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This online appendix contains supplemental material for the article “Instrumental Variable

Identification of Dynamic Variance Decompositions”. We provide (i) bounds on other no-

tions of variance decompositions, (ii) extensions of the identification analysis to multiple

instruments correlated with a single or multiple shocks, (iii) characterizations of the bias

of SVAR-IV (or “proxy SVAR”) procedures under noninvertibility, (iv) an illustration of

our method using a quantitative structural macro model, (v) supplementary results for the

monetary shock application, (vi) a second set of empirical results on the importance of oil

news shocks, and (vii) asymptotic theory on the nonparametric validity of our sieve VAR

inference strategy. The end of this appendix contains proofs and auxiliary lemmas.

Any references to equations, figures, tables, assumptions, propositions, lemmas,

or sections that are not preceded by “B.” refer to the main article.
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B.1 Identification and estimation of other variance de-

composition concepts

Our main analysis focuses on forecast variance ratios as a measure of shock importance,

defined in Section 2.2. This appendix defines two additional concepts – forecast variance

decompositions (FVD) and unconditional frequency-specific variance decompositions (VD)

– and discusses the identification and estimation of both.

Definitions. The forecast variance decomposition (FVD) for variable i at horizon ` is

defined as

FVD i,` ≡ 1− Var(yi,t+` | {ετ}−∞<τ≤t, {ε1,τ}t<τ<∞)

Var(yi,t+` | {ετ}−∞<τ≤t)
=

∑`−1
m=0 Θ2

i,1,m∑nε
j=1

∑`−1
m=0 Θ2

i,j,m

. (B.1)

The FVD measures the reduction in forecast variance that arises from learning the path of

future realizations of the shock of interest, supposing that we already had the history of

past structural shocks εt available when forming our forecast. Because the econometrician

generally does not observe the structural shocks directly, the FVD is best thought of as

reflecting forecasts of economic agents who observe the underlying shocks. The FVD always

lies between 0 and 1, purely reflects fundamental forecasting uncertainty, and equals 1 if the

first shock is the only shock driving variable i in equation (1). The software package Dynare

reports FVDs after having estimated a DSGE model.

While the FVR and FVD concepts generally differ, they coincide in the case where all

shocks are invertible, since in that case the information set {yτ}−∞<τ≤t equals the information

set {ετ}−∞<τ≤t. This explains why the SVAR literature has not made the distinction between

the two concepts.B.1

Our second additional concept is the frequency-specific unconditional variance decompo-

sition (VD) of Forni et al. (2019, Sec. 3.4). The VD for variable i over the frequency band

[ω1, ω2] is given by

VD i(ω1, ω2) ≡
∫ ω2

ω1
|Θi,1(e−iω)|2 dω∑nε

j=1

∫ ω2

ω1
|Θi,j(e−iω)|2 dω

, 0 ≤ ω1 < ω2 ≤ π, (B.2)

where Θi,j(L) is the (i, j) element of the lag polynomial Θ(L). VD i(ω1, ω2) is the percentage

B.1Forni et al. (2019) point out the bias caused by noninvertibility when estimating the FVD using SVARs.

3



reduction in the variance of yi,t – after passing the data through a bandpass filter that retains

only cyclical frequencies [ω1, ω2] – caused by entirely “shutting off” the shock of interest ε1,t.

The software package Dynare automatically reports VD i(0, π) after solving a DSGE model.

Identification and estimation: VD. Identification of the VD is completely analogous

to our analysis of the FVR. By definition,

VD i(ω1, ω2) =
1

α2
×
∫ ω2

ω1
|syiz̃(ω)|2 dω∫ ω2

ω1
syi(ω) dω

,

where syiz̃(ω) = αΘi,1(e−iω) is the i-th element of syz̃(ω), cf. equation (B.2). Since the last

fraction on the right-hand side is point-identified, our identified set for α2 immediately maps

into an identified for the VD.

We estimate the bounds as[
1

ˆ̄α2
×
∫ ω2

ω1
|ŝyiz̃(ω)|2 dω∫ ω2

ω1
ŝyi(ω) dω

,
1

α̂2 ×
∫ ω2

ω1
|ŝyiz̃(ω)|2 dω∫ ω2

ω1
ŝyi(ω) dω

]
. (B.3)

The integrals are computed numerically. The spectral densities required to compute (B.3) are

functions of the estimated reduced-form VAR parameters (see Appendix A.1). Specifically,

ŝy(ω) =
1

2π
B̂y(e

−iω)B̂y(e
−iω)∗,

ŝyz̃(ω) =
1

2π

∞∑
`=0

Σ̂y,z̃,`e
−iω`,

with

B̂y(e
−iω) ≡

∞∑
`=0

B̂y,`e
−iω`, Σ̂y,z̃,` ≡ Ĉov(yt, z̃t−`) = B̂y,`B̂

′
z̃.

In practice, we truncate the infinite sums at a large lag.

Identification and estimation: FVD. Bounding the FVD requires more work. In-

tuitively, the reason that identification of the FVD is more challenging than for the FVR

is that, even if we knew α, the IV zt provides no information about the other structural

shocks εj,t, j 6= 1. This matters because the definition (B.1) of the FVD, unlike that of

the FVR, conditions on knowing all past shocks, rather than all past macro observables.

Proposition B.1 formally characterizes the resulting identified set.

4



Proposition B.1. Let there be given a joint spectral density for wt = (y′t, z̃t)
′ satisfying the

assumptions in Proposition 1. Given knowledge of α ∈ (αLB, αUB], the largest possible value

of the forecast variance decomposition FVD i,` is 1 (the trivial bound), while the smallest

possible value is given by ∑`−1
m=0 Cov(yi,t, z̃t−m)2∑`−1

m=0 Cov(yi,t, z̃t−m)2 + α2 Var(ỹ
(α)
i,t+` | {ỹ

(α)
τ }−∞<τ≤t)

. (B.4)

Here ỹ
(α)
t = (ỹ

(α)
1,t , . . . , ỹ

(α)
ny ,t)

′ denotes a stationary Gaussian time series with spectral density

sỹ(α)(ω) = sy(ω)− 2π
α2 syz̃(ω)syz̃(ω)∗, ω ∈ [0, 2π]. Expression (B.4) is monotonically decreasing

in α, so the overall lower bound on FVD i,` is attained by α = αUB; in this boundary case we

can represent ỹ
(αUB)
t = yt − E(yt | {z̃τ}−∞<τ≤t).

The upper bound on the FVD always equals the trivial bound of 1, for any ` ≥ 1. This

upper bound is achieved by a model in which all shocks, except the first one, only affect

yt after an `-period delay. The lower bound in contrast is nontrivial and informative. The

argument is as follows: Even if α is known, the denominator Var(yi,t+` | {ετ}−∞<τ≤t) of

the FVD is not identified due to the lack of information about shocks other than the first.

Although we can upper-bound this conditional variance by the denominator of the FVR,

this upper bound is not sharp. Instead, to maximize the denominator, as much forecasting

noise as possible should be of the pure forecasting variety, and not related to noninvertibility.

For all shocks except for ε1,t, this is achievable through a Wold decomposition construction

(Hannan, 1970, Thm. 2′′, p. 158). Given α, we know the contribution of the first shock to

yt; the residual after removing this contribution has the distribution of ỹ
(α)
t , as defined in

the proposition. If α is not known, the smallest possible value of the lower bound (B.4) is

attained at the largest possible value of α, namely αUB, for which ε1,t contributes the least

to forecasts of yt.

We estimate the bounds in Proposition B.1 as[ ∑`−1
m=0 Ĉov(yi,t, z̃t−m)2∑`−1

m=0 Ĉov(yi,t, z̃t−m)2 + ˆ̄α2V̂ar(ỹ
(ᾱ)
i,t+` | {ỹ

(ᾱ)
τ }−∞<τ≤t)

, 1

]
. (B.5)

To approximate the conditional variance in the denominator, we proceed as in Appendix A.1.

First, we replace the infinite conditioning set with the finite set {ỹ(ᾱ)
τ }τ−M≤τ≤t. Second, we

compute the conditional variance using the standard projection formula, where the autoco-
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variances of the process {ỹ(ᾱ)
τ } are estimated as

Ĉov(ỹ
(ᾱ)
t+`, ỹ

(ᾱ)
t ) = Ĉov(yt+`, yt)−

1

ˆ̄α2

∑∞
m=0 Ĉov(yt, z̃t−m−`)Ĉov(yt, z̃t−m)′.

In practice, we truncate the infinite sum at a large lag.
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B.2 Multiple instruments correlated with one shock

Here we show that the multiple-IV model in Assumptions 1 to 3 is testable, but if it is

consistent with the data, then identification analysis can be reduced to the single-IV case.

Define the IV residual vector z̃t as in equation (18). The multiple-IV model in Assump-

tions 1 and 2 implies the following cross-spectrum between yt and z̃t:

syz̃(ω) =
α

2π
Θ(e−iω)e1λ

′, ω ∈ [0, 2π]. (B.6)

Thus, the cross-spectrum has rank-1 factor structure: It equals a nonconstant column vector

times a constant row vector. This testable property turns out to be exactly what characterizes

the multiple-IV model.

Proposition B.2. Let a spectrum sw(ω) for wt = (y′t, z̃
′
t)
′ be given, satisfying the assumptions

of Proposition 1. There exists a model of the form in Assumptions 1 and 2 which generates

the spectrum sw(ω) if and only if there exist ny-dimensional real vectors ζ`, ` ≥ 0, and an

nz-dimensional constant real vector η of unit length such that

syz̃(ω) = ζ(e−iω)η′, ω ∈ [0, 2π], (B.7)

where ζ(L) =
∑∞

`=0 ζ`L
`.

Assuming henceforth that the factor structure obtains, we now show that identification

in the multiple-IV model reduces to the single-IV case. It is convenient first to reparametrize

the model slightly, by setting Σv = Σz̃ − α2λλ′ and treating Σz̃ as a basic model parameter

instead of Σv. We then impose the requirement that Σz̃ − α2λλ′ be positive semidefinite.

Clearly, Σz̃ = Var(z̃t) is point-identified. Next, note from (B.6) that λ is point-identified and

equal to the η vector in equation (B.7). This is because any rank-1 factorization of a matrix

is identified up to sign and scale, and we have normalized η to have length 1. Let Ξ be any

(nz − 1)× nz matrix such that ΞΣ
−1/2
z̃ λ = 0. Define the nz × nz matrix

Q ≡

(
1

λ′Σ−1
z̃ λ

λ′Σ−1
z̃

ΞΣ
−1/2
z̃

)
.

Since Q is point-identified (given a choice of Ξ), it is without loss of generality to perform
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identification analysis based on the linearly transformed IV residuals

Qz̃t =


α

0
...

0

 ε1,t + ṽt, ṽt ∼ N

(
0,

(
1

λ′Σ−1
z̃ λ
− α2 0

0 ΞΞ′

))
.

Notice, however, that α only enters into the equation for the first element of Qz̃t, and the

(nz − 1) last elements of Qz̃t are independent of the first element (and independent of yt

at all leads and lags). Hence, it is without loss of generality to limit attention to the first

element of Qz̃t when performing identification analysis for Θi,j,` and α. The first element of

Qz̃t equals z̆t as defined in equation (19) in the main text.B.2

Additional restrictions on the IVs can ensure point identification. In particular, if nz ≥ 2

and the researcher is willing to restrict Σv to be diagonal, then α is point-identified from any

off-diagonal element of Var(z̃t) = Σv + α2λλ′, since λ is point-identified.

B.2The above display implies that we must have α2 ≤ (λ′Var(z̃t)
−1λ)−1, which is precisely what the upper

bound for α2 yields when applied to z̆t.

8



B.3 Instruments correlated with multiple shocks

In this section, we ask how much can be said about forecast variance ratios if the researcher

is only willing to assume that the observed set of external instruments zt is correlated with

at most nεx shocks, collected in the vector εx,t. Hence, in this section we do not impose the

exclusion restriction that only the first shock ε1,t be correlated with the IV(s).

Extended model and FVR. Without loss of generality, suppose the nz IVs are corre-

lated with the first nεx of the nε shocks. Denote this sub-vector of shocks by εx,t. For now,

nεx need not be known to the econometrician. We define the extended SVMA-IV model as

yt = Θ(L)εt, Θ(L) ≡
∞∑
`=0

Θ`L
`, (B.8)

zt =
∞∑
`=1

(Ψ`zt−` + Λ`yt−`) + Γεx,t + Σ1/2
v vt︸ ︷︷ ︸

z̃t

, (B.9)

where Γ is nz×nεx . We continue to impose i.i.d. normality of the shocks, cf. Assumption 3.

