Instrumental Variable Identification of Dynamic Variance Decompositions

Mikkel Plagborg-Møller
Princeton University

Christian K. Wolf University of Chicago

February 25, 2021

Slides: https://scholar.princeton.edu/mikkelpm

Macro identification

- Key questions in empirical macro:
 - 1 What is the effect of a certain shock?
 - 2 How important is a certain shock?
 - 3 How did a certain shock contribute to particular historical episodes?
- Impulse response function:

$$\Theta_{i,j,\ell} \equiv E(y_{i,t+\ell} \mid \varepsilon_{j,t} = 1) - E(y_{i,t+\ell} \mid \varepsilon_{j,t} = 0), \quad \ell = 0, 1, 2, \dots$$

 One empirical strategy: Estimate fully-specified Dynamic Stochastic General Equilibrium model.

Macro identification using SVARs

- Can we avoid fully specifying all aspects of the model?
- Structural Vector Autoregression: Sims (1980)

$$y_t = \sum_{\ell=1}^p A_\ell y_{t-\ell} + B\varepsilon_t, \quad \varepsilon_t \stackrel{iid}{\sim} N(0, I), \quad \det(B) \neq 0.$$

- Assumes invertibility: $\varepsilon_t \in \overline{\operatorname{span}}(\{y_\tau\}_{-\infty < \tau < t})$.
 - Econometrician shares agents' info set. Nakamura & Steinsson (2018)
 - Known to fail in interesting applications, e.g., news/noise shocks.
 Blanchard, L'Huillier & Lorenzoni (2013); Leeper, Walker & Yang (2013)
- Need a priori restrictions to identify impact impulse responses B.

Macro identification using LP-IV

- Recent push in applied structural macro towards transparent and credible identification. Two strands:
 - Local projections: Unrestricted shock transmission.

$$y_{i,t+\ell} = \hat{\Theta}_{i,1,\ell} \varepsilon_{1,t} + \hat{\mathbf{e}}_{t+\ell|t}, \quad \ell = 0, 1, 2, \dots$$

• External IV (proxy): Interpretable exclusion restrictions.

$$E(z_t\varepsilon_{1,t})\neq 0$$
, $E(z_t\varepsilon_{j,t})=0$, $j\geq 2$.

- Recently popular combination: LP-IV. Consistently estimate impulse responses through simple 2SLS regressions.
- Unlike SVARs, no need to assume invertibility, known number of shocks, known list of endogenous variables y_t , etc.

Identification of variance/historical decompositions

- Care not just about effects of shocks, but also about importance.
- SVAR/structural literature quantifies importance using variance decompositions. Key objects for distinguishing between competing business cycle theories.
- No general methods exist for identifying them w/o invertibility.
 Stock & Watson (2018); Gorodnichenko & Lee (2020)
- Also unknown how to identify historical decompositions.
- Unfortunate trade-off for applied people: Must give up on quantifying importance if robust inference desired.

Our contributions

- 1 Derive identified set of all parameters in LP-IV model.
- 2 Three different variance decomp. concepts are interval-identified.
 - Sharp, informative bounds.
 - Depend on IV strength and informativeness of macro var's about shock.
- 3 Degree of invertibility of shock set-identified. Invertibility testable.
- 4 Provide various sufficient conditions for point identification, if desired; weaker than invertibility. Give conditions to identify hist. decomp.
- **5** Easily computable partial identification robust confidence intervals.

Literature

- Local projections: Jordà (2005); Angrist, Jordà & Kuersteiner (2018)
- External IV: Stock (2008); Stock & Watson (2012); Mertens & Ravn (2013);
 Gertler & Karadi (2015); Stock & Watson (2016); Caldara & Kamps (2017)
- LP-IV: Mertens (2015); Ramey (2016); Barnichon & Brownlees (2018); Jordà, Schularick & Taylor (2018); Ramey & Zubairy (2018); Stock & Watson (2018)
- Invertibility: Lippi & Reichlin (1994); Sims & Zha (2006); Forni & Gambetti (2014); Forni, Gambetti & Sala (2019); Plagborg-Møller (2019); Chahrour & Jurado (2020); Miranda-Agrippino & Ricco (2020); Wolf (2020)
- Inference for interval ID: Imbens & Manski (2004); Stoye (2009)
- Partial ID in SVARs: Gafarov, Meier & Montiel Olea (2018); Granziera, Moon
 & Schorfheide (2018); Giacomini & Kitagawa (2020)

Outline

- Model and parameters of interest
- 2 Identification
- 3 Illustration using structural macro model
- 4 Inference
- **5** Application: monetary shocks
- **6** Summary

SVMA-IV model

$$\begin{split} & \overset{n_y \times 1}{y_t} = \Theta(L) \overset{n_\varepsilon \times 1}{\varepsilon_t}, \quad \Theta(L) = \sum_{\ell=0}^\infty \overset{n_y \times n_\varepsilon}{\Theta_\ell} L^\ell, \\ & \overset{1 \times 1}{z_t} = \sum_{\ell=1}^\infty (\Psi_\ell z_{t-\ell} + \Lambda_\ell y_{t-\ell}) + \underbrace{\alpha}_{\text{exclusion}} \overset{1 \times 1}{\varepsilon_{1,t}} + \sigma_v \overset{1 \times 1}{v_t}. \end{split}$$

Consistent with DSGE or SVAR structure, but more general.

