.97 0.98 0.97 0.98 5.0 0.92 0.96 0.91 0.96 9.5

a = 0, β = 0, ρ = 0.9

50 50 0.95 0.81 0.97 0.43 2.3 0.94 0.90 0.94 0.91 5.5 0.94 0.90 0.94 0.92 7.3
50 100 0.97 0.91 0.98 0.69 2.9 0.95 0.92 0.95 0.94 6.4 0.94 0.92 0.94 0.94 8.6

100 100 0.97 0.94 0.97 0.81 3.9 0.93 0.93 0.92 0.95 6.7 0.91 0.93 0.91 0.95 9.2
100 200 0.98 0.97 0.98 0.94 4.6 0.93 0.94 0.93 0.97 7.8 0.92 0.94 0.91 0.96 9.9
200 100 0.97 0.94 0.97 0.93 4.9 0.91 0.94 0.90 0.95 7.4 0.88 0.94 0.88 0.96 9.9
200 200 0.98 0.97 0.98 0.97 5.0 0.92 0.95 0.91 0.97 8.3 0.89 0.95 0.88 0.97 10.0
200 400 0.99 0.99 0.99 0.99 5.0 0.92 0.95 0.91 0.98 9.6 0.89 0.95 0.88 0.97 10.0

a = 0.5, β = 0.5, ρ = 0.9

50 50 0.94 0.74 0.95 0.65 3.7 0.94 0.90 0.94 0.91 6.8 0.94 0.90 0.94 0.92 8.3
50 100 0.97 0.86 0.97 0.83 4.5 0.95 0.92 0.95 0.95 8.4 0.94 0.92 0.94 0.94 9.7

100 100 0.96 0.90 0.97 0.88 4.6 0.93 0.93 0.92 0.95 7.7 0.92 0.93 0.91 0.95 9.7
100 200 0.98 0.96 0.98 0.95 4.9 0.94 0.95 0.93 0.97 9.2 0.92 0.94 0.91 0.97 10.0
200 100 0.96 0.93 0.96 0.92 5.0 0.92 0.94 0.91 0.95 8.0 0.89 0.94 0.88 0.95 10.0
200 200 0.98 0.97 0.98 0.96 5.0 0.93 0.95 0.92 0.97 8.9 0.89 0.95 0.89 0.97 10.0
200 400 0.99 0.98 0.99 0.98 5.0 0.93 0.96 0.92 0.98 9.9 0.90 0.95 0.89 0.98 10.0

Table 2: Simulation results for DGPs with random walk factor loadings.
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Monte Carlo simulations: Large break model
b = 0 b = 3.5 b = 7

k = r IC k = r IC k = r IC

T N R2
F̂ ,F

S2
ŷ,ỹ R2

F̂ ,F
S2
ŷ,ỹ Ê(k̂) R2

F̂ ,F
S2
ŷ,ỹ R2

F̂ ,F
S2
ŷ,ỹ Ê(k̂) R2

F̂ ,F
S2
ŷ,ỹ R2

F̂ ,F
S2
ŷ,ỹ Ê(k̂)

a = 0, β = 0, ρ = 0

50 50 0.93 0.83 0.94 0.50 3.4 0.90 0.83 0.90 0.59 3.6 0.83 0.82 0.84 0.58 3.7
50 100 0.96 0.93 0.96 0.88 4.7 0.94 0.92 0.94 0.89 4.7 0.89 0.91 0.89 0.89 4.8

100 100 0.96 0.94 0.96 0.93 5.0 0.94 0.94 0.94 0.93 5.0 0.88 0.93 0.88 0.93 5.1
100 200 0.98 0.97 0.98 0.97 5.0 0.97 0.97 0.96 0.97 5.1 0.93 0.96 0.93 0.97 5.3
200 100 0.96 0.94 0.96 0.94 5.0 0.93 0.94 0.93 0.94 5.2 0.87 0.94 0.87 0.94 5.5
200 200 0.98 0.97 0.98 0.97 5.0 0.96 0.97 0.96 0.97 5.2 0.93 0.97 0.92 0.97 5.6
200 400 0.99 0.99 0.99 0.99 5.0 0.98 0.98 0.98 0.99 5.2 0.96 0.98 0.95 0.99 5.6

a = 0.5, β = 0, ρ = 0

50 50 0.91 0.77 0.93 0.53 3.7 0.88 0.79 0.89 0.61 3.8 0.82 0.79 0.83 0.62 3.9
50 100 0.95 0.90 0.95 0.88 4.8 0.93 0.90 0.93 0.89 4.9 0.88 0.89 0.88 0.88 5.0