Our object of interest is the forecast variance ratio with respect to the nz particular linear

combinations of shocks that enter into the IV equations, Γεx,t:

FVRi,` ≡ 1− Var(yi,t+` | {yτ}−∞<τ≤t, {Γεx,τ}t<τ<∞)

Var(yi,t+` | {yτ}−∞<τ≤t)

=

∑`−1
m=0 Cov(yit, z̃t−m)(ΓΓ′)−1 Cov(yit, z̃t−m)′

Var(yi,t+` | {yτ}−∞<τ≤t)
. (B.10)

In the following we provide upper and lower bounds on this object. Given ΓΓ′, the FVR is

point-identified, so we need to derive the identified set for ΓΓ′. At the end of this section we

discuss how the FVR with respect to Γεx,t relates to other objects of interest.

Similar to Appendix B.2, the testable restriction of the model (B.8)–(B.9) is that the

joint spectrum of yt and z̃t has a rank-nεx factor structure. If this assumption is not re-

jected, we can reduce the instrument vector to dimension min(nz, nεx) without affecting the

identification of FVRi,`.
B.3 In particular, we may assume that Γ has full row rank, which we

do from now on, thus justifying the second equality in (B.10).

B.3The argument is very similar to the one-shock case in Appendix B.2 and is available upon request.
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Identified set for Γ. Define Σz̃ ≡ Var(z̃t). Proceeding similarly to the proof of Propo-

sition 1, we can show that a given Γ is consistent with the joint spectral density of the data

if and only if ΓΓ′ has full row rank,

Σz̃ − ΓΓ′ ≥ 0, (B.11)

and

ΓΓ′ − 2πsz̃†(ω) ≥ 0, ∀ ω ∈ [0, π], (B.12)

where sz̃†(ω) = syz̃(ω)∗sy(ω)−1syz̃(ω) and we use the notation A ≥ B if A− B is Hermitian

positive semi-definite (and similarly for ≤). Sharp bounds on FVRi,` thus follow from min-

imizing/maximizing (B.10) over the space of nz × nz symmetric positive definite matrices

ΓΓ′ subject to constraints (B.11)–(B.12).

Lower bound on FVR. We now establish a sharp lower bound on the numerator in the

definition (B.10) of the FVR (the denominator is point-identified). Observe that

`−1∑
m=0

Cov(yit, z̃t−m)(ΓΓ′)−1 Cov(yit, z̃t−m)′

=
`−1∑
m=0

Cov(yit, z̃t−m)Σ−1
z̃ Cov(yit, z̃t−m)′ +

`−1∑
m=0

Cov(yit, z̃t−m){(ΓΓ′)−1 − Σ−1
z̃ }Cov(yit, z̃t−m)′

≥
`−1∑
m=0

Cov(yit, z̃t−m)Σ−1
z̃ Cov(yit, z̃t−m)′,

where the inequality uses the constraint (B.11). The above lower bound is sharp: It is

attained in a model where Σv = 0nz×nz and ΓΓ′ = Σz̃, i.e., when all IVs are perfect.B.4

Upper bound on FVR. While we have not been able to derive a closed-form expression

for the sharp upper bound on the FVR, it is straight-forward to numerically compute it. Let

Sn denote the space of n× n real symmetric positive definite matrices, and let tr(A) denote

the trace of a matrix A. The sharp upper bound on the numerator in the definition (B.10)

B.4Note that ΓΓ′ = Σz̃ = 2πsz̃(ω) satisfies constraint (B.12) by the Schur complement formula and the
positive semidefiniteness of the spectrum of (y′t, z̃

′
t)
′.
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of the FVR is given by the value of the program

max
X∈Snz

tr(XC) + tr(AC) (B.13)

X ≤ B(ω), ω ∈ [0, π].

Here X is a stand-in for (ΓΓ′)−1 − Σ−1
z̃ , C ≡

∑`−1
m=0 Cov(yit, z̃t−m)′Cov(yit, z̃t−m), A ≡ Σ−1

z̃ ,

and B(ω) ≡ 1
2π
sz̃†(ω)−1 − Σ−1

z̃ . We can solve the above program to arbitrary accuracy by

casting it as a (convex) semi-definite program with a finite number of constraints. Partition

the interval [0, π] into N equal-length pieces, and consider the relaxed constraint set

X ≤ B̃m, m ∈ {1, 2, . . . , N}, (B.14)

where B̃m ≡ N
π
×
∫ m π

N

(m−1) π
N
B(ω) dω. As N →∞, this constraint set approximates that of the

original problem arbitrarily well, but for any finite N the value of the discretized program

provides an upper bound on the numerator in (B.10). Efficient numerical algorithms to

compute the solution to semidefinite programs of the form (B.13)–(B.14) are available in

Matlab and other environments.B.5

Alternatively, we can derive non-sharp upper bounds on the FVR numerator (B.10)

in closed form. For example, one conservative upper bound is obtained by maximizing

tr(XC) + tr(AC) subject to X + Σ̃−1
z̃ ≤

(∫ π
−π sz̃†(ω) dω

)−1

= Var(z̃†t )
−1. This yields the

upper bound
`−1∑
m=0

Cov(yit, z̃t−m) Var(z̃†t )
−1 Cov(yit, z̃t−m)′,

which binds if the shocks εx,t are all recoverable, but is otherwise not sharp. A less conser-

vative – but still generally suboptimal – upper bound is given by

tr(AC) +
nz∑
m=1

inf
ω∈[0,π]

B̌mm(ω),

where B̌mm(ω) is the (m,m) element of B̌(ω) ≡ C1/2′B(ω)C1/2, and C = C1/2C1/2′. This

latter upper bound is sharp when nz = 1, in which case the lower and upper bounds in this

section reduce to the FVR bound expressions derived in Section 3.

B.5See for example http://cvxr.com/cvx/doc/sdp.html. To transform our constraints into ones involving
real matrices, note that a Hermitian matrix with real part A and imaginary part B is positive semi-definite
if and only if the real symmetric matrix

(
A B′

B A

)
is positive semi-definite.
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Interpretation. We highlight two special cases where the FVR with respect to Γεx,t

(which we partially identified above) is of interest.

First, as in Mertens & Ravn (2013), one may assume that the nz instruments are cor-

related with the same number nεx = nz of structural shocks. In that case Γ is square and

nonsingular, so the FVR with respect to Γεx,t is the same as the FVR with respect to the

shocks εx,t themselves. Moreover, if we further assume that all included shocks εx,t are re-

coverable, then z̃†t ≡ E(z̃t | {yτ}−∞<τ<∞) = Γεx,t, so the historical decomposition of yt with

respect to εx,t is point-identified as E(yt | {εx,t}−∞<τ≤t) = E(yt | {z̃†τ}−∞<τ≤t).
Second, consider the case with a single IV but possibly several included shocks, nεx > 1 =

nz. The above analysis shows that, even though the IV exclusion restrictions in the baseline

model (3) fail, the data are informative about the FVR with respect to the particular linear

combination Γεx,t of shocks that enters the IV equation. The FVR with respect to this

particular linear combination of shocks is evidently a lower bound for the FVR with respect

to the full vector εx,t of shocks that are correlated with the IV.
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B.4 Invertibility and SVAR-IV

In this section we characterize the bias of SVAR-IV methods when shocks may be nonin-

vertible. Throughout we assume the validity of the SVMA-IV model in Assumptions 1 to 3.

Our analysis builds on results by Lippi & Reichlin (1994) and Forni et al. (2019), who do

not consider identification using external instruments.

The SVAR-IV (or “proxy SVAR”) strategy identifies structural shocks by using the exter-

nal IV to rotate the forecast errors from a reduced-form VAR (Stock, 2008; Stock & Watson,

2012; Mertens & Ravn, 2013; Gertler & Karadi, 2015; Ramey, 2016). For analytical clarity,

we work with a VAR(∞) model with forecast errors ut ≡ yt − E(yt | {yτ}−∞<τ<t). Suppose

the single residualized IV z̃t = αε1,t + σvvt is used by the econometrician. Under the SVAR-

IV assumption of nε = ny and invertibility of all shocks, we would have ut = Θ0εt, with Θ0

square and nonsingular. Then the shock of interest would be identified as ε1,t = γ′ut, where

γ ≡ (Σ′uz̃Σ
−1
u Σuz̃)

−1/2Σ−1
u Σuz̃, Σuz̃ ≡ Cov(ut, z̃t), and Σu ≡ Var(ut).

We now ask what happens to the outputs of the SVAR-IV procedure if the invertibility

assumption does not hold and nε ≥ ny.

Proposition B.3. Assume the SVMA-IV model in Assumptions 1 to 3. The shock that is

(mis)identified by SVAR-IV is given by

ε̃1,t ≡ γ′ut =
nε∑
j=1

∞∑
`=0

aj,`εj,t−`, (B.15)

where the scalar coefficients {aj,`} satisfy
∑nε

j=1

∑∞
`=0 a

2
j,` = 1 and a1,0 =

√
R2

0. The associ-

ated SVAR-IV impulse responses are given byB.6

Θ̃•,1,` ≡ Cov(yt, ε̃1,t−`) =
nε∑
j=1

∞∑
m=0

aj,mΘ•,1,`+m, ` = 0, 1, 2, . . . ,

and the impact impulse responses satisfy

Θ̃•,1,0 =
1√
R2

0

Θ•,1,0.

Under noninvertibility, SVAR-IV mis-identifies the shock as a distributed lag of all the

B.6In any SVAR(∞) model, the impulse responses implied by the model must equal the local projections
of the outcomes on the identified shock(s). This follows from the Wold representation.

13



shocks in the underlying model, with the coefficient on the true shock of interest ε1,t equal

to
√
R2

0 (the square root of the degree of invertibility, cf. Section 2.1). This causes impulse

responses to be conflated across horizons and shocks. At the impact horizon, SVAR-IV

overstates the magnitudes of the true impulse responses Θ•,1,0 (to a one standard deviation

shock) by a factor of 1/
√
R2

0. Thus, the SVAR-IV-implied one-step-ahead forecast variance

decompositions for the first shock overstate the true one-step-ahead FVRs (as defined in

Section 2.1) by a factor of 1/R2
0. The bias of SVAR-IV-implied multi-step forecast variance

decompositions depends in more complicated ways on the sequence of true impulse responses.

In summary, while SVAR-IV analysis solves the familiar “rotation problem” in SVAR

analysis, it does not solve the invertibility problem. The issue is not that the IV selects a

suboptimal linear combination γ of the forecast residuals ut under noninvertibility, since it

can be verified that γ′ut ∝ E(ε1,t | ut) regardless of invertibility.B.7 Rather, SVAR methods

fail because they assume that the time-t forecast residuals suffice to recover ε1,t (Lippi &

Reichlin, 1994). Only under invertibility (i.e., R2
0 = 1) do we have aj,` = 0 for all (j, `) 6=

(1, 0), so that the SVAR-IV shock ε̃1,t equals the true shock ε1,t. The higher the degree

of invertibility R2
0, the smaller is the extent of the SVAR-IV bias, as discussed by Sims

& Zha (2006), Forni et al. (2019), and Wolf (2020). An explicit illustration of SVAR-IV

mis-identification is provided in Appendix B.5.

B.7In particular, no other linear combination γ can yield a representation (B.15) where the weight a1,0
exceeds

√
R2

0 (subject to Var(ε̃1,t) = 1). Thus, the IV handles the identification problem as well as possible
subject to the constraints imposed by the (erroneous) invertibility assumption. As discussed in Section 2.1,
dynamic rotations circumvent this issue by obtaining the shock ε̃1,t as a function of current and future
reduced-form residuals {uτ}τ≥t. An argument similar to that in the proof of Proposition B.3 shows that,

with such dynamic rotations, the weight on the true shock of interest is bounded above by
√
R2
∞. Dynamic

rotations can thus solve the identification problem if and only if the shock of interest is recoverable.
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B.5 Illustration in a structural macro model

In Section 6 we use several simple analytical examples to illustrate how our upper bound

works. In this section we complement those simple examples with a quantitative exercise.

The nature of our exercise is as follows. We consider an econometrician observing (i) a

small set of macroeconomic aggregates generated from the model of Smets & Wouters (2007)

and (ii) noisy measures of some of the model’s true underlying structural shocks (i.e., valid

external instruments). For clarity, we abstract from any sampling uncertainty and assume

that the econometrician observes an infinite amount of data, so the joint spectral density of

observed macro aggregates and external IVs is perfectly known to her. Given this spectral

density, she uses our bounds to draw conclusions about variance decompositions and the

degree of invertibility, without exploiting the underlying structure of the model. Overall,

the point of this exercise is to show that our conclusions on likely tightness of the upper

bound are not an artifact of the particular stylized environments considered in Section 6,

but similarly obtain in quantitatively relevant, dynamic structural macro models, for exactly

the same economic reasons.