- Impulse responses: $\Theta_{i,j,\ell}$, the (i,j) element of Θ_{ℓ} .
- Normality for notational ease:

$$(\varepsilon'_t, v_t)' \stackrel{i.i.d.}{\sim} N(0, I_{n_{\varepsilon}+1}).$$

- Allow $n_{\varepsilon} \geq n_{V}$ and unknown.
- In paper: extensions to multiple IVs, multiple included shocks.

Invertibility and recoverability

• Degree of invertibility using data up to time $t + \ell$: Sims & Zha (2006)

$$R_\ell^2 \equiv 1 - rac{\mathsf{Var}(arepsilon_{1,t} \mid \{y_ au\}_{-\infty < au \leq t + \ell})}{\mathsf{Var}(arepsilon_{1,t})}, \quad \ell \geq 0.$$

Shock-specific concept. Special cases: Chahrour & Jurado (2020)

- Invertibility: $R_0^2=1$, i.e., $E(\varepsilon_{1,t}\mid\{y_{\tau}\}_{-\infty< au\leq t})=\varepsilon_{1,t}$.
- Recoverability: $R^2_{\infty}=1$, i.e., $E(\varepsilon_{1,t}\mid\{y_{\tau}\}_{-\infty< au<\infty})=\varepsilon_{1,t}$.
- SVMA-IV model does not assume invertibility/recoverability a priori.

9

Forecast variance ratio

• Forecast variance ratio (FVR):

$$\begin{split} \textit{FVR}_{\textit{i},\ell} &\equiv 1 - \frac{\mathsf{Var}(\textit{y}_{\textit{i},t+\ell} \mid \{\textit{y}_{\tau}\}_{-\infty < \tau \leq t}, \{\varepsilon_{1,\tau}\}_{t < \tau < \infty})}{\mathsf{Var}(\textit{y}_{\textit{i},t+\ell} \mid \{\textit{y}_{\tau}\}_{-\infty < \tau \leq t})} \\ &= \frac{\sum_{m=0}^{\ell-1} \Theta_{\textit{i},1,m}^2}{\mathsf{Var}(\textit{y}_{\textit{i},t+\ell} \mid \{\textit{y}_{\tau}\}_{-\infty < \tau \leq t})}. \end{split}$$

- Alternative concepts in paper:
 - Forecast var. decomp.: condition on $\{\varepsilon_{\tau}\}_{\tau \leq t}$ instead of $\{y_{\tau}\}_{\tau \leq t}$.

Unconditional variance decomposition.

Historical decomposition

• Recall moving average model:

$$y_{i,t} = \sum_{j=1}^{n_{\varepsilon}} \sum_{\ell=0}^{\infty} \Theta_{i,j,\ell} \varepsilon_{j,t-\ell}.$$

Historical decomposition of variable i attributable to first shock:

$$E(y_{i,t} \mid \{\varepsilon_{1,\tau}\}_{\tau \leq t}) = \sum_{\ell=0}^{\infty} \Theta_{i,1,\ell} \varepsilon_{1,t-\ell}.$$

Outline

- 1 Model and parameters of interest
- 2 Identification
- 3 Illustration using structural macro model
- 4 Inference
- **5** Application: monetary shocks
- **6** Summary

Intuition: static model

Static SVMA is a classical measurement error model:

$$y_{t} = \Theta_{\bullet,1,0}^{\times 1} \varepsilon_{1,t}^{1 \times 1} + g_{t}^{n_{y} \times 1},$$

$$y_{t} = \Theta_{\bullet,1,0}^{\times 1} \varepsilon_{1,t}^{1 \times 1} + g_{t}^{1 \times 1},$$

$$z_{t} = \varphi_{\bullet,1,t}^{1 \times 1} + \varphi_{t}^{1 \times 1},$$

$$\varepsilon_{1,t} \perp \perp \xi_{t} \perp \perp v_{t}.$$

- Unknown signal-to-noise ratio α^2/σ_v^2 in IV equation.
- Intuition for bounds on importance of $\varepsilon_{1,t}$: Klepper & Leamer (1984)
 - Attenuation bias in regression of y_{i,t} on z_t
 ⇒ Lower bound on importance of ε_{1,t}.
 - $\alpha^2 = \text{Var}(E(z_t \mid \varepsilon_{1,t})) \ge \text{Var}(E(z_t \mid y_t)) \Longrightarrow \text{Lower bound on } \alpha^2/\sigma_v^2 \Longrightarrow \text{Upper bound on importance of } \varepsilon_{1,t}.$

Dynamic model: notation

Residualized IV:

$$\tilde{z}_t \equiv z_t - E(z_t \mid \{y_\tau, z_\tau\}_{-\infty < \tau < t}) = \alpha \varepsilon_{1,t} + \sigma_v v_t.$$

Serially uncorrelated by construction.

