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Macro identification

e Key questions in empirical macro:
@ What is the effect of a certain shock?
@® How important is a certain shock?
© How did a certain shock contribute to particular historical episodes?
® |Impulse response function:
Ciju=EWitte |t =1)— E(Vitye | €56 =0), £=0,1,2,...

® One empirical strategy: Estimate fully-specified Dynamic Stochastic
General Equilibrium model.



Macro identification using SVARs

Can we avoid fully specifying all aspects of the model?
Structural Vector Autoregression: Sims (1980)

Ve =" Aye—o+ Ber, e S N0, 1), det(B) # 0.
Assumes invertibility: e; € Span({yr} —co<r<t)-

® Econometrician shares agents’ info set. Nakamura & Steinsson (2018)

® Known to fail in interesting applications, e.g., news/noise shocks.
Blanchard, L'Huillier & Lorenzoni (2013); Leeper, Walker & Yang (2013)

Need a priori restrictions to identify impact impulse responses B.



Macro identification using LP-IV

® Recent push in applied structural macro towards transparent and
credible identification. Two strands:

® Local projections: Unrestricted shock transmission.
Yit+e = é,‘71,g€17t + ét+g‘t, {=0,1,2,...
® External IV (proxy): Interpretable exclusion restrictions.
E(ze14) #0, E(zegje) =0, j>2.

® Recently popular combination: LP-IV. Consistently estimate impulse
responses through simple 2SLS regressions.

® Unlike SVARs, no need to assume invertibility, known number of
shocks, known list of endogenous variables y;, etc.



|dentification of variance/historical decompositions

Care not just about effects of shocks, but also about importance.

SVAR /structural literature quantifies importance using variance
decompositions. Key objects for distinguishing between competing
business cycle theories.

No general methods exist for identifying them w/o invertibility.
Stock & Watson (2018); Gorodnichenko & Lee (2020)

Also unknown how to identify historical decompositions.

Unfortunate trade-off for applied people: Must give up on quantifying
importance if robust inference desired.



Our contributions

@ Derive identified set of all parameters in LP-1V model.
® Three different variance decomp. concepts are interval-identified.

® Sharp, informative bounds.

® Depend on IV strength and informativeness of macro var's about shock.
© Degree of invertibility of shock set-identified. Invertibility testable.

@ Provide various sufficient conditions for point identification, if desired;
weaker than invertibility. Give conditions to identify hist. decomp.

@ Easily computable partial identification robust confidence intervals.
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SVMA-IV model

o
nyx1 nex1 Ny X ne

e =0(L) &, OL)=> o, L
/=0

1x1 o 1x1

1x1
Zy :Z(Wézt—é+/\ZYt—£)+ a €1t+0y Vi .
——

(=1 .
exclusion

Consistent with DSGE or SVAR structure, but more general.
Impulse responses: ©;;y, the (i, j) element of ©,.

Normality for notational ease:

iid.
(5Itvvt)/ ~" N(O, In.+1)-
Allow n. > ny, and unknown.

In paper: extensions to multiple IVs, multiple included shocks.



Invertibility and recoverability

® Degree of invertibility using data up to time t 4 £: Sims & Zha (2006)

Var(ere | {yr}—cocr<t+e)

RZ2=1—
¢ Var(e1,¢) ’

{>0.

Shock-specific concept. Special cases: Chahrour & Jurado (2020)
® Invertibility: R2 =1, i.e., E(ere | {yrt—cocr<t) = €1t
® Recoverability: R2, =1, i.e.,, E(c1¢ | {yr}—cocr<oo) = €1t

¢ SVMA-IV model does not assume invertibility /recoverability a priori.



Forecast variance ratio

e Forecast variance ratio (FVR):

- Var(yi7f+f ’ {yT}—oo<7'§ta {El,T}t<T<OO)
Var()/i,t—i-f | {Vr}—co<r<t)
/—1
— Zm:O e12,1,m
Var(yitro | {yr}—co<r<t)

FVR,’j =1

® Alternative concepts in paper:
® Forecast var. decomp.: condition on {e,},<; instead of {y,},<:.

