
Simultaneous Confidence Bands: Theory,

Implementation, and an Application to SVARs∗

José Luis Montiel Olea Mikkel Plagborg-Møller

Columbia University Princeton University

August 8, 2018

Abstract: Simultaneous confidence bands are versatile tools for visualizing
estimation uncertainty for parameter vectors, such as impulse response functions.
In linear models, it is known that that the sup-t confidence band is narrower than
commonly used alternatives, for example Bonferroni and projection bands. We
show that the same ranking applies asymptotically even in general nonlinear
models, such as VARs. Moreover, we provide further justification for the sup-
t band by showing that it is the optimal default choice when the researcher
does not know the audience’s preferences. Complementing existing plug-in and
bootstrap implementations, we propose a computationally convenient Bayesian
sup-t band with exact finite-sample simultaneous credibility. In an application
to SVAR impulse response function estimation, the sup-t band—which has been
surprisingly overlooked in this setting—is at least 35% narrower than other off-
the-shelf simultaneous bands.

Keywords: Bonferroni adjustment, projection inference, simultaneous Bayesian credibility,

simultaneous inference, structural vector autoregression, sup-t confidence band.

JEL codes: C11, C12, C32, C44.

∗Plagborg-Møller (corresponding author): Julis Romo Rabinowitz Building, Princeton, NJ 08544,
mikkelpm@princeton.edu. Montiel Olea: 420 W 118th St, New York, NY 10027, montiel.olea@gmail.com.
We are grateful for comments from Gary Chamberlain, Aubrey Clark, Max Farrell, Joachim Freyberger, Chris
Hansen, Lutz Kilian, Frank Kleibergen, Roger Koenker, Michal Kolesár, Simon Lee, Barbara Rossi, Azeem
Shaikh, Neil Shephard, Chris Sims, Jim Stock, Elie Tamer, Harald Uhlig, Mark Watson, five anonymous
referees, and seminar participants at several venues.

1



1 Introduction

Simultaneous inference concerns arise commonly in applied work. Consider for example the

classical problem of measuring the response of economic activity to an increase in interest

rates. What is the difference between the one-month- and one-year-ahead response of in-

dustrial production? Do the short-run effects on industrial production disappear after the

first year? These questions require comparing the responses, simultaneously, at different

time horizons. Similar issues crop up in event studies in applied microeconomics, or when

comparing coefficient estimates across different regression specifications, and so on.

Confidence bands—collections of confidence intervals for each component of a parameter

vector—are often used to visualize estimation uncertainty in examples like the ones described

above. Unlike the oft-used pointwise confidence band, simultaneous confidence bands cover

the entire parameter vector of interest with (asymptotic) probability at least 1 − α. For

example, a simultaneous confidence band for the responses of industrial production to a

monetary shock contains the entire path of responses over time, up to some fixed horizon,

with probability at least 1 − α. This allows for valid confidence statements that compare

across horizons, i.e., individual parameters. In contrast to confidence ellipsoids, confidence

bands are by definition easy to visualize regardless of the dimension of the parameter vector.

While many simultaneous confidence bands have been developed in the literature, there

exists little theory to select among these, at least outside the linear regression model. Bands

encountered in applied work include Bonferroni, Šidák, projection, and “sup-t” bands. These

bands can differ substantially in terms of their width and coverage properties, and unfor-

tunately, existing analyses of confidence bands are not directly applicable to nonlinear or

heteroskedastic econometric models. Consequently, in some applications, practitioners have

hitherto relied exclusively on simulation evidence to select among different bands. This is
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the case for impulse response analysis in Vector Autoregressions (VARs).1

We fill this gap by providing analytical comparisons of simultaneous confidence bands in

an empirically relevant econometric framework encompassing macroeconometric and microe-

conometric applications. Our goal is to compare bands in terms of performance measures

that are relevant to practitioners: the simultaneous coverage probability and the expected

width of the confidence bands. Our concrete suggestion for applied researchers is to use

the computationally convenient sup-t band as a default procedure to conduct simultaneous

inference.2 Although the sup-t band has a long tradition in nonparametric regression and

density estimation, it has been overlooked in other econometric problems—such as impulse

response function analysis in VARs and sensitivity analysis in linear regression—in which it

performs well. We support our conclusion by establishing three results.