• Projections of \tilde{z}_t and $\varepsilon_{1,t}$ onto whole time series of macro variables:

$$\tilde{z}_t^{\dagger} \equiv E(\tilde{z}_t \mid \{y_{\tau}\}_{-\infty < \tau < \infty}),
\varepsilon_{1,t}^{\dagger} \equiv E(\varepsilon_{1,t} \mid \{y_{\tau}\}_{-\infty < \tau < \infty}).$$

• Spectral density of a time series x_t : $s_x(\omega)$, $\omega \in [0, 2\pi]$.

Identification up to scale

Impulse responses identified up to scale:

$$Cov(y_{i,t}, \tilde{z}_{t-\ell}) = \alpha \Theta_{i,1,\ell}, \quad i = 1, \dots, n_y, \ \ell \ge 0.$$

Relative IRs $\Theta_{i,1,\ell}/\Theta_{1,1,0}$ point-identified. Stock & Watson (2018)

• Degree of invertibility at time $t + \ell$ identified up to scale:

$$R_\ell^2 = rac{1}{lpha^2} imes ext{Var}(E(ilde{z}_t \mid \{y_ au\}_{-\infty < au \leq t+\ell})), \quad \ell \geq 0.$$

FVRs identified up to scale:

$$FVR_{i,\ell} = \frac{1}{\alpha^2} \times \frac{\sum_{m=0}^{\ell-1} \mathsf{Cov}(y_{i,t}, \tilde{z}_{t-m})^2}{\mathsf{Var}(y_{i,t+\ell} \mid \{y_\tau\}_{-\infty < \tau < t})}, \quad i = 1, \dots, n_y, \ \ell \ge 1.$$

Bounds for α

Upper bound:

$$\alpha^2 \leq \mathsf{Var}(\tilde{z}_t) \equiv \alpha_{\mathit{UB}}^2.$$

Binds when IV is perfectly informative.

• Lower bound: Since $\tilde{\mathbf{z}}_t^\dagger = \alpha \varepsilon_{1,t}^\dagger$, we have

$$\forall \ \omega \in [0, 2\pi] \colon \quad s_{\tilde{z}^{\dagger}}(\omega) = \alpha^2 s_{\varepsilon_1^{\dagger}}(\omega) \le \alpha^2 s_{\varepsilon_1}(\omega) = \alpha^2 \times \frac{1}{2\pi}$$

$$\implies \quad \alpha^2 \ge 2\pi \sup_{\omega \in [0, \pi]} s_{\tilde{z}^{\dagger}}(\omega) \equiv \alpha_{LB}^2.$$

Binds when macro var's y_t are perfectly informative about shock $\varepsilon_{1,t}$ at *some* frequency $\overline{\omega} \in [0,\pi]$: $s_{\varepsilon_1-\varepsilon_1^{\dagger}}(\overline{\omega})=0$.

• Note: Closed form for $s_{\tilde{z}^{\dagger}}(\omega)$ in terms of joint spectrum of data.

Identified set for α : sharpness

Proposition

Let there be given a joint spectral density for $w_t = (y_t', \tilde{z}_t)'$, continuous and positive definite at every frequency, with \tilde{z}_t being unpredictable from $\{w_\tau\}_{-\infty < \tau < t}$. Choose any $\alpha \in (\alpha_{LB}, \alpha_{UB}]$.

Then there exists a model with the given α such that the spectral density of w_t implied by the model matches the given spectral density.

• Proposition does not cover boundary case $\alpha = \alpha_{LB}$ due to economically inessential technicalities.

Identified set for α : interpretation

• Express identified set for $\frac{1}{\alpha^2}$ in terms of underlying model parameters:

$$\bigg[\underbrace{\frac{\alpha^2}{\alpha^2 + \sigma_v^2}}_{\text{IV strength}} \times \frac{1}{\alpha^2} \;,\; \underbrace{\frac{1}{1 - 2\pi \inf_{\omega \in [0,\pi]} s_{\varepsilon_1 - \varepsilon_1^\dagger}(\omega)}}_{\text{informativeness of } y_t \text{ for } \varepsilon_{1,t}} \times \frac{1}{\alpha^2} \bigg].$$

- Identified set is narrower when...
 - IV is stronger.
 - Macro var's are more informative about *some* cycle of the shock.