® Unconditional variance decomposition.

10



Historical decomposition

® Recall moving average model:

Ne o0
Vit = Z Z ©j .t~

Jj=1/4=0

® Historical decomposition of variable i attributable to first shock:

oo
E(yie | {e1rtr<e) = Oinen,e—e-
=0

11
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Intuition: static model

e Static SVMA is a classical measurement error model:

nyx1 nyx1 1x1 nyx1

ye = Oe10¢€1,t + &t s

1x1 1x1 1x1
zZy = a €1t +0y Vi,
6]_715 AL ft AL V.

® Unknown signal-to-noise ratio a?/a2 in IV equation.
® Intuition for bounds on importance of €1 +: Klepper & Leamer (1984)

® Attenuation bias in regression of y; ; on z
= Lower bound on importance of €1 ;.

® o2 =Var(E(z | e1+)) > Var(E(z: | y:)) = Lower bound on o?/c?
= Upper bound on importance of ¢1 ;.

12



Dynamic model: notation

® Residualized IV:
Zr=2z — E(z¢ | {yr) 2r}—cocr<t) = o€l + Oy Ve

Serially uncorrelated by construction.

® Projections of Z; and €1+ onto whole time series of macro variables:

= E(zt | {yr}foo<7'<oo)v

z
81{,1‘ = E(El,f ’ {yT}—oo<7'<oo)-

® Spectral density of a time series x;: sx(w), w € [0, 27].

13



Identification up to scale

® |mpulse responses identified up to scale:
COV(y,',t,Et_g) = a@,'717g, i = 1, cey ny, f Z 0.
Relative IRs ©; 1 ¢/©1,1,0 point-identified. Stock & Watson (2018)

® Degree of invertibility at time t + ¢ identified up to scale:

1 -
ng a2 x Var(E(Z: [ {yr}—co<r<tre)), €2 0.
® FVRs identified up to scale:

1 /-1 C 3 2
FVR., = — x 2 m=o COV(Yit: Z-m) i=1,...,n, (>1.

a? Var()/i,t—i-f | {YT}—OO<TSt)’

14



Bounds for «

® Upper bound:
o? < Var(%) = ajg.

Binds when IV is perfectly informative.

* Lower bound: Since 2} = an{ ¢ We have

Vwe[0,2r]:  ssi(w) = oz2ssi(w) < a?s.,(w) = a® x 5
—  a?>21 sup ss(w)=alg.

wel0,n]

Binds when macro var's y; are perfectly informative about shock e1 ;
at some frequency w € [0,7]: s, __;(w) = 0.
1

® Note: Closed form for szi(w) in terms of joint spectrum of data.

15



Identified set for a:: sharpness

Let there be given a joint spectral density for wy = (y}, Z;)’, continuous
and positive definite at every frequency, with Z; being unpredictable
from {w;}_so<cr<t. Choose any a € (o, aysl.

Then there exists a model with the given a such that the spectral
density of w; implied by the model matches the given spectral density.

® Proposition does not cover boundary case o = g due to
economically inessential technicalities.

16



Identified set for «v: interpretation

1

® Express identified set for - in terms of underlying model parameters:

a2

o? L 1 L
a?+o] o’ 1-2minfepns, (W) o?]
1

———
IV strength informativeness of y: for €1+

® |dentified set is narrower when. . .
® |V is stronger.

® Macro var's are more informative about some cycle of the shock.

17



Degree of invertibility /recoverability

® Degree of invertibility Rg and recoverability R2, are each
interval-identified.

® When are the data consistent with invertibility /recoverability?

Assume o > 0.

The identified set for Rg contains 1 if and only if Z; does not Granger
cause y;.

The identified set for R2 contains 1 if and only if 2:! is white noise.