First, we analytically compare the relative widths of popular confidence bands that,

asymptotically, fall in a one-parameter class. Bands in the one-parameter class equal a

natural point estimator plus/minus a constant c times the vector of pointwise standard

errors. In linear models, it is known that the class contains the pointwise, Bonferroni, Šidák,

projection, and sup-t bands; and the latter is trivially the narrowest simultaneous confidence

band in the class (in every realization of the data). Our contribution is to show that the

same ranking of popular bands applies asymptotically even in general nonlinear models such

as VARs, under weak regularity conditions. To our knowledge, our analysis provides the

first analytical ranking of confidence bands in nonlinear models. The gain from using the

sup-t band is especially large when the estimators of the individual parameters of interest

are highly dependent.3 Moreover, it is known that the width of the sup-t band increases

1See, for example, the simulation studies in Lütkepohl et al. (2015a,b) and Bruder & Wolf (2018).
2We have created a full Matlab suite to implement the sup-t band in the generic class of econometric

models covered by this paper. The files are available at https://scholar.princeton.edu/mikkelpm/
publications/conf_band

3We also show that the Šidák and Bonferroni bands are narrower than projection-based bands, unless the
number of parameters of interest is orders of magnitude larger than the dimension of the underlying model.
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very slowly with the number of parameters of interest, so informative simultaneous inference

does not require restricting attention a priori to a small number of parameters.

Second, we propose a simple Bayesian implementation of the sup-t band with finite-sample

credibility 1− α, which complements existing plug-in and bootstrap implementations. The

Bayesian band equals the Cartesian product of the usual component-wise equal-tailed cred-

ible intervals, where we “calibrate” the tail probability to achieve the desired simultaneous

credibility. The procedure is computationally fast, and its only input is a set of posterior

draws of the parameters of interest. Our procedure appears to be the first in the literature

to achieve finite-sample simultaneous Bayesian credibility. Moreover, we show that the very

same algorithm can be used to compute a valid bootstrap sup-t band by replacing the poste-

rior draws of the model parameters by analogous bootstrap draws. We show that the plug-in,

bootstrap, and Bayes sup-t bands are all first-order asymptotically equivalent, provided that

the bootstrap is consistent and the posterior satisfies a Bernstein-von Mises property.

Third, we show that the optimal band within the one-parameter class, the sup-t band,

uniquely minimizes worst-case regret among all translation equivariant confidence bands.

The regret is the ratio of attained loss to the smallest possible loss under a given loss function.

The “worst case” is taken over all possible (homogeneous of degree 1) loss functions that

depend on the component-wise lengths of the band. Hence, among the large collection of

translation equivariant bands, the sup-t band provides the smallest possible upper bound on

regret when the researcher is unsure about the audience’s loss functions. To the best of our

knowledge, this optimality result has not appeared in the literature before. We establish the

decision theoretic result in a linear Gaussian model motivated by our asymptotic analysis.

We illustrate the applicability of our results by computing simultaneous confidence bands

for impulse response functions in a Structural Vector Autoregression (SVAR). The relevance

of simultaneous inference in the VAR context has been highlighted recently by Jordà (2009),

Inoue & Kilian (2013, 2016), and Lütkepohl et al. (2015a,b). While many recent papers
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have constructed confidence bands for SVAR analysis, the optimality of the sup-t band has

been surprisingly overlooked, perhaps due to the nonlinear nature of the problem. Following

Gertler & Karadi (2015), we estimate the impulse response function of real output to a

monetary policy shock identified by exclusion restrictions or by an external instrument.4 In

this application, the sup-t band is about 35% narrower than the oft-used Bonferroni band.

The tightness of the sup-t band matters economically: neither Bonferroni nor projection

bands allow us to reject the null hypothesis of monetary policy neutrality; but the sup-t

band does. To illustrate the flexibility of our set-up, Appendix A.6 contains an additional

application to sensitivity analysis in cross-sectional regression.

Literature. Since the original contribution by Working & Hotelling (1929), the litera-

ture on simultaneous confidence bands has grown vastly. Decision-theoretic contributions

include Naiman (1984, 1987), Piegorsch (1985a,b), and the comprehensive list of references

in Liu (2011). Despite the large body of work and a plethora of simultaneous confidence

bands available, there are few concrete recommendations for practitioners outside the linear

regression model. We appear to be the first to compare the projection, Šidák, and Bonferroni

bands in a general non-linear, heteroskedastic framework relevant to economic applications.

This obvious gap in the study of simultaneous confidence bands has generated renewed

interest in the subject. In an insightful recent paper, Freyberger & Rai (2018) propose a novel

computational procedure for obtaining an approximately optimal confidence band given a

particular loss function. Our contribution is complementary: We show that the simple sup-t

band has a worst-case regret optimality property when the decision-maker is unsure about

the appropriate loss function.

There is a growing literature on simultaneous confidence bands for VAR impulse response

4Our theoretical results apply to any point identification scheme.
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analysis.5 This literature has hitherto relied on Monte Carlo simulations to compare bands.