Degree of invertibility/recoverability

- Degree of invertibility R_0^2 and recoverability R_∞^2 are each interval-identified.
- When are the data consistent with invertibility/recoverability?

Proposition

Assume $\alpha_{IR}^2 > 0$.

The identified set for R_0^2 contains 1 if and only if \tilde{z}_t does not Granger cause y_t .

The identified set for R^2_{∞} contains 1 if and only if \tilde{z}^{\dagger}_t is white noise.

Point identification

- Assumptions yielding point identification of α , R_{ℓ}^2 , FVR:
 - **1** Macro var's y_t are perfectly informative about $\varepsilon_{1,t}$ at some frequency (untestable).
 - 2 Shock is recoverable (testable). Economically weaker condition than invertibility. Can also identify shock: $\varepsilon_{1,t} = \frac{1}{\alpha} \tilde{z}_t^{\dagger}$.
 - 3 $n_{\varepsilon} = n_y$ (testable). Then all shocks are recoverable. (But our partial ID bounds obtain even if we know $n_{\varepsilon} = n_y + 1$.)
 - 4 IV is perfect, i.e., $\sigma_v = 0$ (untestable).
- Cond's 2–4 point-identify historical decomposition $\sum_{\ell=0}^{\infty} \Theta_{i,1,\ell} \varepsilon_{1,t-\ell}$.
- Auxiliary assumptions are not needed for informative partial ID.

Outline

- 1 Model and parameters of interest
- 2 Identification
- 3 Illustration using structural macro model
- 4 Inference
- **5** Application: monetary shocks
- **6** Summary

Informative bounds in Smets-Wouters (2007) model

- Smets & Wouters (2007) model, posterior mode estimates.
- Data series y_t : output, inflation, nominal interest rate. Known spectrum. SVMA-IV analysis does not exploit DSGE structure.
- Econometrician observes IV:

$$z_t = \alpha \varepsilon_{1,t} + \sigma_v v_t, \quad v_t \stackrel{i.i.d.}{\sim} N(0,1).$$

Set true $\alpha=1$. Consider IV strengths $\frac{1}{1+\sigma_v^2}\in\{0.25,0.5\}$.

- Three shocks of interest $\varepsilon_{1,t}$ (seven total in model):
 - 1 Monetary shock. Nearly invertible.
 - 2 Forward guidance shock. Highly noninvertible, nearly recoverable.
 - 3 Technology shock. Data only informative about longest cycles.

Monetary shock

- Shock nearly invertible: $R_0^2 = 0.87$, $R_\infty^2 = 0.88$.
- Tight lower bound on α : $\alpha_{IB}^2 = 0.90$.

Forward guidance shock

- Monetary shock anticipated two quarters ahead.
- Highly noninvertible: $R_0^2 = 0.08$. Invertibility-based identification overstates FVRs by factor $1/0.08 \approx 13!$
- Nearly recoverable: $R_2^2 = 0.87$, $R_\infty^2 = 0.88$. SVAR

Technology shock

- Highly non-recoverable: $R_0^2=0.20,~R_\infty^2=0.22.$
- Macro var's only informative about longest cycles of shock.
- But tight lower bound on α : $\alpha_{IB}^2 = 0.91$.

Spectral density of best two-sided predictor of shock

Outline

- 1 Model and parameters of interest
- 2 Identification
- 3 Illustration using structural macro model
- 4 Inference
- **5** Application: monetary shocks
- **6** Summary

Partial identification robust confidence intervals

- All parameters of interest are interval- or point-identified.
- Confidence interval procedure:
 - 1 Estimate reduced-form VAR for $(y'_t, z_t)'$.
 - 2 Compute sample analogues of population bounds.
 - 3 Plug into Imbens & Manski (2004) and Stove (2009) formulas.
- Cls for parameters as well as for identified sets.
- Prove non-parametric validity under "sieve VAR" asymptotics.
- Test invertibility using VAR Granger causality test.

Giannone & Reichlin (2006); Forni & Gambetti (2014); Stock & Watson (2018)

Outline

- 1 Model and parameters of interest
- 2 Identification
- 3 Illustration using structural macro model
- 4 Inference
- **5** Application: monetary shocks
- **6** Summary

Importance of monetary shocks

- Gertler & Karadi (2015) estimate effect of monetary shocks on interest rate, IP, CPI, Excess Bond Premium. Gilchrist & Zakrajšek (2012)
- SVAR-IV approach on U.S. monthly data. IV: high-freq. changes in 3-month FFR futures prices around FOMC announcements.
- Our question: How important is the monetary shock in determining fluctuations of real and financial variables?
- Consider two different interest rates: FFR or 1-year Treasury.
- Sample: 1990:1–2012:6. AIC selects p = 6 reduced-form VAR lags.
- 1,000 iterations of i.i.d. recursive residual bootstrap.