18



Point identification

 Assumptions yielding point identification of o, RZ?, FVR:

@ Macro var's y; are perfectly informative about ;1 ; at some frequency
(untestable).

@ Shock is recoverable (testable). Economically weaker condition than

invertibility. Can also identify shock: 1, = 12/,

© n. = n, (testable). Then all shocks are recoverable. (But our partial ID
bounds obtain even if we know n. = n, +1.)

O |V is perfect, i.e., o, = 0 (untestable).
® Cond's 2-4 point-identify historical decomposition }72, ©; 1 €1 +—¢.

® Auxiliary assumptions are not needed for informative partial ID.

19
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Informative bounds in Smets-Wouters (2007) model

Smets & Wouters (2007) model, posterior mode estimates.

Data series y;: output, inflation, nominal interest rate. Known
spectrum. SVMA-IV analysis does not exploit DSGE structure.

Econometrician observes IV:
Zt =01 +0uVe, VWt ld. N(0,1).
Set true v = 1. Consider IV strengths H% € {0.25,0.5}.

Three shocks of interest 1+ (seven total in model):
@ Monetary shock. Nearly invertible.
@® Forward guidance shock. Highly noninvertible, nearly recoverable.

© Technology shock. Data only informative about longest cycles.

20



Monetary shock

® Shock nearly invertible: R2 = 0.87, R2, = 0.88.

® Tight lower bound on «: a%B = 0.90.

FVR of Inflation

FVR of Interest Rate FVR of Real Output
0.7 0.12 0.1

’ _ J— Truth I
7 Upper Bound -
— — Lower Bounds
0 0 0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Horizon (Quarters) Horizon (Quarters) Horizon (Quarters)
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Forward guidance shock

® Monetary shock anticipated two quarters ahead.

® Highly noninvertible: R2 = 0.08. Invertibility-based identification
overstates FVRs by factor 1/0.08 ~ 13!

* Nearly recoverable: R? = 0.87, R2, = 0.88.

FVR of Interest Rate FVR of Real Output FVR of Inflation

0.2 0.14 0.14

0.12

0.1

0.08

0.06

0.04

s - Upper Bound 0.02

-7 — — Lower Bounds
0 0 0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6

Horizon (Quarters) Horizon (Quarters) Horizon (Quarters)
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Technology shock
® Highly non-recoverable: R3 = 0.20, R2, = 0.22.
® Macro var's only informative about longest cycles of shock.

® But tight lower bound on «a: afB = 0.91.
SPECTRAL DENSITY OF BEST TWO-SIDED PREDICTOR OF SHOCK
1-

0.8

0.4

0.2+

0 0.5 1 1.5 2 2.5 3
Frequency 23
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Partial identification robust confidence intervals

All parameters of interest are interval- or point-identified.
Confidence interval procedure:

@ Estimate reduced-form VAR for (y], z;)'.

@® Compute sample analogues of population bounds.

© Plug into Imbens & Manski (2004) and Stoye (2009) formulas.
Cls for parameters as well as for identified sets.

Prove non-parametric validity under “sieve VAR" asymptotics.

Test invertibility using VAR Granger causality test.
Giannone & Reichlin (2006); Forni & Gambetti (2014); Stock & Watson (2018)

24
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Importance of monetary shocks
Gertler & Karadi (2015) estimate effect of monetary shocks on
interest rate, IP, CPI, Excess Bond Premium. Gilchrist & Zakrajsek (2012)

SVAR-1V approach on U.S. monthly data. IV: high-freq. changes in
3-month FFR futures prices around FOMC announcements.

Our question: How important is the monetary shock in determining
fluctuations of real and financial variables?

Consider two different interest rates: FFR or 1-year Treasury.
Sample: 1990:1-2012:6. AIC selects p = 6 reduced-form VAR lags.

1,000 iterations of i.i.d. recursive residual bootstrap.

25



Degree of invertibility /recoverability

® Reject invertibility of monetary shock with FFR.