B.5.1 Preliminaries

We employ the Smets & Wouters (2007) model. Throughout, we parametrize the model

according to the posterior mode estimates of Smets & Wouters (2007).B.8 Following the

canonical trivariate VAR in the empirical literature on monetary policy shock transmission,

our baseline specification assumes the econometrician observes aggregate output, inflation,

and the short-term policy interest rate; we consider additional observables below. These

macro aggregates are all stationary in the model, so they should be viewed as deviations

from trend. The model features seven unobserved shocks, so not all shocks can be invertible

in the baseline specification.

The econometrician observes a single external instrument zt for the shock of interest ε1,t:

zt = αε1,t + σvvt.

We normalize α = 1 throughout and compute identified sets for two different degrees of

informativeness of the external instrument, 1
1+σ2

v
∈ {0.25, 0.5}. We do not attach any specific

B.8Our implementation of the Smets-Wouters model is based on Dynare replication code kindly provided
by Johannes Pfeifer. The code is available at https://sites.google.com/site/pfeiferecon/dynare.
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economic interpretation to the IV in the context of the model.

We separately consider three different shocks of interest: a monetary shock, a technology

shock, and a forward guidance shock. The conventional monetary shock as well as the

technology shock are already included in the original model of Smets & Wouters. For the

forward guidance shock, we depart from their model by assuming that monetary policy

shocks are known two quarters in advance; that is, we change the model’s Taylor rule to

rt = ρrrt−1 + (1− ρr)× (φππt + φyŷt + φdy(ŷt − ŷt−1)) + εmt−2,

where rt denotes the nominal interest rate, πt denotes the inflation, ŷt is the output gap, and

εt is the monetary shock.B.9 Overall, these three shocks are chosen in line with our simple

analytical illustrations in Section 6, and identification will be subject to the same economic

intuition as the small-scale examples discussed there.

We emphasize that our results in the remainder of this section should not be taken

to imply that conventional monetary shocks are robustly near-invertible, or that forward

guidance and technology shocks are never invertible – clearly, our statements are always

conditional on a certain set of observables. Instead, the only purpose of this section is to

document that the simple economic intuition of Section 6 still plays out in a quantitative

macro model with rich dynamics. To further clarify this point, we finish this section by

briefly discussing how our results change with alternative sets of observables.

B.5.2 Information content of several observables

We first consider identification of monetary policy shocks, i.e., shocks to the serially corre-

lated disturbance in the model’s Taylor rule.

The monetary shock is nearly invertible. In the model of Smets & Wouters, monetary

policy shocks are the only shock to contemporaneously move inflation and nominal rates

in opposite directions (Uhlig, 2005). Given this unique conditional co-movement, the in-

tuition offered in Section 6.1 suggests that the degree of invertibility should be high, and

indeed it equals R2
0 = 0.8702, in spite of the limited importance of monetary shocks for

aggregate fluctuations in this model (Wolf, 2020). Looking forward in time does not sharpen

identification much further (R2
∞ = 0.8763), and neither does looking across the spectrum

B.9This is the notion of forward guidance discussed, for example, in Del Negro et al. (2012).
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Monetary shock: Identified set of FVRs

Figure B.1: Horizon-by-horizon identified sets for FVRs up to 10 quarters. The two lower bounds
correspond to an IV with 1

1+σ2
v

= 0.25 (lower dashed line) and an IV with 1
1+σ2

v
= 0.5.

frequency-by-frequency (α2
LB = 0.8947).B.10

Figure B.1 shows that the upper bounds on the forecast variance ratios are close to

the true values. By construction, the upper and lower bounds are proportional to the true

FVRs. The lower bound scales one-for-one with instrument informativeness, while the up-

per bound scales one-for-one with the maximal informativeness of the data for the shock

across frequencies. Thus, near-invertibility immediately implies that the upper bounds are

throughout close to the true FVR. In contrast, the informativeness of the lower bounds

depends entirely on the strength of the IV.

B.5.3 Dynamic information content

Next, we consider the identification of technology shocks, i.e., innovations to the autoregres-

sive process of total factor productivity. This type of shock illustrates how our sharp upper

bound leverages information across frequencies.

In our baseline trivariate specification, the macro aggregates are informative about only

the longest cycles of the technology shock. Figure B.2 reports the spectral density of the

best two-sided linear predictor of the technology shock. Strikingly, this spectral density is

B.10Formally, the scaled spectral density 2πsε†1
(·) of the best two-sided linear predictor of the monetary

shock is nearly flat at around 0.9.
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Technology shock: Spectral density of best 2-sided linear predictor

Figure B.2: Scaled spectral density 2πs
ε†1

(·) of the best two-sided linear predictor of the technology

shock. A frequency ω corresponds to a cycle of length 2π
ω quarters.

small at business-cycle frequencies, but close to 1 for long-run fluctuations, with a peak of

α2
LB = 0.9084. Intuitively, as in our simple example in Section 6.2, technology shocks here

account for most of the long-run fluctuations, and so macro aggregates are highly informative

about the IV at low frequencies; as a result, our sharp upper bound on shock importance will

again be tight. In contrast, averaging across frequencies, the shock is neither near-invertible

(R2
0 = 0.1977) nor near-recoverable (R2

∞ = 0.2166).B.11

Consequently, Figure B.3 shows that the sharp upper bounds on FVRs are tight. As

always, the tightness of the lower bound is entirely governed by the strength of the IV.

B.5.4 Non-invertibility and news shocks

For our third example, we modify the model to include forward guidance shocks, a type of

news shock. As discussed above, a forward guidance shock is identical to a monetary shock,

except that it is anticipated two quarters in advance by economic agents. This third example

B.11The issue is that, at short horizons, other shocks – notably the price and wage mark-up shocks – also
push inflation and output in opposite directions. However, the technology shock becomes nearly invertible
with a judicious choice of further observables; in particular, including either the level of TFP or hours worked
leads to a nearly invertible representation.
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Technology shock: Identified set of FVRs

Figure B.3: Horizon-by-horizon identified sets for FVRs up to 10 quarters. The two lower bounds
correspond to an IV with 1

1+σ2
v

= 0.25 (lower dashed line) and an IV with 1
1+σ2

v
= 0.5.

illustrates the robustness of our method to non-invertibility induced by news shocks.

The forward guidance shock is highly non-invertible, though it is nearly recoverable.

Figure B.4 shows the degree of invertibility R2
` up to time t + ` of the forward guidance

shock. The figure considers horizons from ` = 0 (the degree of invertibility) up to ` = 10

(close to the degree of recoverability). Contemporaneous informativeness is limited, with

R2
0 = 0.0768; intuitively, when the forward guidance is announced, all macro aggregates

move in the same direction, suggesting to the econometrician that the economy was probably

buffeted by an ordinary demand shock.B.12 At ` = 2, however, the corresponding R2 jumps

to R2
2 = 0.8724, reaching R2

∞ = 0.8807 as the overall degree of recoverability. The economic

intuition is again simple: Two quarters from now, when the anticipated innovation finally

directly hits the Taylor rule, the interest rate response suddenly switches sign, sending a

strong signal that in fact a monetary policy shock – and not some other kind of demand

shock – had occurred. By the same logic as in Appendix B.5.2, the forward guidance shock

is nearly recoverable.

Because of non-invertibility, Figure B.5 shows that the conventional SVAR-IV approach

dramatically overstates the forward guidance FVRs. In particular, as revealed by our analysis

B.12This belief is further reinforced by the movement of nominal interest rates: Since output and inflation
have both increased (for an expansionary forward guidance shock), nominal interest rates initially increase
(as dictated by the Taylor rule), before declining two periods later.
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Forward guidance shock: Degree of invertibility at time t+ `

Figure B.4: Population R2
` for the forward guidance shock, with three observables (output,

inflation, interest rate) and seven observables (the full set in Smets & Wouters, 2007).

in Appendix B.4, the (impact) FVR is biased upward by a factor of 1/R2
0 ≈ 13 (!).B.13

Figure B.6 shows that our method instead achieves a tight upper bound on the FVR, irre-

spective of the degree of invertibility. Since the forward guidance shock is nearly recoverable,

the upper bounds of our identified sets for the different FVRs are again close to the truth,

similar to the conventional (near-invertible) monetary shock studied in Appendix B.5.2.

B.5.5 Other observables

The results in the preceding sections are designed to illustrate the economic logic of our

method. They should not, however, be interpreted as offering generally valid conclusions

on the invertibility (or lack thereof) of different structural shocks – such statements are

invariably sensitive to the choice of observables. To further emphasize this point, we in

Table B.1 compute the degrees of invertibility and recoverability for each shock, for different

sets of macro observables.

The degrees of invertibility and recoverability are by definition increasing in the number

of macroeconomic observables. For the baseline monetary shock, the degree of invertibility is

B.13Of course, for suitably chosen sets of observables (e.g., expectations about future interest rates), the
non-invertibility problem would disappear (Leeper et al., 2013). Our method is robust in the sense that it
does not require such a judicious choice of further observables – it works even under extreme non-invertibility.
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Forward guidance shock: SVAR-IV FVRs

Figure B.5: FVRs for a forward guidance shock in the Smets-Wouters model, true values and
SVAR-IV-estimated values (population limit). Baseline set of three observables.

Forward guidance shock: Identified set of FVRs

Figure B.6: Horizon-by-horizon identified sets for FVRs up to 10 quarters. The two lower bounds
correspond to an IV with 1

1+σ2
v

= 0.25 (lower dashed line) and an IV with 1
1+σ2

v
= 0.5.
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Structural illustration: Degree of invertibility/recoverability

Monetary shock Technology shock Forw. guid. shock

Macro observables R2
0 R2

∞ R2
0 R2

∞ R2
0 R2

∞

Baseline 0.8702 0.8763 0.1977 0.2166 0.0768 0.8807

+ investm. + consum. 0.9415 0.9507 0.2128 0.2384 0.0980 0.9492

+ hours 0.9272 0.9286 0.9799 0.9816 0.0774 0.9331

All observables 1 1 1 1 0.1049 1

Table B.1: Degree of invertibility R2
0 and degree of recoverability R2

∞ in Smets-Wouters model,
given three different sets of macro observables yt. “Baseline” is the 3-variable specification with
output, inflation, and short-term interest rate. The second and third rows add either (i) investment
and consumption or (ii) hours to the baseline observables. The last row has the full set of observables
considered in Smets & Wouters (2007).

high as soon as the researcher observes both nominal interest and inflation; with the full set

of observables, the shock becomes perfectly invertible. For the technology shock, the degree

of invertibility jumps to almost 1 as soon as hours worked become observable; intuitively,

this is so because, at the posterior mode of the Smets-Wouters model, most high- and low-

frequency variation of hours worked is driven by technology shocks. Finally, because none of

the observables included in the estimation exercise of Smets & Wouters are forward-looking

measures of nominal interest rates, the forward guidance shock remains highly non-invertible

regardless of the choice of observables.
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Empirical application: Forecast variance ratios, SVAR-IV
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Figure B.7: Point estimates and 90% confidence intervals for the identified sets of forecast variance
ratios/decompositions estimated by SVAR-IV, across different variables and forecast horizons. For
visual clarity, we force bias-corrected estimates/bounds to lie in [0, 1]. The interest rate variable is
the Federal Funds Rate.

B.6 Monetary policy shock application: further results

Complementing the empirical results in Section 5, Figure B.7 shows the forecast variance

ratios/decompositions estimated by a conventional SVAR-IV procedure, with bootstrap con-

fidence intervals. The conclusions about the irrelevance of monetary shocks for output growth

and inflation are even starker in this figure than in the main paper. Our bounds estimates in

Section 5 show that the irrelevance of monetary shocks is not merely an artifact of assuming

invertibility, but is instead a robust implication of the empirical covariances of the macro

aggregates yt with the monetary shock instrument zt of Gertler & Karadi (2015).
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B.7 Oil news shock application

As a second application of our method, we study the importance of news about oil supply

for aggregate business-cycle fluctuations. We use changes in oil supply expectations as an

IV for oil news shocks and obtain two main results. First, we find that such oil supply news

shocks are highly non-invertible, invalidating the standard SVAR-IV approach. Second, we

show that our invertibility-robust method again yields sharp inference: Over the past three

decades, oil news shocks have mattered little for U.S. inflation and played almost no role in

U.S. output fluctuations.