In Appendix A.4 we argue that previously proposed bands can all be viewed, asymptotically,

as variants of bands in the one-parameter class, so we can unambiguously rank these bands

in large samples. Our analysis covers projection (also known as “Wald”) bands, which are

not as obviously related to the other bands. Asymptotically equivalent implementations

of the sup-t band for VARs have appeared under the names of “adjusted Wald/Bonferroni

band” (Lütkepohl et al., 2015b) and “balanced bootstrap band” (Bruder & Wolf, 2018). To

our surprise, it has not been recognized that these bands are (in large samples) particular

implementations of the sup-t band and thus can be analytically compared with competing

alternatives. By providing a first-order asymptotic ranking of simultaneous bands, we believe

that our analytical framework yields additional insights that complement the extensive small-

sample simulation studies of Lütkepohl et al. (2015a,b) and Bruder & Wolf (2018).

The time series literature has considered the related issue of constructing simultaneous

bands for path forecasts. Because forecast errors are not necessarily Gaussian, our theory—

which relies on normality implied by the central limit theorem for the case of parameter

estimation—does not apply to the forecasting setting. Wolf & Wunderli (2015) have devel-

oped a modified sup-t band for path forecast bands (they do not show that the sup-t band

has optimality properties in non-Gaussian settings).

The sup-t band has a long tradition in nonparametric regression and density estimation.

Wasserman (2006, chapter 5.7) gives a textbook treatment. Econometric applications include

Horowitz & Lee (2012), Chernozhukov et al. (2013), Chernozhukov et al. (2014), and Lee

et al. (2017). Unlike these papers, we focus on a finite-dimensional setting that covers

different applications, including ours, and we analytically compare several popular bands.

The issue of how to construct optimal simultaneous confidence bands has many parallels

5Some authors visualize estimation uncertainty about impulse responses using methods other than simul-
taneous confidence bands (Sims & Zha, 1999; Inoue & Kilian, 2013, 2016; Baumeister & Hamilton, 2018).
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in the multiple hypothesis testing literature (Romano et al., 2010, section 8). Instead of

dealing with test power, our analysis focuses directly on the width of confidence bands—a

key issue for practitioners.6 Our one-parameter class of confidence bands can be obtained by

inverting the class of single-step multiple testing procedures, using studentized test statistics.

Lehmann & Romano (2005, chapter 9) show that the sup-t band yields an optimal single-step

testing procedure under certain equivariance conditions, including permutation equivariance

conditions that we do not impose in our analysis. White (2000) and Hansen (2005) construct

multiple hypothesis testing procedures that are analogues of the sup-t band. Romano &

Wolf (2005, 2007) and List et al. (2016) develop step-down multiple testing procedures that

improve on the finite-sample power of single-step procedures. Our worst-case regret result

does not seem to have a direct parallel in the multiple testing literature.

Outline. Section 2 defines our econometric set-up and the sup-t band. Section 3 analyt-

ically compares the widths of several popular confidence bands. Section 4 shows that the

sup-t band minimizes worst-case regret. Section 5 contains the empirical application. Sec-

tion 6 discusses extensions and future research directions. Appendix A, which is available

online, contains an application to regression sensitivity analysis, various technical details,

and proofs.7

Notation. Convergence in probability and distribution are denoted p→ and d→. Ip is the

p×p identity matrix, and 0p is a p×1 vector of zeros. The p-dimensional normal distribution

with mean vector µ and variance matrix Ω is denoted Np(µ,Ω). The ζ ∈ (0, 1) quantile of

the square root of the χ2(p) distribution is denoted χp,ζ ; for p = 1, we just write χζ ≡ χ1,ζ .

The ζ ∈ (0, 1) quantile of random variable X is denoted Qζ(X).

6We remark that, in terms of (local) power, joint tests based on the sup-t band are neither dominated by
nor do they dominate tests based on the Wald ellipsoid.

7https://scholar.princeton.edu/mikkelpm/publications/conf_band
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2 Econometric set-up and the sup-t band

We start by defining our general econometric framework, simultaneous confidence bands,

and the particular band that we recommend for applied use: the sup-t band.

Econometric framework. We seek to construct a simultaneous confidence band for a

parameter vector θ ∈ Rk. This parameter vector of interest is a possibly nonlinear transfor-

mation of the parameter vector µ ∈ Rp of some underlying model. That is, θ ≡ h(µ) where

h(·) = (h1(·), h2(·), . . . , hk(·))′ is a k-valued function. We assume that the transformation

h(·) is continuously differentiable and denote the k× p Jacobian as ḣ(·) = (ḣ1(·), . . . , ḣk(·))′,

where ḣj(µ) ≡ ∂hj(µ)/∂µ. We do not restrict the relative magnitudes of the dimensions p

and k, except in assuming that they are both finite.