FFR

1-year rate

Rg Bound estimates

90% conf. interval

[0.196, 0.684]
[0.097,0.877]

[0.118,0.922]
[0.029, 1.000]

R2 | Bound estimates

90% conf. interval

[0.282, 1.000]
[0.190, 1.000]

[0.119, 1.000]
[0.028,1.000]

Granger causality p-value

0.0001

0.390

90% confidence interval for identified set (IS).
Upper bound of IS for R2 equals 1 by construction.

26



FVR of Federal Funds Rate

1r
——Estimate of identif. set
0.8 & -—--90% conf. interval for identif. set
06\

0.4

~

0.2

6 9 12 15 18 21 24
Horizon (Months)
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FVR of Industrial Production Growth

6 9 12 15 18 21 24

Horizon (Months)
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0.6

0.4

0.2

_____

FVR of CPI Growth

9 12 15 18 21 24
Horizon (Months)
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FVR of Excess Bond Premium

0.8+

Il Il |

3 6 9 12 15 18 21 24
Horizon (Months)
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Summary

SVMA-IV model: attractive semiparametric alternative to SVARs.

Known how to identify IRFs. We provide remaining tools: variance
decompositions, historical decompositions, degree of invertibility.

Informative bounds regardless of invertibility.
Provide sufficient conditions for point ID, weaker than invertibility.
Partial ID robust confidence intervals. Easy to compute.

Application: Informative upper bounds on importance of monetary
shocks for fluctuations in IP, CPI, and financial spread.

31



Thank you!



Examples of external Vs

Narrative monetary shocks. Romer & Romer (2004)

Narrative fiscal shocks. Mertens & Ravn (2013); Mertens & Montiel Olea
(2018); Ramey & Zubairy (2018)

High-frequency asset price changes around FOMC announcements.
Barakchian & Crowe (2013); Gertler & Karadi (2015)

Oil supply disruptions. Hamilton (2003)
Large oil discoveries. Arezki, Ramey & Sheng (2017)
Utilization-adjusted TFP growth. Fernald (2014); Caldara & Kamps (2017)

Volatility spikes. Carriero et al. (2015)

33



Examples of variance decomposition applications

TFP shocks. Kydland & Prescott (1982); KPSW (1991)

Monetary shocks. Romerx2 (1989); Christiano, Eichenbaum & Evans (1999)
Investment efficiency shocks. Justiniano, Primiceri & Tambalotti (2010)
News shocks. Schmitt-Grohé & Uribe (2012)

Risk shocks. Christiano, Motto & Rostagno (2014)

Demand/sentiment shocks. Angeletos, Collard & Dellas (2017)

Business cycle accounting. Cochrane (1994); Smets & Wouters (2007)

34



Multiple instruments

nyx1 nex1 O Ny Xne ’
o =0O(L) e, O(L)=) O L
=0
nyx1 00 1x1n,x1 nzXnz nyx1
1/2
72 =Y (Vizeg+Ayeg)+ a A e+ T2 v
exclusion
IIA|| = 1, first nonzero element positive.

Define vector of projection residuals

2=z — E(zt | {yr: 2} —cocr<t)-

Model is testable: s,3(w) has rank-1 factor structure.

If model is consistent with data, then A is point-identified. If X, is
unrestricted, identification analysis is as if we observed the scalar IV

1

¢ _ o y—1~
Zy = W}\, Var(Zt) Zt.

35



Instruments correlated with multiple shocks
® Also consider an extended model where the IVs z; correlate with the
first n., of the n. structural shocks (i.e., drop exclusion restriction).

oo
nyx1 nex1 fy X Ne

Ve =0O(L) &, ©(L)=> o, L
£=0

nzx1 () NzXNey ney x1  NzXNz nzXx1
1/2
zr = Z(szt—é‘i‘/\z}/t—ﬂ)"‘ Mo + 207 v
=1

® Derive sharp bounds for FVR wrt. e,
FVR,, =1— Var(yie+e | {yr}—oo<r<t, {rexyT}t<T<OO)‘
Var(yiee | {yr}—co<r<t)

Lower bound available in closed form. Upper bound solves (convex)
semidefinite programming problem.