Background. Känzig (2021) constructs a measure of shocks to oil supply expectations

from high-frequency changes in asset prices around press releases of the Organization of

the Petroleum Exporting Countries (OPEC). Since news shocks are often non-invertible, as

discussed in Section 6.3, this setting is a second promising laboratory to showcase the appeal

of our SVMA-IV approach.B.14

Model. We consider the same set of endogenous macro observables yt as in Känzig (2021,

Section III.E): log real oil prices, log oil production, log oil inventories, log world industrial

production (IP), log broad U.S. nominal effective exchange rate index (NEER), log U.S.

industrial production (IP), log U.S. consumer price index (CPI), federal funds rate (FFR),

log VXO uncertainty index, and log U.S. terms of trade (TOT). Since our method requires

stationary data, we transform the following variables to log growth rates (rather than log

levels): oil production, oil inventories, world and U.S. industrial production, the nominal

effective exchange rate, and U.S. CPI. Data are monthly from April 1983 to December 2017,

as dictated by the availability of the IV. We include p = 12 lags and a constant in the

reduced-form VAR (following Känzig), and use 1,000 bootstrap draws from a homoskedastic

recursive residual VAR bootstrap.

We estimate the importance of oil shocks using both our invertibility-robust SVMA-IV

framework as well as the conventional SVAR-IV approach. Note that, due to the differences

in sample, data transformations, and bootstrap procedure, our SVAR-IV results are not

directly comparable to those reported in Känzig (2021, Table 2).

B.14We thank an anonymous referee for suggesting this application of our method.
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Results. Our first main finding is that invertibility is strongly rejected: The 90% confi-

dence interval for the identified set of the degree of invertibility is [0, 0.190], and the p-value

for the Granger causality pre-test of invertibility in Section 4 is 0.0064. We emphasize that

invertibility is strongly rejected even though the VAR includes several forward-looking fi-

nancial variables (e.g., oil prices, exchange rates, and the VIX). While these variables are

known to respond quickly to oil supply news, such fast responses are apparently not suffi-

cient to ensure invertibility; intuitively, financial variables are likely to respond quickly to

many other nuisance shocks as well, which all things equal lowers the degree of invertibility

of our shock of interest. We conclude that the analysis of oil supply news shocks calls for

invertibility-robust approaches, such as our SVMA-IV procedure.

Figures B.8 and B.9 show our partial identification robust confidence intervals for the

forecast variance ratio of the endogenous macro variables with respect to the oil news shocks.

We report point estimates and confidence intervals for the identified sets at each horizon

separately. As in Känzig (2021), we find that the data are consistent with the oil news shock

explaining a sizable portion (but not the majority) of short-run oil price fluctuations. In

spite of our weak identifying assumptions, we can furthermore conclude that – on our post-

1983 sample – oil supply news have played a limited role in U.S. consumer price fluctuations,

and have been essentially irrelevant for world and (in particular) U.S. real economic activity.

Consistent with these results, oil supply news are estimated to have an at most moderate

short-term effect on the U.S. terms of trade.

For comparison, Figures B.10 and B.11 show the analogous confidence intervals obtained

from a conventional SVAR-IV procedure. The impact FVR estimates are substantially over-

estimated relative to the invertibility-robust results, consistent with our finding of substantial

non-invertibility and with Proposition B.3. Our invertibility-robust results show that the

following conclusions from the non-robust SVAR-IV analysis are spurious: (i) Oil supply

news shocks are the overwhelming driver of oil price fluctuations in the short run; (ii) they

are important drivers of medium-run fluctuations in U.S. inflation and real activity; and (iii)

they are the dominant driver of the U.S. terms of trade at essentially all horizons.
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Oil news shock: SVMA-IV FVRs, Global Variables

Figure B.8: Point estimates and 90% confidence intervals for the identified set of oil news shock
FVRs, across different variables and forecast horizons, produced using our invertibility-robust
SVMA-IV approach. For visual clarity, we force bias-corrected estimates/bounds to lie in [0, 1].
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Oil news shock: SVMA-IV FVRs, U.S. Variables

Figure B.9: Point estimates and 90% confidence intervals for the identified set of oil news shock
FVRs, across different variables and forecast horizons, produced using our invertibility-robust
SVMA-IV approach. For visual clarity, we force bias-corrected estimates/bounds to lie in [0, 1].
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Oil news shock: SVAR-IV FVRs, Global Variables

Figure B.10: Point estimates and 90% confidence intervals for oil news shock FVRs, across
different variables and forecast horizons, produced using a conventional SVAR-IV approach. For
visual clarity, we force bias-corrected estimates/bounds to lie in [0, 1].
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Oil news shock: SVAR-IV FVRs, U.S. Variables

Figure B.11: Point estimates and 90% confidence intervals for oil news shock FVRs, across
different variables and forecast horizons, produced using a conventional SVAR-IV approach. For
visual clarity, we force bias-corrected estimates/bounds to lie in [0, 1].
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B.8 Nonparametric sieve VAR inference

In this appendix section we show that the bound estimates proposed in Section 4 are jointly

asymptotically normal under nonparametric conditions on the DGP, as long as the VAR

lag length is chosen to increase with the sample size at an appropriate rate. The nonpara-

metric viewpoint does not change the practical steps necessary to implement the inference

strategy; it only provides regularity conditions under which it is asymptotically innocuous

to approximate the true VAR(∞) data generating process by a finite-lag VAR. We utilize

the classic sieve VAR results of Lewis & Reinsel (1985) (who build on the univariate results

of Berk, 1974) to prove asymptotic normality of those nonlinear functionals of the estimated

VAR spectrum that appear in our bounds. Our main result below is similar in spirit to the

abstract theorem in Saikkonen & Lutkepohl (2000, Thm. 2), although our regularity condi-

tions are more easily verifiable as they are tailored to our parameters of interest (however,

unlike Saikkonen & Lutkepohl, we only consider stationary data).

The purpose of this section is merely to demonstrate that existing sieve VAR theory

implies that empirical SVMA-IV analysis can be carried out in a nonparametric fashion. We

do not claim to provide conceptually new insights into sieve VAR econometrics. Although

here we only prove the validity of the sieve VAR strategy for delta method inference, we

expect that similar results could be established for bootstrap sieve VAR inference in the

SVMA-IV model, see Gonçalves & Kilian (2007), Meyer & Kreiss (2015), and references

therein.

B.8.1 Assumptions, parameters of interest, and estimator

We first define the general class of parameters of interest for empirical SVMA-IV analysis,

and we place assumptions on the DGP and VAR lag length. Our goal is to stay close to the

set-up in Lewis & Reinsel (1985), so as to demonstrate how existing asymptotic results can

be readily adapted to study sieve VAR estimators for SVMA-IV purposes.

We assume that the data are generated by a reduced-form VAR(∞) model with i.i.d.

innovations. The observations are denoted by Wt ≡ (y′t, zt)
′ ∈ RnW , t = 1, 2, . . . , T , where

nW ≡ ny + 1. In order to make clear the connection with Lewis & Reinsel (1985), we

assume that the data are known to have mean zero. It is straight-forward to extend all

results to allow for non-zero means by including an intercept in the estimated VAR. Let

‖B‖ ≡ (tr(B′B))1/2 denote the Frobenius norm.
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Assumption B.1. The process {Wt} is generated by the mean-zero stationary VAR(∞)

model

A(L)Wt = et.

Here A(z) ≡ InW −
∑∞

`=1A`z
` for z ∈ C, and A` ∈ RnW×nW for all `. We impose the

following conditions:

i) det(A(z)) 6= 0 for all |z| ≤ 1, and
∑∞

`=1 ‖A`‖ <∞.

ii) {et} is an nW -dimensional i.i.d. process with E(et) = 0nW×1, Σ ≡ Var(et) is positive

definite, and E‖et‖8 <∞.

These conditions are the same as in Lewis & Reinsel (1985), except that we here assume

that et has 8 moments instead of just 4.B.15 Meyer & Kreiss (2015) discuss the generality of

assuming a reduced-form VAR(∞) with i.i.d. disturbances, see also Kreiss et al. (2011) for

more details in the univariate case. Assuming the SVMA-IV model (1)–(3) holds, the i.i.d.

assumption on the one-step-ahead reduced-form forecast errors et is automatically satisfied,

provided that the structural shocks (ε′t, vt)
′ are themselves i.i.d. and either (i) invertible,

or (ii) Gaussian (regardless of invertibility). Although we are here deliberately aiming at

conceptual clarity rather than full generality, we expect it would be straight-forward to

weaken the i.i.d.-ness assumption on et by appealing to a suitable multivariate version of

the sieve VAR result of Gonçalves & Kilian (2007), who assume heteroskedastic martingale

difference innovations.

Next, we define the class of parameters of interest for empirical SVMA-IV analysis. Define

the two matrix-valued functions

Acos(ω) ≡
∞∑
`=1

A` cos(ω`), Asin(ω) ≡
∞∑
`=1

A` sin(ω`), ω ∈ [0, 2π].

The parameter of interest is of the form

ψ ≡
∫ 2π

0

h(ω)′g(Acos(ω), Asin(ω),Σ) dω,

where we define the functions h : [0, 2π] → RK and g : Aδ × SnW → RK , the set Aδ =

{(B1, B2) ∈ RnW×nW×RnW×nW : | det(InW−B1−iB2)| ≥ δ}, and the fixed number δ > 0 that

B.15We only use more than four moments in the proofs of Lemmas B.6 to B.8 below, where the extra
moments make the arguments more transparent.
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is strictly smaller than infω∈[0,2π] | det(A(eiω))|. SnW denotes the set of nW × nW symmetric

positive definite matrices.

For appropriate choices of h(·) and g(·), the above class of parameters includes almost

all the parameters/bounds in SVMA-IV analysis.B.16 For example, the class contains (i)

elements Σij of Σ, (ii) the degree of recoverability R2
∞ =

∫ 2π

0
syz̃(ω)∗sy(ω)−1syz̃(ω) dω, and

(iii) autocovariances E(wi,twj,t−`) =
∫ 2π

0
eiω`sw,ij(ω) dω. Here wt ≡ (y′t, z̃t)

′, and for all

ω ∈ [0, 2π],

sw(ω) =

(
sy(ω) syz̃(ω)

sz̃y(ω) sz̃(ω)

)
=

1

2π

(
(Iny , 0ny×1)(Acos(ω) + iAsin(ω))−1 0ny×1

01×ny 1

)

× Σ

(
(Acos(ω)− iAsin(ω))−1′(Iny , 0ny×1)′ 0ny×1

01×ny 1

)
.

Other SVMA-IV parameters can be constructed as nonlinear transformations of a finite

number of autocovariances. By the Cramér-Wold device, it is without loss of generality to

consider vector-valued (rather than matrix-valued) functions h(·) and g(·). In the following,

we further assume K = 1 so that both h(·) and g(·) are scalar. This eases the notation

without sacrificing essential generality, as should be clear from the proofs.

We place certain smoothness conditions on the parameter of interest, thus permitting a

delta method argument.

Assumption B.2. The function h(·) is continuous on [0, 2π]. On any non-empty, compact

subset of the domain Aδ × SnW , the function g(·, ·, ·) is twice continuously differentiable.

Denote the partial derivatives by g1(B1, B2, S) ≡ ∂g(B1,B2,S)
∂ vec(B1)

, g2(B1, B2, S) ≡ ∂g(B1,B2,S)
∂ vec(B2)

, and

g3(B1, B2, S) ≡ ∂g(B1,B2,S)
∂ vec(S)

. At the true VAR parameters {A`} and Σ, each of the functions

ω 7→ gj(Acos(ω), Asin(ω),Σ), j = 1, 2, 3, belongs to L2(0, 2π) (element-wise).

The smoothness conditions in Assumption B.2 are easily verified for all parameters of interest

in SVMA-IV analysis, since Assumption B.1 ensures that the true VAR spectrum is non-

singular.

Finally, we define a sieve VAR estimator as the sample analogue of the population pa-

rameter of interest. For any p ∈ N, define Xt(p) ≡ (W ′
t−1, . . . ,W

′
t−p)

′ ∈ RnW p and the

B.16The only exception is the parameter supω∈[0,2π] sz̃†(ω), which is discussed in the main text.
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least-squares VAR estimator

β̂(p) ≡
(
Â1(p), . . . , Âp(p)

)
≡

(
T∑

t=p+1

Wt(p)Xt(p)
′

)(
T∑

t=p+1

Xt(p)Xt(p)
′

)−1

.

Let Σ̂(p) ≡ (T − p)−1
∑T

t=p+1 êt(p)êt(p)
′, where êt(p) ≡ Wt − β̂(p)Xt(p). Define also

Âcos(ω; p) ≡
p∑
`=1

Â` cos(ω`), Âsin(ω; p) ≡
p∑
`=1

Â` sin(ω`), ω ∈ [0, 2π].