A simultaneous 1− α confidence band for θ is defined as the Cartesian product

Ĉ = Ĉ1 × Ĉ2 × . . .× Ĉk (1)

of data-dependent intervals Ĉj ⊆ R that covers the true parameter vector θ = (θ1, . . . , θk)′

with probability at least 1− α asymptotically:

lim inf
n→∞

P (θ ∈ Ĉ) = lim inf
n→∞

P (θj ∈ Ĉj for all j) ≥ 1− α, (2)

where n denotes the sample size. More succinctly, a simultaneous confidence band is a

confidence set for θ with rectangular structure. The advantage of imposing the rectangular

structure is that the confidence band (unlike the Wald ellipsoid) can be easily visualized

regardless of the dimensions k and p, allowing readers to flexibly test different hypotheses by

visual inspection. We illustrate this well-known property of simultaneous bands in Section 5.

To construct simultaneous confidence bands, we assume the availability of an asymptot-
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ically normal estimator µ̂ of the underlying model parameters µ:

√
n(µ̂− µ) d→ Np(0p,Ω) as n→∞. (3)

We do not restrict the asymptotic correlation structure of µ̂, and we do not assume that the

data is i.i.d. We do assume the existence of a consistent estimator Ω̂ of the possibly singular

asymptotic variance Ω.8 As described in Assumption 1 in Appendix A.1, we impose standard

weak regularity conditions such that the delta method implies asymptotic normality of the

plug-in estimator θ̂ = (θ̂1, . . . , θ̂k)′ ≡ h(µ̂) of the parameter vector of interest θ:

√
n(θ̂ − θ) d→ Nk(0k,Σ) as n→∞. (4)

Importantly, the asymptotic variance matrix Σ = ḣ(µ)Ωḣ(µ)′ of θ̂ is allowed to be singular,

which for example occurs when k > p (Lütkepohl et al., 2015b; Inoue & Kilian, 2016).

One-parameter class. To facilitate comparisons between confidence bands, we intro-

duce a one-parameter class of confidence bands. We argue in Section 3 that the class of

one-parameter bands contains many commonly used bands in applied work. First, define

the usual pointwise standard error for θ̂j:

σ̂j ≡ n−1/2
√
ḣj(µ̂)′Ω̂ḣj(µ̂), j = 1, . . . , k.

The one-parameter class of confidence bands is parameterized by a positive scalar c, called

the critical value, which governs the width of the confidence band.

8Allowing Ω to be singular is important in applications to impulse response function estimation using
non-stationary VARs, cf. Section 5.
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Definition 1. For any c > 0, define the one-parameter confidence band

B̂(c) ≡
[
θ̂1 − σ̂1c, θ̂1 + σ̂1c

]
×
[
θ̂2 − σ̂2c, θ̂2 + σ̂2c

]
× · · · ×

[
θ̂k − σ̂kc, θ̂k + σ̂kc

]
.

Any one-parameter band B̂(c) is the Cartesian product of scaled-up versions of the usual

pointwise confidence intervals, where the scaling factor is the same for every element of θ.9

The parameter c scales up or down the entire confidence band: If c ≤ c̃, then B̂(c) ⊂ B̂(c̃) in

every realization of the data. The relative widths of any two one-parameter bands is given

by the ratio of their critical values c. Our analysis allows for data-dependent choices of c.

Sup-t band. The sup-t band is the member of the one-parameter class with the smallest

critical value c that guarantees simultaneous coverage. Any larger value of c results in an

unnecessarily wide and conservative band. Lemma 1 in Appendix A.1 shows that, under

weak conditions, the asymptotic coverage probability of any one-parameter band B̂(c) is

given by the cumulative distribution function of a maximum of absolute values of correlated

normal variables, evaluated at c:

P
(
θ ∈ B̂(c)

)
→ P

(
max
j=1,...,k

∣∣∣Σ−1/2
jj Vj

∣∣∣ ≤ c
)

as n→∞, (5)

where V = (V1, . . . , Vk)′ ∼ Nk(0k,Σ), and Σjj is the j-th diagonal element of Σ. Define the

ζ-quantile of the above random variable, as a function of the variance-covariance matrix Σ:

qζ(Σ) ≡ Qζ

(
max
j=1,...,k

∣∣∣Σ−1/2
jj Vj

∣∣∣) . (6)

9The band B̂(c) can also be interpreted as the collection of those parameter vectors θ for which the largest
component-wise t-statistic does not exceed a critical value c: B̂(c) = {θ̃ ∈ Rk | maxj |θ̃j − θ̂j |/σ̂j ≤ c}. This
explains the terminology “sup-t” below.
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The sup-t band is obtained by choosing c = q1−α(Σ) (the sup-t critical value), yielding a

simultaneous coverage probability of precisely 1−α. In practice, we must use an estimate Σ̂,

as described below. Although the sup-t band is well known in the statistics and econometrics

literatures, it seems to be less used in applied work, as discussed in Section 1.