® Example: Assume n., = n, and I nonsingular. Then FVR wrt. e, ¢
equals the FVR wrt. €, ;. Mertens & Ravn (2013)

36



Forecast variance decomposition

® Forecast variance decomposition (FVD):

Var(yi,t+f ’ {87'}—00<7'St7 {51,T}t<r<oo)

FVD;y=1—
! Var(yiest | {6} —socr<t)

an_:lo e12,1,m
ne - :
2= > o @%J,m
® FVR # FVD unless all shocks are invertible (SVAR).
Forni, Gambetti & Sala (2018)

37



Sufficient conditions for invertibility /recoverability

® Assuming n. = ny. ..

e All shocks invertible if all roots of x — det(©(x)) outside unit circle.

e All shocks recoverable if no roots of x — det(©(x)) on unit circle.

38



Bias of SVAR-1V

® VAR(o0) forecast error: ur = yr — E(vt | {yr}—co<r<t)-
® SVAR-IV: If all n. = ny shocks are invertible, then &1+ = +'u;, where
= (T, ) Y2 s, Tus = Cov(ue, 2), T, = Var(uy).
The SVAR-IV-(mis)identified shock is given by
Ene =7ur = 25751 32020 3j0E t—0

where {a; ¢} satisfy 3272, >>% a7, = 1 and a1 = |/ R3.
The associated SVAR-IV impulse responses are given by

Oe 1,6 = Covl(yt, E1t—0) = 20171 Dm0 ,mOe 1,4m;

and the impact impulse responses satisfy (:).,170 = (Rg)—1/2@.71’0_

39



Static model for intuition

® For intuition, start with static version of model:

nyx1l nyXne nex1

yi =600 ¢,

1x1 1x1 1x1
z+ =« €1 t+0oy Vi,

(b ve)' "R N(O, I, 1),
® Bonus: Directly applies to SVAR-IV identification with n. > n, .

® |nteresting objects:

2
©i10

RZ—1-V VD= Varlyie)
2 ar(e1e | ye), i1 Var(yi+)

40



Static model: identification up to scale

Impulse responses identified up to scale:
Cov(yit,zt) =a©i10, i=1,...,n,y.
Relative IRs ©;1,0/©1,1,0 point-identified. Stock & Watson (2018)

Degree of invertibility identified up to scale:

1
Rg = gvar(E(Zt | yt))
FVDs identified up to scale:

1 2
1 Cov(y; s,
FVD;y = & ovlie )", _ 1,....n,.
Var(yi.+)

What is identified set for a?

2



Static model: identified set for «

Upper bound:
a? < Var(z) = a3

Binds when 1V is perfectly informative.
Lower bound:

O‘%B = Var(E(z: | yt)) = a? Var(E(ere | yt)) < a? Var(e1r) = a?.

Binds when macro var's y; are perfectly informative about shock €1 ;.

Bounds are sharp: Given any var-cov matrix for (y;, z:)’, can find a
consistent model with any « € [a; g, ays].

Identified set [ay g, avyp| for av is an interval. Implies identified sets
for IRs, FVD, and degree of inv.

42



Static model: interpretation of identified sets

1 COV()/i,t,Zt)z

1 D1 —
2 _ - i 2
R: = ~ Var(E(z: | yt)), FVDia a2~ Var(yi.+)

® Express identified set for % in terms of model parameters:
a? 1 1 1
—— X— — X—.
a?+o02 a?’ R? a?
——— ~—~
IV strength recoverability

® Identified set for FVD or R2 narrower when the IV is stronger or the
shock is more recoverable/invertible. Only collapses to a point when
IV is perfect and shock is invertible.