Degree of invertibility/recoverability

Reject invertibility of monetary shock with FFR.

		FFR	1-year rate
R_0^2	Bound estimates	[0.196, 0.684]	[0.118, 0.922]
	90% conf. interval	[0.097, 0.877]	[0.029, 1.000]
R_{∞}^2	Bound estimates	[0.282, 1.000]	[0.119, 1.000]
	90% conf. interval	[0.190, 1.000]	[0.028, 1.000]
Granger causality p-value		0.0001	0.390

90% confidence interval for identified set (IS). Upper bound of IS for R_{∞}^2 equals 1 by construction.

Outline

- 1 Model and parameters of interest
- 2 Identification
- 3 Illustration using structural macro model
- 4 Inference
- **5** Application: monetary shocks
- **6** Summary

Summary

- SVMA-IV model: attractive semiparametric alternative to SVARs.
- Known how to identify IRFs. We provide remaining tools: variance decompositions, historical decompositions, degree of invertibility.
- Informative bounds regardless of invertibility.
- Provide sufficient conditions for point ID, weaker than invertibility.
- Partial ID robust confidence intervals. Easy to compute.
- Application: Informative upper bounds on importance of monetary shocks for fluctuations in IP, CPI, and financial spread.

Thank you!

Examples of external IVs

- Narrative monetary shocks. Romer & Romer (2004)
- Narrative fiscal shocks. Mertens & Ravn (2013); Mertens & Montiel Olea (2018); Ramey & Zubairy (2018)
- High-frequency asset price changes around FOMC announcements.
 Barakchian & Crowe (2013); Gertler & Karadi (2015)
- Oil supply disruptions. Hamilton (2003)
- Large oil discoveries. Arezki, Ramey & Sheng (2017)
- Utilization-adjusted TFP growth. Fernald (2014); Caldara & Kamps (2017)
- Volatility spikes. Carriero et al. (2015)

Examples of variance decomposition applications

- TFP shocks. Kydland & Prescott (1982); KPSW (1991)
- Monetary shocks. Romer×2 (1989); Christiano, Eichenbaum & Evans (1999)
- Investment efficiency shocks. Justiniano, Primiceri & Tambalotti (2010)
- News shocks. Schmitt-Grohé & Uribe (2012)
- Risk shocks. Christiano, Motto & Rostagno (2014)
- Demand/sentiment shocks. Angeletos, Collard & Dellas (2017)
- Business cycle accounting. Cochrane (1994); Smets & Wouters (2007)

Multiple instruments

$$\begin{split} & \overset{n_{y}\times 1}{y_{t}} = \Theta(L) \overset{n_{\varepsilon}\times 1}{\varepsilon_{t}}, \quad \Theta(L) = \sum_{\ell=0}^{\infty} \overset{n_{y}\times n_{\varepsilon}}{\Theta_{\ell}} L^{\ell}, \\ & \overset{n_{z}\times 1}{z_{t}} = \sum_{\ell=1}^{\infty} (\Psi_{\ell} z_{t-\ell} + \Lambda_{\ell} y_{t-\ell}) + \underbrace{\alpha \quad \lambda \quad \varepsilon_{1,t}}_{\text{exclusion}} + \underbrace{\sum_{v}^{1/2} n_{z} \times 1}_{\text{exclusion}}. \end{split}$$

- $\|\lambda\| = 1$, first nonzero element positive.
- Define vector of projection residuals

$$\tilde{z}_t \equiv z_t - E(z_t \mid \{y_\tau, z_\tau\}_{-\infty < \tau < t}).$$

- Model is testable: $s_{V\tilde{z}}(\omega)$ has rank-1 factor structure.
- If model is consistent with data, then λ is point-identified. If Σ_{ν} is unrestricted, identification analysis is as if we observed the scalar IV

$$oldsymbol{reve{z}}_t \equiv rac{1}{\lambda' \, \mathsf{Var}(ilde{z}_t)^{-1} \lambda} \lambda' \, \mathsf{Var}(ilde{z}_t)^{-1} ilde{z}_t.$$

Instruments correlated with multiple shocks

• Also consider an extended model where the IVs z_t correlate with the first n_{ε_x} of the n_{ε} structural shocks (i.e., drop exclusion restriction).

$$y_t^{n_y \times 1} = \Theta(L) \stackrel{n_\varepsilon \times 1}{\varepsilon_t}, \quad \Theta(L) = \sum_{\ell=0}^{\infty} \stackrel{n_y \times n_\varepsilon}{\Theta_{\ell}} L^{\ell},
 z_t^{n_z \times 1} = \sum_{\ell=1}^{\infty} (\Psi_{\ell} z_{t-\ell} + \Lambda_{\ell} y_{t-\ell}) + \Gamma \stackrel{n_z \times n_{\varepsilon_x}}{\varepsilon_{x,t}} \frac{n_{\varepsilon_x} \times 1}{\varepsilon_{x,t}} + \sum_{\nu=1}^{n_z \times n_z} \frac{n_z \times n_z}{\nu_t}.$$