Plug-in sup-t implementation. The most straight-forward feasible implementation of

the sup-t band plugs in a consistent estimator of the sup-t critical value, using a delta

method estimator for the asymptotic variance of θ̂. Algorithm 1 below presents a standard

procedure to estimate the plug-in sup-t critical value q1−α(Σ). Except for possibly computing

derivatives of h(·), the algorithm takes a fraction of a second to run in Matlab.

Algorithm 1 Plug-in sup-t band
1: Compute the Jacobian ḣ(µ̂) and delta method variance estimate Σ̂ = ḣ(µ̂)Ω̂ḣ(µ̂)′

2: Draw N i.i.d. normal vectors V̂ (`) ∼ Nk(0k, Σ̂), ` = 1, . . . , N
3: Define q̂1−α as the empirical 1− α quantile of maxj |Σ̂−1/2

jj V̂
(`)
j | across ` = 1, . . . , N

4: Ĉ = B̂(q̂1−α) =×k
j=1[θ̂j − σ̂j q̂1−α, θ̂j + σ̂j q̂1−α]

Bootstrap/Bayes sup-t implementation. One of the contributions of this paper is

to develop an alternative implementation of the sup-t band, which is useful in combina-

tion with bootstrap or Bayesian inference strategies. Unlike Algorithm 1, the following

bootstrap/Bayes band does not require explicit calculation of standard errors. Instead, the

algorithm only requires a valid strategy for generating either bootstrap draws or Bayesian

posterior draws of the underlying model parameters. From an asymptotic perspective, Ap-

pendix A.2 shows that our suggested bootstrap/Bayes implementation is equivalent with the

above plug-in implementation of the sup-t band.

Our algorithm “calibrates” equal-tailed pointwise confidence/credible intervals to achieve

a desired simultaneous coverage/credibility level. The Bayesian band appears to be the first
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Algorithm 2 Quantile-based bootstrap or Bayes band
1: Let P̂ be the bootstrap distribution of µ̂ or the posterior distribution of µ
2: Draw N samples µ̂(1), . . . , µ̂(N) from P̂

3: for ` = 1, . . . , N do
4: θ̂(`) = h(µ̂(`))
5: end for
6: Let Q̂j,ζ denote the empirical ζ quantile of θ̂(1)

j , . . . , θ̂
(N)
j

7: ζ̂ = sup{ζ ∈ [α/(2k), α/2] | N−1∑N
`=1 1(θ̂(`) ∈ ×k

j=1[Q̂j,ζ , Q̂j,1−ζ ]) ≥ 1− α}
8: Ĉ =×k

j=1[Q̂j,ζ̂ , Q̂j,1−ζ̂ ]

generically applicable method for constructing bands with simultaneous credibility.10 Note

that the proposed band is generally asymmetric in finite samples, although we later show that

it lies asymptotically in the symmetric one-parameter class from Section 3. Appendix A.2

describes an alternative bootstrap band that is symmetric in finite samples.11

The bootstrap band is easy to implement in many applications. Valid bootstrap proce-

dures for µ̂ often exist in smooth i.i.d. models (van der Vaart, 1998, chapter 23) as well as

in time series models (Kilian & Lütkepohl, 2017, chapter 12). Unlike the plug-in approach,

the bootstrap band does not require computation of the derivatives of h(·). The bootstrap

band equals the product of Efron’s equal-tailed percentile bootstrap confidence intervals,

where the percentile is “calibrated” so that the rectangle ×k
j=1[Q̂j,ζ , Q̂j,1−ζ ] covers at least a

fraction 1−α of the bootstrap draws of θ̂. This can be achieved easily by bisection or other

numerical solvers, since the fraction of draws contained in the rectangle is monotonically

decreasing in the scalar ζ; moreover, the usual pointwise and Bonferroni bounds imply that

10Liu (2011, chapter 2.9) proposes a Bayesian simultaneous confidence band for linear regression. The
idea of calibrating the width of a rectangular confidence set to achieve simultaneous confidence/credibility
has appeared in different contexts in Kaido et al. (2016) and Gafarov et al. (2016).