The VAR(p) estimator of the parameter of interest ψ is then

ψ̂(p) ≡
∫ 2π

0

h(ω)′g(Âcos(ω; p), Âsin(ω; p), Σ̂) dω.

The VAR lag length p = pT must be chosen to grow with the sample size T at an appropriate

rate, unless the true DGP is a finite-order VAR.

Assumption B.3. pT ∈ N is a deterministic function of the sample size T such that p3
T/T →

0 and T 1/2
∑∞

`=pT+1 ‖A`‖ → 0 as T →∞.

These conditions are adopted from Lewis & Reinsel (1985, Thm. 2), see also Berk (1974).

The last condition in Assumption B.3 amounts to oversmoothing (i.e., choosing the lag

length p so large that the variance dominates the mean square error), which ensures that

the nonparametric bias does not show up in asymptotic limiting distributions. If the partial

autocorrelations of the data decay exponentially fast with the lag length, Assumption B.3 is

satisfied by choosing pT ∝ T φ for any φ ∈ (0, 1/3). If the true DGP is a finite-order VAR,

we may select pT to be any constant greater than the true lag length.

B.8.2 Main convergence results

We now state our main results on the asymptotic normality of the sieve VAR estimator and

the consistency of the asymptotic variance estimator.

In preparation for stating our results, define for all T the vector νT = (ν ′1,T , . . . , ν
′
pT ,T

)′ ∈
Rn2

W pT , where

ν`,T ≡
∫ 2π

0

h(ω) {g1(Acos(ω), Asin(ω),Σ) cos(ω`) + g2(Acos(ω), Asin(ω),Σ) sin(ω`)} dω ∈ Rn2
W
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for ` = 1, 2, . . . , pT . Define also

ξ ≡
∫ 2π

0

h(ω)g3(Acos(ω), Asin(ω),Σ) dω ∈ Rn2
W .

We also define the estimators ν̂T and ξ̂(pT ) of νT and ξ obtained by substituting Acos(·)
and Asin(·) with Âcos(·; pT ) and Âsin(·; pT ) in the above formulas. Finally, we define Γ(p) ≡
E(Xt(p)Xt(p)

′) for all p ∈ N and the sample analogue Γ̂(p) ≡ (T − p)−1
∑T

t=p+1Xt(p)Xt(p)
′.

In the rest of this section, all convergence statements are understood to be taken as T →∞.

Our first main proposition states that the sieve VAR estimator of the parameter of

interest is asymptotically normal under our nonparametric conditions on the data generating

process, the conditions on the estimated VAR lag order, and the regularity conditions on

the parameter of interest.

Proposition B.4. Let Assumptions B.1 to B.3 hold. Assume σ2
ψ ≡ limT→∞ ν

′
T (Γ(pT )−1 ⊗

Σ)νT + ξ′Var(et ⊗ et)ξ is strictly positive and that the limit exists. Then

(T − pT )1/2(ψ̂(pT )− ψ)
d→ N(0, σ2

ψ).

Under our regularity conditions on the parameter of interest, the convergence rate of the

sieve VAR estimator ψ̂(pT ) is (T − pT )−1/2 = O(T−1/2). The condition that σ2
ψ exists and

is nonzero rules out degenerate parameters that can be estimated super-consistently. This

condition could for example be violated if the true parameter of interest is on the boundary

of its parameter space (e.g., if the true FVD is 0, or the true degree of invertibility is 1).

Such issues are not unique to SVMA-IV and could similarly arise in SVAR inference.

Our second main proposition states that the usual delta method standard errors for a

VAR(pT ) model are valid asymptotically.

Proposition B.5. Let the assumptions of Proposition B.4 hold. Let σ̂2
ψ(pT ) ≡ ν̂ ′T (Γ̂(pT )−1⊗

Σ̂(pT ))ν̂T + ξ̂(pT )′Ξ̂(pT )ξ̂(pT ), where χ̂t(pT ) ≡ vec(êt(pT )êt(pT )′ − Σ̂(pT )) and Ξ̂(pT ) ≡ (T −
pT )−1

∑T
t=pT+1 χ̂t(pT )χ̂t(pT )′. Then

σ̂2
ψ(pT )

p→ σ2
ψ.

Observe that σ̂2
ψ(pT ) is precisely the asymptotic variance estimator for ψ̂(pT ) that one would

compute from the delta method formula based on a VAR(pT ) model for the data.

To summarize, Propositions B.4 and B.5 imply that delta method inference based on
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the estimated VAR(pT ) process is valid asymptotically even if the true DGP is a VAR(∞).

Hence, the partial identification robust confidence intervals proposed in Section 4 are valid

under our regularity conditions. This conclusion is consistent with the finite-sample simula-

tion evidence presented in Section 7.
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B.9 Additional proofs and auxiliary lemmas

Here we prove Lemma 1 and all additional results stated in this appendix. We first prove

results related to the SVMA-IV identification analysis. Then we address the sieve VAR

convergence results.

B.9.1 Proof of Lemma 1

We focus on the semidefiniteness statement. Decompose B = B1/2B1/2∗ and define b̃ =

B−1/2b. The statement of the lemma is equivalent with the statement that In − x−1b̃b̃∗ is

positive semidefinite if and only if x ≥ b∗b. Let ν be an arbitrary n-dimensional complex

vector satisfying ν∗ν = 1. Then

ν∗
(
In − x−1b̃b̃∗

)
ν = 1− b̃∗b̃

x
cos2

(
θ(ν, b̃)

)
,

where θ(ν, b̃) is the angle between ν and b̃. Evidently, x−1b̃∗b̃ ≤ 1 is precisely the condition

needed to ensure that the above display is nonnegative for every choice of ν.

B.9.2 Auxiliary lemma for proof of Proposition B.1

Lemma B.1. Let xt and x̃t be two stationary n-dimensional Gaussian time series whose

spectral densities sx(ω) and sx̃(ω) are such that sx̃(ω)− sx(ω) is positive semidefinite for all

ω ∈ [0, 2π]. Then Var(µ′xt+` | {xτ}−∞<τ≤t) ≤ Var(µ′x̃t+` | {x̃τ}−∞<τ≤t) for all ` = 1, 2, . . .

and all constant vectors µ ∈ Rn.

Proof. We may define an n-dimensional stationary Gaussian process νt with spectral density

sν(ω) = sx̃(ω) − sx(ω), ω ∈ [0, 2π], and such that the νt process is independent of the xt

process. Then the process x̌t = xt + νt has the same distribution as the x̃t process. Hence,

Var(µ′x̃t+` | {x̃τ}−∞<τ≤t) = Var(µ′x̌t+` | {x̌τ}−∞<τ≤t)

≥ Var(µ′x̌t+` | {xτ , νt}−∞<τ≤t)

= Var(µ′xt+` | {xτ , νt}−∞<τ≤t) + Var(µ′νt+` | {xτ , νt}−∞<τ≤t)

≥ Var(µ′xt+` | {xτ , νt}−∞<τ≤t)

= Var(µ′xt+` | {xτ}−∞<τ≤t).
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The second equality above uses that the independence of the xt and νt processes implies that

xt+` and νt+` are independent also conditional on {xτ , νt}−∞<τ≤t.

B.9.3 Proof of Proposition B.1

The proof proceeds in two steps. First, for a given known α, we show that FVD i,` is

sharply bounded above by 1 and below by (B.4). Second, we show that the lower bound is

monotonically decreasing in α, so that the overall lower bound is attained by αUB.

1. Given α ∈ (αLB, αUB], the numerator of FVD i,` is point-identified (see below), so we need

only concern ourselves with the denominator. We can write the denominator as

Var(yi,t+` | {ετ}−∞<τ≤t) =
`−1∑
m=0

Θ2
i,1,m +

nε∑
j=2

`−1∑
m=0

Θ2
i,j,m

=
1

α2

`−1∑
m=0

Cov(yi,t, z̃t−m)2 +
nε∑
j=2

`−1∑
m=0

Θ2
i,j,m. (B.16)

Given α, the first term in (B.16) is point-identified (note that it equals the numerator

of the FVD), while the second is not. To upper-bound FVD i,`, we seek to make that

second term as small as possible. In fact, we can always set it to 0. To see this, let

{Θ•,j,m}2≤j≤nε,0≤m<∞ denote some sequence of impulse responses for the structural shocks

j 6= 1 that is consistent with the second-moment properties of the data. Since α ∈
(αLB, αUB], such a sequence exists by Proposition 1. Now, for a given forecast horizon `,

instead consider the new sequence {Θ̆•,j,m}2≤j≤nε,0≤m<∞, defined via

Θ̆•,j,m =

0ny×1 if m ≤ `− 1,

Θ•,j,m−` if m > `− 1.

Then the stochastic process induced by {Θ̆•,j,m}2≤j≤nε,0≤m<∞ has the exact same second-

moment properties as the (by assumption admissible) stochastic process induced by

{Θ•,j,m}2≤j≤nε,0≤m<∞. However, by construction, we now have FVD i,` = 1, as claimed.

For the lower bound, we want to make the second term in (B.16) as large as possible.

Given a known α ∈ (αLB, αUB], define

ỹ
(α)
t = (ỹ

(α)
1,t , . . . , ỹ

(α)
ny ,t)

′ ≡ yt −
1

α

∞∑
`=0

Cov(yt, z̃t−`)ε1,t−` =
nε∑
j=2

∞∑
`=0

Θ•,j,`εj,t−`,
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whose spectral density is given by the expression stated in the proposition. We have

Var(ỹ
(α)
i,t+` | {ỹ

(α)
τ }−∞<τ≤t) ≥ Var(ỹ

(α)
i,t+` | {εj,τ}2≤j≤nε,−∞<τ≤t) =

nε∑
j=2

`−1∑
m=0

Θ2
i,j,m,

so the second term in (B.16) has an point-identified upper bound. Thus, given α, FVD i,`

is bounded below by the expression (B.4).

We now argue that the lower bound (B.4) is attained by an admissible model with the

given α. To that end, consider the Wold decomposition of ỹ
(α)
t =

∑∞
`=0 Θ̃`ε̃t−`, where the

Θ̃` matrices are ny × ny, and ε̃t is ny-dimensional i.i.d. standard normal and spanned by

{ỹ(α)
τ }−∞<τ≤t.B.17 Then Var(ỹ

(α)
i,t+` | {ỹ

(α)
τ }−∞<τ≤t) =

∑nε
j=2

∑`−1
m=0 Θ̃2

i,j,m, so the following

model attains the lower bound (B.4) and is consistent with the given spectrum sw(·):

yt =
1

α

∞∑
`=0

Cov(yt, z̃t−`)ε1,t +
∞∑
`=0

Θ̃`ε̃t−`,

z̃t = αε1,t +
√

Var(z̃t)− α2 × vt, (B.17)

(ε1,t, ε̃
′
t, vt)

′ i.i.d.∼ N(0, Iny+2).

2. Lemma B.1 implies that Var(ỹ
(α)
i,t+` | {ỹ

(α)
τ }−∞<τ≤t) is increasing in α. Hence, the ex-

pression (B.4) is decreasing in α, as claimed. At α = αUB, the representation (B.17)

has z̃t = αUBε1,t, so we can represent ỹ
(αUB)
t = yt − E(yt | {ε1,τ}−∞<τ≤t) = yt − E(yt |

{z̃τ}−∞<τ≤t).

B.9.4 Proof of Proposition B.2

The “only if” part was proved already in the text of Appendix B.2. For the “if” part, assume

that the cross-spectrum has the given factor structure. Since z̃t is serially uncorrelated, we

can write sz̃(·) = sz̃. Because sw(ω) is positive definite, the Schur complement

sz̃ − syz̃(ω)∗sy(ω)−1syz̃(ω) = sz̃ − ηζ(ω)∗sy(ω)−1ζ(ω)η′

B.17Since α > αLB , the Wold decomposition has no deterministic term, cf. the proof of Proposition 1.
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is also positive definite. Pre-multiplying the above expression by η′s−1
z̃ , post-multiplying by

s−1
z̃ η, and rearranging the positive definiteness condition, we obtain the implication that

2πζ(ω)∗sy(ω)−1ζ(ω) <
2π

η′s−1
z̃ η

, ω ∈ [0, 2π].