100 100 0.96 0.93 0.96 0.92 5.0 0.93 0.93 0.93 0.93 5.0 0.88 0.93 0.88 0.93 5.2
100 200 0.98 0.97 0.98 0.97 5.0 0.96 0.97 0.96 0.97 5.1 0.93 0.96 0.92 0.97 5.4
200 100 0.96 0.94 0.96 0.94 5.0 0.93 0.94 0.93 0.94 5.2 0.87 0.94 0.87 0.94 5.5
200 200 0.98 0.97 0.98 0.97 5.0 0.96 0.97 0.96 0.97 5.2 0.93 0.97 0.92 0.97 5.6
200 400 0.99 0.99 0.99 0.99 5.0 0.98 0.98 0.98 0.98 5.2 0.96 0.98 0.95 0.98 5.6

a = 0, β = 0.5, ρ = 0

50 50 0.91 0.76 0.93 0.53 3.7 0.87 0.77 0.88 0.61 3.9 0.80 0.77 0.81 0.61 4.1
50 100 0.95 0.91 0.96 0.87 4.7 0.93 0.90 0.93 0.89 4.8 0.88 0.90 0.88 0.88 5.0

100 100 0.96 0.92 0.96 0.92 5.0 0.93 0.93 0.93 0.93 5.1 0.87 0.92 0.87 0.93 5.3
100 200 0.98 0.97 0.98 0.97 5.0 0.96 0.96 0.96 0.96 5.1 0.93 0.96 0.92 0.97 5.4
200 100 0.96 0.94 0.95 0.94 5.0 0.93 0.94 0.92 0.94 5.3 0.86 0.93 0.86 0.94 5.7
200 200 0.98 0.97 0.98 0.97 5.0 0.96 0.97 0.96 0.97 5.3 0.92 0.97 0.91 0.97 5.7
200 400 0.99 0.99 0.99 0.99 5.0 0.98 0.98 0.98 0.98 5.3 0.96 0.98 0.95 0.99 5.7

a = 0, β = 0, ρ = 0.9

50 50 0.95 0.81 0.97 0.43 2.3 0.94 0.81 0.95 0.52 2.4 0.92 0.81 0.93 0.56 2.6
50 100 0.97 0.91 0.98 0.69 2.9 0.97 0.90 0.97 0.72 3.0 0.95 0.90 0.95 0.73 3.1

100 100 0.97 0.94 0.97 0.81 3.9 0.96 0.93 0.96 0.83 4.0 0.93 0.91 0.93 0.83 4.2
100 200 0.98 0.97 0.98 0.94 4.6 0.98 0.97 0.98 0.94 4.7 0.96 0.96 0.96 0.94 4.8
200 100 0.97 0.94 0.97 0.93 4.9 0.95 0.94 0.95 0.93 5.0 0.91 0.93 0.91 0.93 5.1
200 200 0.98 0.97 0.98 0.97 5.0 0.97 0.97 0.97 0.97 5.1 0.95 0.96 0.94 0.97 5.3
200 400 0.99 0.99 0.99 0.99 5.0 0.99 0.98 0.98 0.98 5.1 0.97 0.98 0.97 0.98 5.4

a = 0.5, β = 0.5, ρ = 0.9

50 50 0.94 0.74 0.95 0.65 3.7 0.93 0.75 0.94 0.70 4.1 0.90 0.75 0.91 0.71 4.3
50 100 0.97 0.86 0.97 0.83 4.5 0.96 0.85 0.96 0.84 4.8 0.94 0.86 0.94 0.85 5.0

100 100 0.96 0.90 0.97 0.88 4.6 0.95 0.89 0.95 0.88 4.8 0.92 0.88 0.92 0.88 5.0
100 200 0.98 0.96 0.98 0.95 4.9 0.97 0.95 0.97 0.95 5.2 0.95 0.94 0.95 0.95 5.4
200 100 0.96 0.93 0.96 0.92 5.0 0.94 0.92 0.94 0.93 5.3 0.90 0.91 0.90 0.93 5.6
200 200 0.98 0.97 0.98 0.96 5.0 0.97 0.96 0.97 0.97 5.3 0.94 0.95 0.94 0.97 5.6
200 400 0.99 0.98 0.99 0.98 5.0 0.98 0.98 0.98 0.98 5.3 0.97 0.98 0.96 0.98 5.7

Table 3: Simulation results for DGPs with a single large break in the factor loadings.
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