11We make two comments about the symmetric versions of the sup-t band. First, since the algorithm
to achieve symmetry is based on t-statistics, it appears less well motivated from a finite-sample Bayesian
perspective, except perhaps when the posterior distribution is exactly Gaussian (as in Liu, 2011, chapter
2.9). Second, the simulations in Appendix A.5 show that for persistent VARs the asymmetric band (based
on our Bayesian implementation) can perform better in finite samples than the symmetric plug-in band.
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the search can be confined to ζ ∈ [α/(2k), α/2] in any finite sample.12

The Bayesian band has simultaneous Bayesian credibility equal to 1 − α, provided we

are able to draw from the finite-sample posterior distribution of µ. To see this, let P̂ in the

algorithm denote the posterior distribution of µ given data D, given some choice of prior.

Then, by construction, the set Ĉ satisfies P̂ (θ ∈ Ĉ) = P (θ ∈ Ĉ | D) = 1−α, up to simulation

error that vanishes as the number of posterior draws grows large. The simultaneous credible

band Ĉ is the product of component-wise equal-tailed credible intervals, where the tail

probability has been calibrated to yield simultaneous credibility of 1− α.

In summary, both the bootstrap and Bayes band are generally applicable and compu-

tationally convenient. They do not require explicit calculation of standard errors, and the

only numerical optimization necessary is the monotonic, 1-dimensional root finding problem

for ζ̂ in Algorithm 2.13 The bootstrapping of µ̂ or posterior sampling of µ is only performed

once and for all (yielding N draws). As a side product, our bootstrap/Bayes algorithm

immediately reveals the pointwise confidence/credibility level 1 − 2ζ̂. Appendix A.2 shows

that our implementations of the sup-t band are asymptotically equivalent with the usual

plug-in sup-t band under standard regularity conditions like bootstrap consistency and the

Bernstein-von Mises property.

3 Comparison of popular confidence bands

In this section we compare the widths of several popular simultaneous confidence bands, e.g.,

Bonferroni, Šidák, projection, and sup-t. To do this, we show that commonly encountered

confidence bands lie asymptotically in a one-parameter class of bands. The sup-t band is

12The bootstrap band is not guaranteed to deliver asymptotic refinements relative to the plug-in sup-
t band. As the sup-t critical value q1−α(Σ) depends on the unknown Σ, it appears difficult to achieve
refinements through simple bootstrap procedures.

13We use the Matlab routine fzero in our applications.

13



the narrowest simultaneous confidence band within this class by definition, but we are also

able to analytically rank the suboptimal bands. These results are well-known for linear

models, whereas our contribution is to show that the conclusions extend to our more general

asymptotically linear framework, which includes nonlinear models such as VARs.

Common bands. In addition to the sup-t band, many other popular confidence bands in

applied work lie in the one-parameter class B̂(c) defined in Section 2, for particular choices

of the critical value c.

The pointwise band is the Cartesian product of pointwise confidence intervals, so it cor-

responds to c = χ1−α.

The Bonferroni band is obtained by applying a Bonferroni multiple comparisons ad-

justment to the pointwise critical value, yielding c = χ1−α/k.14 Standard arguments (e.g.,

Alt, 1982) show that the Bonferroni band has asymptotic simultaneous coverage probability

greater than 1− α if k > 1, under the regularity conditions in Appendix A.1.

The Šidák band corresponds to that value of c which would yield asymptotic simultane-

ous coverage of exactly 1−α in the special case where the elements θ̂j of θ̂ are uncorrelated,

yielding c = χ(1−α)1/k . The Šidák (1967) theorem shows that the independent case is “least

favorable” for the coverage probability of the multivariate normal distribution. Hence, under

the regularity conditions in Appendix A.1, the Šidák band guarantees asymptotic simultane-

ous coverage of at least 1−α regardless of the true correlation structure, but it will typically

be conservative.15

The θ-projection band equals the smallest rectangle in Rk that contains the usual Wald

confidence ellipsoid for θ; this turns out to correspond to a one-parameter band with c =

χk,1−α. If the consistent estimator Σ̂ ≡ ḣ(µ̂)Ω̂ḣ(µ̂)′ of Σ is nonsingular, we can define the

14Bonferroni adjustments that are not symmetric across the elements j = 1, . . . , k are also possible, but
here we stay within our one-parameter class.