• Derive sharp bounds for FVR wrt. $\Gamma \varepsilon_{x,t}$:

$$FVR_{i,\ell} \equiv 1 - \frac{\mathsf{Var}(y_{i,t+\ell} \mid \{y_\tau\}_{-\infty < \tau \le t}, \{\Gamma \varepsilon_{\mathsf{X},\tau}\}_{t < \tau < \infty})}{\mathsf{Var}(y_{i,t+\ell} \mid \{y_\tau\}_{-\infty < \tau \le t})}.$$

Lower bound available in closed form. Upper bound solves (convex) semidefinite programming problem.

• Example: Assume $n_{\varepsilon_x} = n_z$ and Γ nonsingular. Then FVR wrt. $\Gamma_{\varepsilon_{X,t}}$ equals the FVR wrt. $\varepsilon_{X,t}$. Mertens & Ravn (2013)

Forecast variance decomposition

Forecast variance decomposition (FVD):

$$\begin{split} \textit{FVD}_{i,\ell} &\equiv 1 - \frac{\mathsf{Var}(y_{i,t+\ell} \mid \{\varepsilon_{\tau}\}_{-\infty < \tau \leq t}, \{\varepsilon_{1,\tau}\}_{t < \tau < \infty})}{\mathsf{Var}(y_{i,t+\ell} \mid \{\varepsilon_{\tau}\}_{-\infty < \tau \leq t})} \\ &= \frac{\sum_{m=0}^{\ell-1} \Theta_{i,1,m}^2}{\sum_{j=1}^{n_{\varepsilon}} \sum_{m=0}^{\ell-1} \Theta_{i,j,m}^2}. \end{split}$$

FVR ≠ FVD unless all shocks are invertible (SVAR).
 Forni, Gambetti & Sala (2018)

Sufficient conditions for invertibility/recoverability

$$y_t = \Theta(L)\varepsilon_t$$

- Assuming $n_{\varepsilon} = n_{\gamma} \dots$
- All shocks invertible if all roots of $x \mapsto \det(\Theta(x))$ outside unit circle.
- All shocks recoverable if no roots of $x \mapsto \det(\Theta(x))$ on unit circle.

◆ Back

Bias of SVAR-IV

- VAR(∞) forecast error: $u_t \equiv y_t E(y_t \mid \{y_\tau\}_{-\infty < \tau < t})$.
- SVAR-IV: If all $n_{\varepsilon}=n_y$ shocks are invertible, then $\varepsilon_{1,t}=\gamma' u_t$, where

$$\gamma \equiv (\Sigma'_{u\tilde{z}} \Sigma_{u}^{-1} \Sigma_{u\tilde{z}})^{-1/2} \Sigma_{u}^{-1} \Sigma_{u\tilde{z}}, \quad \Sigma_{u\tilde{z}} \equiv \mathsf{Cov}(u_{t}, \tilde{z}_{t}), \quad \Sigma_{u} \equiv \mathsf{Var}(u_{t}).$$

Proposition

The SVAR-IV-(mis)identified shock is given by

$$\tilde{\varepsilon}_{1,t} \equiv \gamma' u_t = \sum_{j=1}^{n_{\varepsilon}} \sum_{\ell=0}^{\infty} a_{j,\ell} \varepsilon_{j,t-\ell},$$

where $\{a_{j,\ell}\}$ satisfy $\sum_{j=1}^{n_{\varepsilon}}\sum_{\ell=0}^{\infty}a_{j,\ell}^2=1$ and $a_{1,1}=\sqrt{R_0^2}$.

The associated SVAR-IV impulse responses are given by

$$ilde{\Theta}_{ullet,1,\ell} \equiv \mathsf{Cov}(y_t, ilde{arepsilon}_{1,t-\ell}) = \sum_{j=1}^{n_{arepsilon}} \sum_{m=0}^{\infty} \mathsf{a}_{j,m} \Theta_{ullet,1,\ell+m},$$

and the impact impulse responses satisfy $\tilde{\Theta}_{\bullet,1,0} = (R_0^2)^{-1/2} \Theta_{\bullet,1,0}$.