43



Static model: point identification

® Point identification under any of the following auxiliary assumptions:

@ Shock e1 ¢ is invertible/recoverable (untestable). Then oo = a5 and
€1t = iE(Zt | vt).

® n. = n, (untestable). Implies invertibility of all shocks.

© |V z is perfect, i.e., 0, = 0 (untestable). Then a = ayg and €1+ = ézt.

® But auxiliary assumptions are not necessary for partial ID with
nontrivial, informative bounds.

44



Forecast variance decomposition

® |dentif. set for FVR scales with identif. set for % What about FVD?

Let there be given a spectral density for (y;, 2;)’ (same as'ns as before).

Given knowledge of o € (ayp,ayg|, the largest possible value of
FVD; is 1 (the trivial bound); the smallest possible value is

an;lo COV(}/i,t, Et—m)z

- (4)
S Cov(yity Ze—m)? + a2 Var (yi(,?le ‘ {y’ga)}foo<7§t)
y/t(“) denotes a stationary Gaussian time series with spectrum
Syt (W) = sy (w) — i—gsy;(w)syg(w)*, w € [0, 2x].

Expression (A) is monotonically decreasing in «, so the overall lower
bound is attained at a = ayp.

\. J
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Structural model: R? for forward guidance shock

=7 Observables
= =3 Observables

0 I I I I I I
0 1 2 3 4 5 6

Horizon (Quarters)
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Structural model: SVAR-1V-estimated FVR of fwd. guid.

FVR of Interest Rate 1 FVR of Real Output 1 FVR of Inflation

0 2 4 6 8 10 0 2 4
Horizon (Quarters) Horizon (Quarters) Horizon (Quarters)

6 8 10 0 2 4 6 8 10
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Structural model: Degree of invertibility /recoverability

Monetary shock

Technology shock

Forw. guid. shock

Observables R? R%, R? R%, R2 R%,
Baseline 0.8702 0.8763 | 0.1977 0.2166 | 0.0768 0.8807
+14+C 0.9415 0.9507 | 0.2128 0.2384 | 0.0980 0.9492
+ L 0.9272 0.9286 | 0.9799 0.9816 | 0.0774 0.9331
All 1 1 1 1 0.1049 1

Baseline: Output, inflation, nom. interest rate.

48



Imbens-Manski-Stoye confidence intervals

® |et 9 denote reduced-form VAR parameters. Estimator D.

® Consider any identified set [A(¢9), ()], with h(-), h(:) ctsly diff.

(D) \ approx v ([ A) 52 poo
h(?) ) )\ po5 '
® 1 — 8 conf. interval for the identified set: Imbens & Manski (2004)
[h(D) — ®7H(1 = 5/2)&, h(D) + ®~}(1 - 5/2)5].

® Could also construct Cl for parameter. Stoye (2009)

® Caveat: Lower bound for « is given by supremum; not generally ctsly
diff. We use conservative lower bound a? > fozﬁ sst(w) dw.
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Sieve VAR inference
Non-parametric VAR(o0) model for W; = (y;, z¢)":
We =372 AcWi_p + et
Stationary, non-singular, abs. summable coefficients.
e i.i.d. with Elle]|® < oc.
Parameter of interest:
0= [ M B Acs() A, T) s,
where

Acos(w) = D721 Avcos(wl),  Asin(w) = D721 Agsin(wl).

h(-) bounded. g(-) twice cts'ly diff. with first partial derivatives in
L»(0,27) as fct of w.

50



Sieve VAR inference (cont.)

® | east-squares VAR plug-in estimator:

27

~ A

b= i h(w)' g(Acos(w), Asin(w), %) dw.

® VAR lag length pr € N satisfies
Pr/T =0, TV2EE, Al —o.

® Prove v/ T asymptotic normality of 12; Berk (1974); Lewis & Reinsel
(1985); Saikkonen & Liitkepohl (2000); Goncalves & Kilian (2007)

® Require asy. var. to be strictly positive, which rules out parameters
on the boundary (as in SVAR-1V).
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