Now choose any α ≥ 0 such that α2 lies strictly between the left- and right-hand sides in the

above inequality. The matrix

Σv ≡ 2πsz̃ − α2ηη′

is then positive definite by Lemma 1. Moreover, the same lemma implies that

sy(ω)− 2π

α2 ζ(ω)ζ(ω)∗

is positive definite for all ω ∈ [0, 2π]. If we set Θ•,1(L) = (2π/α)ζ(L), the same arguments

as in the proof of Proposition 1 show that there exists an ny × ny matrix polynomial Θ̃(L)

such that the following model achieves the desired spectrum sw(ω):

yt = Θ•,1(L)ε1,t + Θ̃(L)ε̃t,

z̃t = αηε1,t + Σ
1/2

v vt,

(ε1,t, ε̃
′
t, v
′
t)
′ i.i.d.∼ N(0, Iny+nz+1).

Note that η assumes the role of λ.

B.9.5 Proof of Proposition B.3

According to the model (1), we can write

ut =
∞∑
`=0

M`εt−`,

for some ny × nε matrices {M`}. Let M•,j,` denote the j-th column of M`. Then

ε̃1,t = γ′ut =
nε∑
j=1

∞∑
`=0

aj,`εj,t−`,

39



where aj,` = γ′M•,j,`. We have Var(ε̃1,t) = 1 by construction of γ, so
∑nε

j=1

∑∞
`=0 a

2
j,` = 1.

The expression for Θ̃•,1,` in the proposition also immediately follows from the above display

and the fact Cov(yt, εj,t−`) = Θ•,j,`. Next, observe that

R2
0 = Var(E(ε1,t | {yτ}−∞<τ≤t))

= Var(E(ε1,t | {uτ}−∞<τ≤t))

= Var(E(ε1,t | ut))

= Cov(ut, ε1,t)
′Σ−1

u Cov(ut, ε1,t)

= M ′
•,1,0Σ−1

u M•,1,0.

Since Σuz̃ =
∑∞

`=0M` Cov(εt−`, z̃t) = αM•,1,0, we therefore have

γ =
1√

Σ′uz̃Σ
−1
u Σuz̃

Σ−1
u Σuz̃ =

1√
M ′
•,1,0Σ−1

u M•,1,0
Σ−1
u M•,1,0 =

1√
R2

0

Σ−1
u M•,1,0.

This implies

a1,0 = γ′M•,1,0 =
√
M ′
•,1,0Σ−1

u M•,1,0 =
√
R2

0.

Finally,

Θ̃•,1,0 = Cov(yt, ε̃1,t) = Cov(yt, ut)γ = Cov(ut, ut)γ = Σuγ =
1√
R2

0

M•,1,0,

and M•,1,0 = Cov(ut, ε1,t) = Cov(yt, ε1,t) = Θ•,1,0.

B.9.6 Auxiliary lemmas for sieve VAR results

Here we define notation and state auxiliary lemmas used to prove the propositions in Ap-

pendix B.8. The lemmas are proved below. For any matrix B, let ‖B‖1 denote the largest

singular value of B. Recall that ‖B‖1 ≤ ‖B‖ and ‖BC‖ ≤ ‖B‖‖C‖1 for conformable

matrices B and C. Let et(p) ≡ Wt − β(p)Xt(p) for all t and p. Finally, define

Acos(ω; p) ≡
p∑
`=1

A` cos(ω`), Asin(ω; p) ≡
p∑
`=1

A` sin(ω`), ω ∈ [0, 2π], p ∈ N.

Lemma B.2 (Lewis & Reinsel, 1985, p. 397). Let Assumptions B.1 and B.3 hold. Then

E(‖Γ̂(pT )− Γ(pT )‖2) = O(p2
T/T ).
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Lemma B.3. Let Assumptions B.1 and B.3 hold. Then ‖β̂(pT )− β(pT )‖ = Op((pT/T )1/2).

Lemma B.4. Let Assumptions B.1 and B.3 hold. Then Σ̂(pT )− (T − pT )−1
∑T

t=pT+1 ete
′
t =

op(T
−1/2).

Lemma B.5 (Lewis & Reinsel, 1985, Thm. 2). Let Assumptions B.1 and B.3 hold. Let

ν̃T ∈ Rn2
W pT be a deterministic sequence of vectors such that ‖ν̃T‖2 ≤ M < ∞ for all T .

Define

ζT ≡ (T − pT )−1/2

T∑
t=pT+1

ν̃ ′T
(
Γ(pT )−1Xt(pT )⊗ et

)
.

Then

(T − pT )1/2ν̃ ′T vec(β̂(pT )− β(pT ))− ζT
p→ 0.

Lemma B.6. Let Assumption B.1 hold. Then for all j1, j2, j3, j4 ∈ {1, 2, . . . , nW}, all p, T ∈
N such that p < T , and all m1,m2,m3,m4 ∈ Z we have

1

T − p

T∑
t=p+1

T∑
s=p+1

∣∣Cov(ej1,t+m1ej2,t+m2ej3,tej4,t, ej1,s+m3ej2,s+m4ej3,sej4,s)
∣∣ ≤ 9E‖et‖8.

Lemma B.7. Let Assumptions B.1 and B.3 hold. Then∥∥∥∥∥ 1

T − pT

T∑
t=pT+1

vec(etXt(pT )′) vec(etXt(pT )′)′ − E [vec(etXt(pT )′) vec(etXt(pT )′)′]

∥∥∥∥∥
2

= Op(p
2
T/T ),

and ∥∥∥∥∥ 1

T − pT

T∑
t=pT+1

vec(etXt(pT )′) vec(ete
′
t − Σ)′

∥∥∥∥∥
2

= Op(pT/T ).

Lemma B.8. Let Assumptions B.1 and B.3 hold. Define a sequence ν̃T as in Lemma B.5,

and assume vζ ≡ limT→∞ ν̃
′
T (Γ(pT )−1 ⊗ Σ)ν̃T exists. Then

(T − pT )1/2ν̃ ′T vec(β̂(pT )− β(pT ))
d→ N(0, vζ),

(T − pT )1/2 vec(Σ̂(pT )− Σ)
d→ N(0,Var(et ⊗ et)),

and these two random vectors are asymptotically independent.
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Lemma B.9. Let Assumptions B.1 and B.3 hold. Then

sup
ω∈[0,2π]

(
‖Âcos(ω; pT )− Acos(ω; pT )‖2 + ‖Âsin(ω; pT )− Asin(ω; pT )‖2

)
= Op(pT/T ).

Lemma B.10. Let Assumptions B.1 and B.3 hold. For M > 0, define A0
M ≡ {(B1, B2) ∈

Aδ×RnW×nW : ‖Bj −
∑∞

`=1A`‖ ≤M, j = 1, 2} and S0
M = {Σ̃ ∈ SnW : ‖Σ̃−Σ‖ ≤M}. Then

there exists an M <∞ such that

P
(

(Âcos(ω; pT ), Âsin(ω; pT )) ∈ A0
M for all ω ∈ [0, 2π], Σ̂(pT ) ∈ S0

M

)
→ 1.

Lemma B.11. Let Assumptions B.1 to B.3 hold. Define νT and ξ as in Appendix B.8.2.

Then

(T − pT )1/2
{

(ψ̂(pT )− ψ)− ν ′T vec(β̂(pT )− β(pT ))− ξ′ vec(Σ̂− Σ)
}

p→ 0.

B.9.7 Proof of Lemma B.3

The result follows almost directly from the proof of Thm. 1 in Lewis & Reinsel (1985). As

in that proof, define

U1,T ≡
1

T − pT

T∑
t=pT+1

(et(pT )− et)Xt(pT )′, U2,T ≡
1

T − pT

T∑
t=pT+1

etXt(pT )′.

Lewis & Reinsel’s arguments show that ‖U1,T‖ = Op(p
1/2
T

∑∞
`=pT+1 ‖A`‖) = op((pT/T )1/2)

and ‖U2,T‖ = Op((pT/T )1/2) under Assumptions B.1 and B.3. The rest of the arguments in

Lewis & Reinsel’s proof now yields the desired convergence rate of β̂(pT ).

B.9.8 Proof of Lemma B.4

Recall the notation U1,T and U2,T in the proof of Lemma B.3. Since

Σ̂ =
1

T − pT

T∑
t=pT+1

ete
′
t +

1

T − pT

T∑
t=pT+1

(êt − et)e′t

+
1

T − pT

T∑
t=pT+1

et(êt − et)′ +
1

T − pT

T∑
t=pT+1

(êt − et)(êt − et)′
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≡ 1

T − pT

T∑
t=pT+1

ete
′
t +R1,T +R′1,T +R2,T ,

we need to show R1,T = op(T
−1/2) and R2,T = op(T

−1/2).

Decompose R1,T as

R1,T =
1

T − pT

T∑
t=pT+1

(êt − et(pT ))e′t +
1

T − pT

T∑
t=pT+1

(et(pT )− et)e′t ≡ R̃1,T + R̃2,T .

Since êt(pT )− et(pT ) = (β(pT )− β̂(pT ))Xt(pT ), we have

‖R̃1,T‖ ≤ ‖β̂(pT )− β(pT )‖ ‖U2,T‖ = Op((pT/T )1/2)Op((pT/T )1/2) = o(T−1/2).

Moreover, since et − et(pT ) =
∑∞

`=pT+1 A`Wt−`,

E‖R̃2,T‖ ≤
1

T − pT

T∑
t=pT+1

∞∑
`=pT+1

‖A`‖E(‖Wt−`e
′
t‖)

≤
∞∑

`=pT+1

‖A`‖(E‖Wt‖2E‖et‖2)1/2

= constant×
∞∑

`=pT+1

‖A`‖

= op(T
−1/2).

Now decompose R2,T as

1

T − pT

T∑
t=pT+1

(êt − et)(êt − et)′ =
1

T − pT

T∑
t=pT+1

(êt − et(pT ))(êt − et(pT ))′

+
1

T − pT

T∑
t=pT+1

(êt − et(pT ))(et(p)− et)′

+
1

T − pT

T∑
t=pT+1

(et(p)− et)(êt − et(pT ))′

+
1

T − pT

T∑
t=pT+1

(et(pT )− et)(et(pT )− et)′
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≡ R̂1,T + R̂2,T + R̂′2,T + R̂3,T .

We have

‖R̂1,T‖ ≤ ‖β̂(pT )− β(pT )‖2‖Γ̂(pT )‖1

≤ ‖β̂(pT )− β(pT )‖2(‖Γ̂(pT )− Γ(pT )‖1 + ‖Γ(pT )‖1)

= Op(pT/T ),

using Lemma B.2 and Lemma B.3. Further,

‖R̂2,T‖ ≤ ‖β̂(pT )− β(pT )‖ ‖U1,T‖ = Op((pT/T )1/2)op((p/T )1/2) = op(T
−1/2).

Finally,

E‖R̂3,T‖ ≤ E‖et(pT )− et‖2

≤
∑∞

`=pT+1

∑∞
m=pT+1 ‖A`‖ ‖Am‖E(‖Wt−`‖ ‖Wt−m‖)

≤ constant×
(∑∞

`=pT+1‖A`‖
)2

= o(T−1).

B.9.9 Proof of Lemma B.6

By stationarity,

1

T − p

T∑
t=p+1

T∑
s=p+1

∣∣Cov(ej1,t+m1ej2,t+m2ej3,tej4,t, ej1,s+m3ej2,s+m4ej3,sej4,s)
∣∣

=

T−p−1∑
`=−(T−p−1)

(
1− |`|

T − p

) ∣∣Cov(ej1,`+m1ej2,`+m2ej3,`ej4,`, ej1,m3ej2,m4ej3,0ej4,0)
∣∣. (B.18)

We first argue that each term in the sum (B.18) is bounded. This follows from Cauchy-

Schwarz:

∣∣Cov(ej1,`+m1ej2,`+m2ej3,`ej4,`, ej1,m3ej2,m4ej3,0ej4,0)
∣∣

≤ (Var(ej1,`+m1ej2,`+m2ej3,`ej4,`) Var(ej1,m3ej2,m4ej3,0ej4,0))1/2

≤ max
1≤j≤nW

E(e8
j,t)
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≤ E‖et‖8.

Next, we show that at most 9 of the terms in the sum (B.18) are nonzero. Consider the term

corresponding to a given index ` in the sum. For the covariance in the term to be nonzero,

it must be the case that {` + m1, ` + m2, `} ∩ {m3,m4, 0} 6= ∅ (otherwise the two variables

in the covariance would be independent). At most 9 values of ` have this property.

Putting the preceding two results together, we obtain the statement of the lemma.

B.9.10 Proof of Lemma B.7

We first remark that Assumption B.1 implies {Wt} is a strictly non-deterministic time se-

ries with Wold innovation et. Thus, the Wold representation Wt = B(L)et has B(L) =∑∞
`=0B`L

` = A(L)−1, and so for fixed i, j, the elements Bi,j,` of B` are absolutely summable

across ` (Brockwell & Davis, 1991, p. 418).