Static model for intuition

For intuition, start with static version of model:

$$y_{t} = \Theta_{0} \quad \varepsilon_{t} ,$$

$$y_{t} = \theta_{0} \quad \varepsilon_{t} ,$$

$$z_{t} = \alpha \quad \varepsilon_{1,t} + \sigma_{v} \quad v_{t} ,$$

$$(\varepsilon'_{t}, v_{t})' \stackrel{i.i.d.}{\sim} N(0, I_{n_{\varepsilon}+1}).$$

- Bonus: Directly applies to SVAR-IV identification with $n_{\varepsilon} \geq n_{\gamma}$.
- Interesting objects:

$$R_0^2 = 1 - \mathsf{Var}(\varepsilon_{1,t} \mid y_t), \quad \mathit{FVD}_{i,1} = \frac{\Theta_{i,1,0}^2}{\mathsf{Var}(y_{i,t})}.$$

Static model: identification up to scale

Impulse responses identified up to scale:

$$Cov(y_{i,t}, z_t) = \alpha \Theta_{i,1,0}, \quad i = 1, \dots, n_y.$$

Relative IRs $\Theta_{i,1,0}/\Theta_{1,1,0}$ point-identified. Stock & Watson (2018)

• Degree of invertibility identified up to scale:

$$R_0^2 = \frac{1}{\alpha^2} \operatorname{Var}(E(z_t \mid y_t)).$$

FVDs identified up to scale:

$$FVD_{i,1} = \frac{\frac{1}{\alpha^2}\operatorname{Cov}(y_{i,t}, z_t)^2}{\operatorname{Var}(y_{i,t})}, \quad i = 1, \dots, n_y.$$

• What is identified set for α ?

Static model: identified set for α

Upper bound:

$$\alpha^2 \leq \operatorname{Var}(z_t) \equiv \alpha_{UB}^2$$
.

Binds when IV is perfectly informative.

• Lower bound:

$$\alpha_{LB}^2 \equiv \mathsf{Var}(E(z_t \mid y_t)) = \alpha^2 \, \mathsf{Var}(E(\varepsilon_{1,t} \mid y_t)) \leq \alpha^2 \, \mathsf{Var}(\varepsilon_{1,t}) = \alpha^2.$$

Binds when macro var's y_t are perfectly informative about shock $\varepsilon_{1,t}$.

- Bounds are sharp: Given any var-cov matrix for $(y'_t, z_t)'$, can find a consistent model with any $\alpha \in [\alpha_{LB}, \alpha_{UB}]$.
- Identified set $[\alpha_{LB}, \alpha_{UB}]$ for α is an interval. Implies identified sets for IRs, FVD, and degree of inv.

Static model: interpretation of identified sets

$$R_0^2 = \frac{1}{\alpha^2} \operatorname{Var}(E(z_t \mid y_t)), \quad FVD_{i,1} = \frac{1}{\alpha^2} \times \frac{\operatorname{Cov}(y_{i,t}, z_t)^2}{\operatorname{Var}(y_{i,t})}$$

• Express identified set for $\frac{1}{\alpha^2}$ in terms of model parameters:

$$\left[\underbrace{\frac{\alpha^2}{\alpha^2 + \sigma_v^2}}_{\text{IV strength}} \times \frac{1}{\alpha^2} , \underbrace{\frac{1}{R_0^2}}_{\text{recoverability}} \times \frac{1}{\alpha^2} \right].$$

• Identified set for FVD or R_0^2 narrower when the IV is stronger or the shock is more recoverable/invertible. Only collapses to a point when IV is perfect *and* shock is invertible.

Static model: point identification

- Point identification under any of the following auxiliary assumptions:
 - **1** Shock $\varepsilon_{1,t}$ is invertible/recoverable (untestable). Then $\alpha = \alpha_{LB}$ and $\varepsilon_{1,t} = \frac{1}{\alpha} E(z_t \mid y_t)$.
 - 2 $n_{\varepsilon} = n_{V}$ (untestable). Implies invertibility of all shocks.
 - 3 IV z_t is perfect, i.e., $\sigma_v=0$ (untestable). Then $\alpha=\alpha_{\it UB}$ and $\varepsilon_{1,t}=\frac{1}{\alpha}z_t$.
- But auxiliary assumptions are not necessary for partial ID with nontrivial, informative bounds.

Forecast variance decomposition

• Identif. set for FVR scales with identif. set for $\frac{1}{\alpha^2}$. What about FVD?

Proposition

Let there be given a spectral density for $(y'_t, \tilde{z}_t)'$ (same as ns as before).

Given knowledge of $\alpha \in (\alpha_{LB}, \alpha_{UB}]$, the largest possible value of $FVD_{i,\ell}$ is 1 (the trivial bound); the smallest possible value is

$$\frac{\sum_{m=0}^{\ell-1} \mathsf{Cov}(y_{i,t}, \tilde{z}_{t-m})^2}{\sum_{m=0}^{\ell-1} \mathsf{Cov}(y_{i,t}, \tilde{z}_{t-m})^2 + \alpha^2 \mathsf{Var}\left(\tilde{y}_{i,t+\ell}^{(\alpha)} \mid \{\tilde{y}_{\tau}^{(\alpha)}\}_{-\infty < \tau \le t}\right)}.$$
 (\Delta]

 $ilde{y}_t^{(lpha)}$ denotes a stationary Gaussian time series with spectrum

$$s_{\tilde{\mathbf{y}}^{(\alpha)}}(\omega) = s_{\mathbf{y}}(\omega) - \frac{2\pi}{\alpha^2} s_{\mathbf{y}\tilde{\mathbf{z}}}(\omega) s_{\mathbf{y}\tilde{\mathbf{z}}}(\omega)^*, \quad \omega \in [0, 2\pi].$$

Expression (Δ) is monotonically decreasing in α , so the overall lower bound is attained at $\alpha = \alpha_{UB}$.