15This argument of course relies crucially on asymptotic normality, unlike the Bonferroni adjustment.
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Wald ellipse for θ:

Ŵθ ≡
{
θ̃ ∈ Rk

∣∣∣ n(θ̂ − θ̃)′Σ̂−1(θ̂ − θ̃) ≤ χ2
k,1−α

}
.

Consider the smallest rectangle that contains this ellipse:

Ĉθ-proj ≡
k×
j=1

[
inf

θ̃∈Ŵθ
θ̃j, sup

θ̃∈Ŵθ
θ̃j
]
.

Since Ŵθ ⊂ Ĉθ-proj, this θ-projection confidence band automatically has asymptotic simulta-

neous coverage probability at least 1 − α under the regularity conditions in Appendix A.1

and provided that Σ is nonsingular. The band is conservative if k ≥ 2. Straight-forward

algebra shows that the θ-projection band is equal to the one-parameter band B̂(χk,1−α).16

The µ-projection band, which equals the smallest rectangle in Rk that contains all the

values of θ = h(µ) attained in the usual Wald confidence ellipsoid for µ, is herein shown to

be asymptotically equivalent to c = χp,1−α. If the Wald ellipse for µ is defined as

Ŵµ ≡
{
µ̃ ∈M

∣∣∣ n(µ̂− µ̃)′Ω̂−1(µ̂− µ̃) ≤ χ2
p,1−α

}
,

its rectangular projection with respect to the function h(·) is given by17

Ĉµ-proj ≡
k×
j=1

hj(Ŵµ) =
k×
j=1

[
inf

µ̃∈Ŵµ
hj(µ̃), sup

µ̃∈Ŵµ
hj(µ̃)

]
.

16Simply maximize/minimize θ̃j subject to the quadratic constraint n(θ̂− θ̃)′Σ̂−1(θ̂− θ̃) ≤ χ2
k,1−α, noting

that the j-th diagonal element of Σ̂/n is σ̂2
j . This result does not rely on the specific critical value χ2

k,1−α
in the definition of the Wald ellipse for θ. Hence, the rectangular envelope of the Inoue & Kilian (2016)
procedure for constructing confidence bands for VAR impulse response functions also falls within the one-
parameter class, although with a non-standard critical value.

17The fact that hj(Ŵµ) = [inf
µ̃∈Ŵµ

hj(µ̃), sup
µ̃∈Ŵµ

hj(µ̃)] follows from continuity of h(·). The rectangular

projection is the smallest rectangle containing the usual projection set h(Ŵµ) = {h(µ̃) | µ̃ ∈ Ŵµ}, which in
general is not rectangular (and is therefore hard to visualize).
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This is a multi-parameter version of the Krinsky & Robb (1986) confidence interval procedure

for nonlinearly transformed estimators. The µ-projection band has asymptotic simultaneous

coverage probability of at least 1 − α under the regularity conditions in Appendix A.1, by

the standard projection inference argument (e.g., Dufour, 1990). Typically, however, the

simultaneous coverage probability will be conservative (“projection bias”). Proposition 2

in Appendix A.1.3 shows the nontrivial result that Ĉµ-proj equals the one-parameter band

B̂(χp,1−α), up to terms of negligible asymptotic order, provided that Ω is nonsingular.

Finally, many bootstrap variants of the bands in the one-parameter class are covered by

our theory. If a band has edges that are within asymptotic order op(n−1/2) of a one-parameter

band B̂(c), then those two bands are equivalent for our purposes: the asymptotic coverage

probability is identical, and the ratio of the widths of the component intervals tends to 1 in

probability. This follows from the analysis in Appendix A.1.

Illustration of bands. Figure 1 illustrates the various confidence bands in (θ1, θ2) space

for the case k = 2, omitting the µ-projection band.18 The confidence bands are represented

as rectangles due to their Cartesian product structure. The θ-projection band is the smallest

rectangle that contains the Wald ellipse for θ, drawn in black. The sup-t band is the smallest

band in the one-parameter class that has coverage probability at least 1− α.

Analytical comparison of bands. We are able to analytically compare the widths of

bands in the one-parameter class by comparing their critical values c. We present a detailed

analysis in Appendix A.1.4 but summarize the main points here.