Define the n2
WpT × n2

WpT matrix

R1,T ≡
1

T − pT

T∑
t=pT+1

vec(etXt(pT )′) vec(etXt(pT )′)′ − E [vec(etXt(pT )′) vec(etXt(pT )′)′]

with elements R1,T,i,j. Then ‖R1,T‖2 =
∑n2

W pT
i,j=1 R2

1,T,i,j, and the first statement of the lemma

follows if we can show that E(R2
1,T,i,j) = O(T−1) uniformly in i, j. Since E(R1,T,i,j) = 0 for

all i, j, we need to show that Var(R1,T,i,j) = O(T−1) uniformly in i, j. The typical element

R1,T,i,j has the form

1

T − pT

T∑
t=pT+1

ej1,tWj2,t−m1ej3,tWj4,t−m2 − E [ej1,tWj2,t−m1ej3,tWj4,t−m2 ]

for appropriate j1, j2, j3, j4,m1,m2 ∈ N. Here Wj,t is the j-th element of Wt, and similarly

for et. The variance of the above expression is given by

1

(T − pT )2

T∑
t=pT+1

T∑
s=pT+1

Cov(ej1,tWj2,t−m1ej3,tWj4,t−m2 , ej1,sWj2,s−m1ej3,sWj4,s−m2). (B.19)

Using the above-mentioned Wold decomposition of {Wt}, we can write

Wj2,t−m1 =
∑nW

b1=1

∑∞
`1=0 Bj2,b1,`1eb1,t−m1−`1 ,
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say. Hence, the expression (B.19) equals

1

T − pT

∞∑
`1,`2,`3,`4=0

nW∑
b1,b2,b3,b4=1

Bj2,b1,`1Bj4,b2,`2Bj2,b3,`3Bj4,b3,`4

× 1

T − pT

T∑
s,t=pT+1

Cov (ej1,teb1,t−m1−`1ej3,teb2,t−m2−`2 , ej1,seb3,s−m1−`3ej3,seb4,s−m2−`4) .

According to Lemma B.6, the above display is bounded by

1

T − pT

∞∑
`1,`2,`3,`4=0

nW∑
b1,b2,b3,b4=1

|Bj2,b1,`1Bj4,b2,`2Bj2,b3,`3Bj4,b4,`4| × 9E‖et‖8 = O(T−1), (B.20)

where the equality uses the previously-mentioned absolute summability of {B`}. This con-

cludes the proof of the first statement of the lemma.

We prove the second statement of the lemma in a similar fashion. Define the n2
WpT ×n2

W

matrix

R2,T ≡
1

T − pT

T∑
t=pT+1

vec(etXt(pT )′) vec(ete
′
t − Σ)′.

Decompose it as

R2,T =
1

T − pT

T∑
t=pT+1

vec(etXt(pT )′) vec(ete
′
t)
′ − 1

T − pT

T∑
t=pT+1

vec(etXt(pT )′) vec(Σ)′

≡ R̃1,T − R̃2,T .

Since {vec(etXt(pT )′)} is a serially uncorrelated (nWpT )-dimensional sequence, it is easy to

show that E‖R̃2,T‖2 = Op(pT/T ). Consider now the matrix R̃1,T . Its typical element

(T − pT )−1
∑T

t=pT+1 ej1,tWj2,t−mej3,tej4,t

has mean zero due to the independence of et and Wt−m for m ≥ 1. We need to show that it

has variance of order O(T−1). Said variance equals

1

(T − pT )2

T∑
s,t=pT+1

Cov (ej1,tWj2,t−mej3,tej4,t, ej1,sWj2,s−mej3,sej4,s)
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=
1

T − pT

∞∑
`1,`2=0

nW∑
b1,b2=1

Bj2,b1,`1Bj2,b2,`2

× 1

T − pT

T∑
s,t=pT+1

Cov (ej1,teb1,t−m−`1ej3,tej4,t, ej1,seb2,s−m−`2ej3,sej4,s) .

This expression is of order O(T−1), for the same reason as (B.20) above.

B.9.11 Proof of Lemma B.8

This result is very similar to Thm. 2 in Lewis & Reinsel (1985), with the twist that we

here deal also with the convergence of Σ̂. Define vζ,T ≡ ν̃ ′T (Γ(pT )−1 ⊗ Σ)ν̃T for all T . If

vζ ≡ limT→∞ vζ,T = 0, it is easy to show that (T − pT )1/2ν̃ ′T vec(β̂(pT ) − β(pT )) = op(1)

using Lemma B.5 and an mean-square bound, so in the following we assume vζ > 0. By

Lemma B.5 and the Cramér-Wold device, we need to show that, for any λ ∈ Rn2
W ,

T∑
t=pT+1

Jt,T
d→ N(0, 1),

where we define the triangular array

Jt,T ≡
ν̃ ′T (Γ(pT )−1Xt(pT )⊗ et) + λ′ vec(ete

′
t − Σ)

(T − pT )1/2
(
vζ,T + λ′Var(et ⊗ et)λ

)1/2
, t = pT + 1, . . . , T, T ∈ N.

Since {et} is i.i.d., et is independent of Xt(pT ), so {Jt,T}pT+1≤t≤T is a martingale difference

sequence with respect to the filtration generated by {et}. Also, since E[Xt(pT )] = 0, we have

E(J2
t,T ) = (T − pT )−1. The statement of the lemma then follows from Davidson (1994, Thm.

24.3) if we can show ∑T
t=pT+1 J

2
t,T

p→ 1 (B.21)

and

max
pT+1≤t≤T

|Jt,T |
p→ 0. (B.22)

We first prove (B.21), following the univariate argument in Gonçalves & Kilian (2007,

pp. 633–636). Decompose

T∑
t=pT+1

J2
t,T − 1 = {vζ,T + λ′Var(et ⊗ et)λ}−1
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×
{

1

T − pT

T∑
t=pT+1

[(
ν̃ ′T (Γ(pT )−1Xt(pT )⊗ et)

)2 − vζ,T
]

+
2

T − pT

T∑
t=pT+1

ν̃ ′T (Γ(pT )−1Xt(pT )⊗ et) vec(ete
′
t − Σ)′λ

+
1

T − pT

T∑
t=pT+1

[
(λ′ vec(ete

′
t − Σ))

2 − λ′Var(et ⊗ et)λ
]}

≡ {vζ,T + λ′Var(et ⊗ et)λ}−1
{
R1,T + 2R2,T +R3,T

}
.

The i.i.d. law of large numbers implies that R3,T = op(1). We now show that also R1,T =

op(1) and R2,T = op(1). First,

|R1,T |

=

∣∣∣∣ν̃ ′T (Γ(pT )−1 ⊗ InW )

{
1

T − pT

T∑
t=pT+1

vec(etXt(pT )′) vec(etXt(pT )′)′

− E [vec(etXt(pT )′) vec(etXt(pT )′)′]

}
(Γ(pT )−1 ⊗ InW )ν̃T

∣∣∣∣
≤ ‖ν̃T‖2 ‖Γ(pT )−1‖2

1

×
∥∥∥∥ 1

T − pT

T∑
t=pT+1

vec(etXt(pT )′) vec(etXt(pT )′)′ − E [vec(etXt(pT )′) vec(etXt(pT )′)′]

∥∥∥∥
= op(1),

where the last line follows from Lemma B.7 and Assumptions B.1 and B.3. Second, we

analogously have

|R2,T | ≤ ‖ν̃T‖ ‖λ‖ ‖Γ(pT )−1‖1

∥∥∥∥ 1

T − pT

T∑
t=pT+1

vec(etXt(pT )′) vec(etet − Σ)′
∥∥∥∥

= op(1),

again using Lemma B.7 and Assumptions B.1 and B.3. This concludes the proof of (B.21).

To prove (B.22), first note that since E‖et‖4+ε <∞ for some ε > 0, a standard argument

for i.i.d. variables gives that (T − pT )−1/2 maxpT+1≤t≤T |λ′ vec(ete
′
t − Σ)| = op(1). Next, the
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same calculations as in equation (2.12) in Lewis & Reinsel (1985, p. 401) yield

P

(
max

pT+1≤t≤T

(ν̃ ′T (Γ(pT )−1Xt(pT )⊗ et))2

T − pT
≥ ε̃

)
≤ 1

ε̃2
p2
T

(T − pT )
‖ν̃T‖4‖Γ(pT )−1‖4

1E‖et‖4E‖Wt‖4

→ 0

for any ε̃ > 0. Putting the previous two facts together, we obtain (B.22).

B.9.12 Proof of Lemma B.9

For any ω ∈ [0, 2π],

‖Âcos(ω; pT )− Acos(ω; pT )‖2 =
∑pT

`=1 ‖Â` − A`‖2 cos2(ω`)

≤
∑pT

`=1 ‖Â` − A`‖2

= ‖β̂(pT )− β(pT )‖2

= O(pT/T ),

using Lemma B.3. The argument for Asin is identical.

B.9.13 Proof of Lemma B.10

We start off by showing that the estimated VAR spectrum is nonsingular, asymptotically.

Extend the definition of the Frobenius norm to complex matrices, so ‖B‖2 ≡ tr(B∗B). The

matrix perturbation bound | det(B) − det(C)| ≤ n‖C − B‖max{‖B‖, ‖C‖}n−1 for n × n

complex matrices B and C (Bhatia, 1997, Problem I.6.11, p. 22) implies∣∣∣det(A(eiω))− det(InW − Âcos(ω; pT )− iÂsin(ω; pT ))
∣∣∣

≤ nW

∥∥∥∥∥
∞∑

`=pT+1

A`e
iω −

pT∑
`=1

(Â` − A`)eiω
∥∥∥∥∥max

{∥∥∥∥∥
∞∑
`=1

A`e
iω

∥∥∥∥∥ ,
∥∥∥∥∥
pT∑
`=1

Â`e
iω

∥∥∥∥∥
}nW−1

. (B.23)

Lemma B.9 implies

sup
ω∈[0,2π]

∥∥∥∥∥
pT∑
`=1

(Â` − A`)eiω
∥∥∥∥∥ = op(1).
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By Assumptions B.1 and B.3, the right-hand side of (B.23) therefore tends to 0 in probability

uniformly in ω, implying

inf
ω∈[0,2π]

∣∣∣det(InW − Âcos(ω; pT )− iÂsin(ω; pT ))
∣∣∣ = inf

ω∈[0,2π]
| det(A(eiω))|+ op(1) > δ + op(1).

Thus, with probability approaching 1,

(Âcos(ω; pT ), Âsin(ω; pT )) ∈ Aδ for all ω ∈ [0, 2π].

We now show that, asymptotically, the estimated VAR spectrum lies in a region where g(·) is

smooth. Let M ≡ max{2
∑∞

`=1 ‖A`‖, ‖Σ‖}+ 1. By Assumption B.2, g(·, ·, ·) is continuously

differentiable on A0
M × S0

M . Since∥∥∥∥∥Âcos(ω; pT )−
∞∑
`=1

A`

∥∥∥∥∥ ≤ ∥∥∥Âcos(ω; pT )− Acos(ω; pT )
∥∥∥+ 2

∞∑
`=1

‖A`‖ = 2
∞∑
`=1

‖A`‖+ op(1)

uniformly in ω by Lemma B.9 and Assumption B.3 (and similarly for sin instead of cos), it

follows that, with probability approaching 1,

(Âcos(ω; pT ), Âsin(ω; pT )) ∈ A0
M for all ω ∈ [0, 2π].

Moreover, by the law of large numbers for i.i.d. variables and Lemma B.4, we also have

Σ̂(pT ) ∈ S0
M with probability approaching 1.

B.9.14 Proof of Lemma B.11

We start out by applying a first-order Taylor expansion to the parameter of interest ψ. By

Lemma B.10 and Assumption B.2, we can write

g(Âcos(ω; pT ), Âsin(ω; pT ), Σ̂)− g(Acos(ω; pT ), Asin(ω; pT ),Σ)

= g1(Acos(ω), Asin(ω),Σ)′ vec(Âcos(ω; pT )− Acos(ω))

+ g2(Acos(ω), Asin(ω),Σ)′ vec(Âsin(ω; pT )− Asin(ω))

+ g3(Acos(ω), Asin(ω),Σ)′ vec(Σ̂− Σ)

+ R̂T (ω),
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where the fact that g(·, ·, ·) is twice continuously differentiable implies that there exists a

C > 0 such that the remainder satisfies

|R̂T (ω)| ≤ C
(
‖Âcos(ω; pT )− Acos(ω)‖2 + ‖Âsin(ω; pT )− Asin(ω)‖2 + ‖Σ̂− Σ‖2

)
for all ω, with probability approaching 1. Since

‖Âcos(ω; pT )− Acos(ω)‖ ≤
∑∞

`=pT+1 ‖A`‖+ ‖Âcos(ω; pT )− Acos(ω; pT )‖ = Op((pT/T )1/2)

by Lemma B.9 and Assumption B.3 (and similarly with sin instead of cos), and since ‖Σ̂−
Σ‖ = Op(T

−1/2) by Lemma B.4, we obtain∫ 2π

0

|R̂T (ω)| dω = Op(pT/T ).