Structural model: R_{ℓ}^2 for forward guidance shock

Structural model: SVAR-IV-estimated FVR of fwd. guid.

Structural model: Degree of invertibility/recoverability

	Monetary shock		Technology shock		Forw. guid. shock	
Observables	R_0^2	R_{∞}^2	R_0^2	R_{∞}^2	R_0^2	R_{∞}^2
Baseline	0.8702	0.8763	0.1977	0.2166	0.0768	0.8807
+ I + C	0.9415	0.9507	0.2128	0.2384	0.0980	0.9492
+ L	0.9272	0.9286	0.9799	0.9816	0.0774	0.9331
All	1	1	1	1	0.1049	1

Baseline: Output, inflation, nom. interest rate.

Imbens-Manski-Stoye confidence intervals

- Let ϑ denote reduced-form VAR parameters. Estimator $\hat{\vartheta}.$
- Consider any identified set $[\underline{h}(\vartheta), \overline{h}(\vartheta)]$, with $\underline{h}(\cdot), \overline{h}(\cdot)$ ctsly diff.

$$\left(\begin{array}{c} \underline{h}(\hat{\vartheta}) \\ \overline{h}(\hat{\vartheta}) \end{array}\right) \overset{approx}{\sim} N\left(\left(\begin{array}{c} \underline{h}(\vartheta) \\ \overline{h}(\vartheta) \end{array}\right), \left(\begin{array}{cc} \underline{\hat{\sigma}}^2 & \hat{\rho}\underline{\hat{\sigma}}\hat{\overline{\sigma}} \\ \hat{\rho}\underline{\hat{\sigma}}\hat{\overline{\sigma}} & \hat{\overline{\sigma}}^2 \end{array}\right)\right).$$

• $1-\beta$ conf. interval for the identified set: Imbens & Manski (2004)

$$[\underline{h}(\hat{\vartheta}) - \Phi^{-1}(1 - \beta/2)\underline{\hat{\sigma}}, \ \overline{h}(\hat{\vartheta}) + \Phi^{-1}(1 - \beta/2)\widehat{\hat{\sigma}}].$$

- Could also construct CI for parameter. Stoye (2009)
- Caveat: Lower bound for α is given by supremum; not generally ctsly diff. We use conservative lower bound $\alpha^2 \geq \int_0^{2\pi} s_{\tilde{z}^{\dagger}}(\omega) d\omega$.

Sieve VAR inference

• Non-parametric VAR(∞) model for $W_t \equiv (y_t', z_t)'$:

$$W_t = \sum_{\ell=1}^{\infty} A_{\ell} W_{t-\ell} + e_t.$$

Stationary, non-singular, abs. summable coefficients.

- e_t i.i.d. with $E||e_t||^8 < \infty$.
- Parameter of interest:

$$\psi \equiv \int_0^{2\pi} h(\omega)' g(A_{\cos}(\omega), A_{\sin}(\omega), \Sigma) d\omega,$$

where

$$A_{\cos}(\omega) \equiv \sum_{\ell=1}^{\infty} A_{\ell} \cos(\omega \ell), \quad A_{\sin}(\omega) \equiv \sum_{\ell=1}^{\infty} A_{\ell} \sin(\omega \ell).$$

• $h(\cdot)$ bounded. $g(\cdot)$ twice cts'ly diff. with first partial derivatives in $L_2(0,2\pi)$ as fct of ω .

Sieve VAR inference (cont.)

Least-squares VAR plug-in estimator:

$$\hat{\psi} \equiv \int_0^{2\pi} h(\omega)' g(\hat{A}_{\cos}(\omega), \hat{A}_{\sin}(\omega), \hat{\Sigma}) d\omega.$$

• VAR lag length $p_T \in \mathbb{N}$ satisfies

$$p_T^3/T \to 0$$
, $T^{1/2} \sum_{\ell=p_T+1}^{\infty} ||A_{\ell}|| \to 0$.

- Prove \sqrt{T} asymptotic normality of $\hat{\psi}$. Berk (1974); Lewis & Reinsel (1985); Saikkonen & Lütkepohl (2000); Gonçalves & Kilian (2007)
- Require asy. var. to be strictly positive, which rules out parameters on the boundary (as in SVAR-IV).