Using the continuity and thus boundedness of h(·), we therefore get

ψ̂(pT )− ψ =

∫ 2π

0

h(ω)g1(Acos(ω), Asin(ω),Σ)′ vec(Âcos(ω; pT )− Acos(ω)) dω

+

∫ 2π

0

h(ω)g2(Acos(ω), Asin(ω),Σ)′ vec(Âsin(ω; pT )− Asin(ω)) dω

+

∫ 2π

0

h(ω)g3(Acos(ω), Asin(ω),Σ)′ vec(Σ̂− Σ) dω

+Op(pT/T )

=

∫ 2π

0

h(ω)g1(Acos(ω), Asin(ω),Σ)′ vec(Âcos(ω; pT )− Acos(ω; pT )) dω

+

∫ 2π

0

h(ω)g2(Acos(ω), Asin(ω),Σ)′ vec(Âsin(ω; pT )− Asin(ω; pT )) dω

+

∫ 2π

0

h(ω)g1(Acos(ω), Asin(ω),Σ)′ vec(Acos(ω; pT )− Acos(ω)) dω (B.24)

+

∫ 2π

0

h(ω)g2(Acos(ω), Asin(ω),Σ)′ vec(Asin(ω; pT )− Asin(ω)) dω (B.25)

+ ξ′ vec(Σ̂− Σ)

+Op(pT/T ).
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We now bound the nonparametric bias term (B.24); the argument for (B.25) is similar. Note

that h(·) is bounded, and∫ 2π

0

‖g1(Acos(ω), Asin(ω),Σ)′ vec(Acos(ω; pT )− Acos(ω))‖ dω

≤
∫ 2π

0

‖g1(Acos(ω), Asin(ω),Σ)‖ dω × sup
ω∈[0,2π]

‖Acos(ω; pT )− Acos(ω)‖

≤
∫ 2π

0

‖g1(Acos(ω), Asin(ω),Σ)‖ dω ×
∞∑

`=pT+1

‖A`‖

= o(T−1/2),

by Assumption B.3. We also used that Assumption B.2 implies ω 7→ ‖g1(Acos(ω), Asin(ω),Σ)‖
is in L2(0, 2π), implying that this function is integrable. Thus, the terms (B.24)–(B.25) are

each o(T−1/2).

To complete the proof, observe that∫ 2π

0

h(ω)g1(Acos(ω), Asin(ω),Σ)′ vec(Âcos(ω; pT )− Acos(ω; pT )) dω

+

∫ 2π

0

h(ω)g2(Acos(ω), Asin(ω),Σ)′ vec(Âsin(ω; pT )− Asin(ω; pT )) dω

=

∫ 2π

0

h(ω)g1(Acos(ω), Asin(ω),Σ)′
pT∑
`=1

vec(Â` − A`) cos(ω`) dω

+

∫ 2π

0

h(ω)g2(Acos(ω), Asin(ω),Σ)′
pT∑
`=1

vec(Â` − A`) sin(ω`) dω

=

pT∑
`=1

ν ′`,T vec(Â` − A`).

In conclusion,

ψ̂(pT )− ψ = ν ′T vec(β̂(pT )− β(pT )) + ξ′ vec(Σ̂− Σ) + o(T−1/2) +Op(pT/T ).

The above remainder terms are both op((T − pT )−1/2) by Assumption B.3.
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B.9.15 Proof of Proposition B.4

The proposition follows immediately from Lemmas B.8 and B.11 if we can show that ‖νT‖2

is bounded asymptotically. Let gj,i(·, ·, ·) denote the i-th element of gj(·, ·, ·), j = 1, 2,

i = 1, 2, . . . , n2
W . Let M ≡ supω∈[0,2π] |h(ω)| <∞. Then

‖νT‖2 =

n2
W∑
i=1

pT∑
`=1

(∫ 2π

0

h(ω)
{
g1,i(Acos(ω), Asin(ω),Σ) cos(ω`)

+ g2,i(Acos(ω), Asin(ω),Σ) sin(ω`)
}
dω
)2

≤ 2M2

n2
W∑
i=1

pT∑
`=1

{(∫ 2π

0

g1,i(Acos(ω), Asin(ω),Σ) cos(ω`) dω

)2

+

(∫ 2π

0

g2,i(Acos(ω), Asin(ω),Σ) sin(ω`) dω

)2}
.

The sum
pT∑
`=1

(
1

2π

∫ 2π

0

g1,i(Acos(ω), Asin(ω),Σ) cos(ω`) dω

)2

(B.26)

equals the L2(0, 2π) norm of the projection of the function ω 7→ g1,i(Acos(ω), Asin(ω),Σ)

onto the space of orthonormal functions {ω 7→ cos(ω`)}1≤`≤pT . Bessel’s inequality therefore

states that (B.26) is bounded above by the squared L2(0, 2π) norm of the function ω 7→
g1,i(Acos(ω), Asin(ω),Σ). We can similarly bound the expression (B.26) with g2,i(·, ·, ·) in

place of g1,i(·, ·, ·) and with sin(ω`) in place of cos(ω`). Hence,

‖νT‖2 ≤ 8π2M2
∑n2

W
i=1

(
‖g1,i(Acos(·), Asin(·),Σ)‖2

L2(0,2π) + ‖g2,i(Acos(·), Asin(·),Σ)‖2
L2(0,2π)

)
,

using obvious notation for the L2 norms. These norms are finite by Assumption B.2.

B.9.16 Proof of Proposition B.5

We start by showing that ‖ν̂T − νT‖ = op(1) and ‖ξ̂(pT )− ξ‖ = op(1). By Lemma B.10, and

the twice continuous differentiability assumed in Assumption B.2, there exists a constant

C <∞ such that, with probability approaching one,

‖gj(Âcos(ω; pT ), Âsin(ω; pT ), Σ̂)− gj(Acos(ω), Asin(ω),Σ)‖
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≤ C
(
‖Âcos(ω; pT )− Acos(ω)‖+ ‖Âsin(ω; pT )− Asin(ω)‖+ ‖Σ̂(pT )− Σ‖

)
for j = 1, 2, 3. By Lemma B.4 and the i.i.d. central limit theorem, we have ‖Σ̂(pT )− Σ‖ =

Op(T
−1/2). Using additionally Lemma B.9, we then have, for example, that

pT∑
`=1

∥∥∥∥∫ 2π

0

h(ω)
[
g1(Âcos(ω), Âsin(ω), Σ̂)− g1(Acos(ω), Asin(ω),Σ)

]
cos(ω`) dω

∥∥∥∥
≤ C̃pT sup

ω∈[0,2π]

(
‖Âcos(ω; pT )− Acos(ω)‖+ ‖Âsin(ω; pT )− Asin(ω)‖+ ‖Σ̂− Σ(pT )‖

)
= Op((p

3
T/T )1/2)

= op(1),

where C̃ is some constant. This type of calculation implies ‖ν̂T − νT‖ = op(1) and ‖ξ̂(pT )−
ξ‖ = op(1).

We now deal with the consistency of the two terms in σ̂2
ψ(pT ) one at a time. First,

decompose

ν̂ ′T (Γ̂(pT )−1 ⊗ Σ̂(pT ))ν̂T = ν ′T

(
(Γ̂(pT )−1 ⊗ Σ̂(pT ))− (Γ(pT )−1 ⊗ Σ)

)
νT

+ (ν̂T − νT )′(Γ̂(pT )−1 ⊗ Σ̂(pT ))(ν̂T − νT )

+ 2(ν̂T − νT )′(Γ̂(pT )−1 ⊗ Σ̂(pT ))νT

≡ R1,T +R2,T + 2R3,T .

Using Lemma B.2, we find

|R1,T | ≤ ‖νT‖2
∥∥∥(Γ̂(pT )−1 ⊗ Σ̂(pT ))− (Γ(pT )−1 ⊗ Σ)

∥∥∥
1

≤M
(
‖Γ̂(pT )−1 − Γ(pT )−1‖1‖ Σ̂(pT )‖1 + ‖Γ(pT )−1‖1 ‖Σ̂(pT )− Σ‖1

)
≤M

(
‖Γ̂(pT )− Γ(pT )‖ ‖Γ(pT )−1‖1 ‖Γ̂(pT )−1‖1 ‖Σ̂(pT )‖+ ‖Γ(pT )−1‖1 ‖Σ̂(pT )− Σ‖

)
= op(1).

Similar calculations, along with the fact ‖ν̂T − νT‖ = op(1), can be used to show that

R2,T = op(1) and R3,T = op(1).

Second, define Ξ ≡ Var(et ⊗ et) and decompose

ξ̂(pT )′Ξ̂(pT )ξ̂(pT )− ξ′Ξξ = ξ′(Ξ̂(pT )− Ξ)ξ
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+ (ξ̂(pT )− ξ)′Ξ̂(pT )(ξ̂(pT )− ξ)

+ 2(ξ̂(pT )− ξ)′Ξ̂(pT )ξ

≡ R̃1,T + R̃2,T + 2R̃3,T .

Since ‖ξ̂(pT )− ξ‖ = op(1), the statement of the proposition follows if we can show ‖Ξ̂(pT )−
Ξ‖ = op(1). Define χt ≡ vec(ete

′
t − Σ), and note that (T − pT )−1

∑T
t=pT+1 χtχ

′
t

p→ Ξ by the

usual law of large numbers for i.i.d. variables. Because

‖Ξ̂(pT )− Ξ‖ ≤ 1

T − pT

T∑
t=pT+1

‖χ̂tχ̂′t − χtχ′t‖

≤ 1

T − pT

T∑
t=pT+1

‖χ̂t − χt‖2 +
2

T − pT

T∑
t=pT+1

‖χ̂t − χt‖ ‖χt‖

≤ 1

T − pT

T∑
t=pT+1

‖χ̂t − χt‖2 + 2

(
1

T − pT

T∑
t=pT+1

‖χ̂t − χt‖2

× 1

T − pT

T∑
t=pT+1

‖χt‖2

)1/2

by Cauchy-Schwarz, we just need to show that

(T − pT )−1
∑T

t=pT+1 ‖χ̂t − χt‖2 = op(1).

Since

‖χ̂t − χt‖ = ‖êt(pT )êt(pT )′ − ete′t‖

≤ ‖êt(pT )− et‖2 + 2‖êt(pT )− et‖ ‖et‖,

we have

1

T − pT

T∑
t=pT+1

‖χ̂t − χt‖2 ≤ 2

T − pT

T∑
t=pT+1

‖êt − et‖4

+ 4

(
1

T − pT

T∑
t=pT+1

‖êt − et‖4 1

T − pT

T∑
t=pT+1

‖et‖4

)1/2

.

The i.i.d. law of large numbers gives (T − pT )−1
∑T

t=pT+1 ‖et‖4 = Op(1). To complete the

55



proof, we bound

1

T − pT

T∑
t=pT+1

‖êt − et‖4 ≤ 8

T − pT

T∑
t=pT+1

‖êt − et(pT )‖4 +
8

T − pT

T∑
t=pT+1

‖et − et(pT )‖4

≡ 8(R̂1,T + R̂2,T )

and show that the two terms on the right-hand side tend to zero, using similar arguments

as in the proof of Lemma B.4. First,

R̂1,T ≤ ‖β̂(pT )− β(pT )‖4 1

T − pT

T∑
t=pT+1

‖Xt(pT )‖4 = Op((pT/T )2)Op(p
2
T ) = op(1),

since

E‖Xt(pT )‖4 = E (
∑pT

`=1 ‖Wt−`‖2)
2

=
∑pT

`=1

∑pT
m=1E (‖Wt−`‖2‖Wt−m‖2) = O(p2

T ).

Second,

E(R̂2,T ) = E‖et − et(pT )‖4

≤ E
(∑∞

`=pT+1 ‖A`‖‖Wt−`‖
)4

=
∑∞

`1,`2,`3,`4=pT+1 ‖A`1‖ ‖A`2‖ ‖A`3‖ ‖A`4‖E(‖Wt−`1‖ ‖Wt−`2‖ ‖Wt−`3‖ ‖Wt−`4‖)

≤ constant×
(∑∞

`=pT+1 ‖A`‖
)4

= o(1).
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