By construction, the sup-t band is the narrowest one-parameter band that yields asymp-

totic simultaneous coverage. All other bands in the one-parameter class either fail to achieve

simultaneous coverage (e.g., the pointwise band) or are conservative and unnecessarily wide,

18A similar illustration appears in Lütkepohl et al. (2015b, figure S1, supplemental material).
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Two-dimensional illustration of Wald ellipse and confidence bands

-2 -1 0 1 2
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-0.5

0

0.5

1
Wald
Pointwise
Sup-t
Sidak
Bonferroni
-projection

Figure 1: 90% Wald confidence ellipse (black) and rectangular confidence regions (colored rect-
angles) for the two-dimensional mean θ = (θ1, θ2)′ of a normally distributed parameter estimator
θ̂, given point estimate θ̂ = (0, 0)′. The figure assumes the correlation structure Var(θ̂1) = 1,
Var(θ̂2) = 0.25, Corr(θ̂1, θ̂2) = 0.9.

asymptotically.19 The sup-t band is especially narrow relative to the other bands when the

point estimators θ̂j are highly correlated across elements j, as is often the case in applica-

tions. If the point estimators θ̂j are mutually independent across j, the sup-t band coincides

with the Šidák band and virtually coincides with the Bonferroni band in most applications.

Table 1 ranks the critical values c for different confidence bands. The bands in Table 1

are ordered in terms of relative width (narrowest at the top) in the empirically common case

α ≤ 0.5 and k ≤ p, under the weak assumptions in Appendix A.1. Sup-t is the narrowest

band with correct asymptotic coverage, followed by Šidák’s band and then Bonferroni. If

instead k � p, then it can happen that µ-projection leads to a narrower band than Šidák

or Bonferroni, although the requirements are stringent (cf. Figure 5 in Appendix A.1.5). θ-

projection always leads to a wider band than Šidák and Bonferroni for α ≤ 0.5. The relative

widths of the (suboptimal) projection, Bonferroni, and Šidák bands depend only on the

19When k > 1, the simultaneous coverage probability of the pointwise band equals 1−α if and only if the
elements of θ̂ are asymptotically perfectly correlated.
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Popular bands in the one-parameter class

Band Critical value c Asymptotic coverage
Pointwise χ1−α ≤ 1− α
Sup-t q1−α(Σ) = 1− α
Šidák χ(1−α)1/k ≥ 1− α

Bonferroni χ1−α/k ≥ 1− α
θ-projection χk,1−α ≥ 1− α
µ-projection χp,1−α ≥ 1− α

Table 1: List of critical values of popular confidence bands in the one-parameter class. The last
column describes each band’s asymptotic coverage probability.

dimensions p and k and the significance level α, so these bands can be ranked without seeing

the data, as we do in Appendix A.1.4. These results should provide analytical guidance to

the literature that has used Monte Carlo experiments to evaluate bands for impulse response

functions, cf. Appendix A.4.

Lemma 4 in Appendix A.1.5 reviews the important property that the width of the sup-t

band increases very slowly with the number k of parameters of interest, specifically at rate
√

log k. Hence, by using the sup-t band, a researcher can report results for a large number of

parameters without sacrificing much power. In contrast, the width of the θ-projection band

is highly sensitive to the number of parameters of interest.

4 Decision theoretic justification for the sup-t band

Is the sup-t band in some sense optimal even outside the one-parameter class analyzed in

Section 3? We show that that the sup-t band is indeed the unique minimizer of worst-case

regret among translation equivariant confidence bands. Here “worst case” refers to the choice

of loss function. The sup-t band is thus a good default option when the researcher is unsure

about the appropriate choice of loss function.
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4.1 Gaussian limit experiment and equivariance

Our analysis focuses on a Gaussian limit experiment motivated by the preceding asymptotic

analysis. We first describe this Gaussian limit experiment and a translation equivariance

concept used in the decision-theoretic analysis.

Finite-sample model. For expositional simplicity, we consider a Gaussian location model

with known covariance matrix, where the object of interest is a vector of linear combinations

of the unknown mean. For our purposes, it is without loss of generality to assume that the

covariance matrix of the data is the identity matrix. Hence, we assume we observe a single

multivariate normal draw

X ∼ Np(µ, Ip), (7)

where the mean vector µ ∈ Rp is unknown. The distribution of the data under the parameter

µ ∈ Rp is denoted Pµ. Let G = (g1, . . . , gk)′ ∈ Rk×p be a fixed, known matrix, where k may

be greater than, equal to, or smaller than p. We assume that each row of G is nonzero, i.e.,

gj 6= 0p for all j. We seek a simultaneous confidence band for the k-dimensional parameter

of interest θ ≡ Gµ = (g′1µ, . . . , g′kµ)′.20

Decision problem: action space, decision rule, loss function. We now specify

the decision-maker’s action space and loss function. The decision-maker’s action space is the

set R of closed k-dimensional rectangles (or bands):

R ≡
{
×k

j=1[aj, bj]
∣∣∣ aj, bj ∈ R, aj ≤ bj, j = 1, . . . , k

}
.

20We view the finite-sample Gaussian model as the relevant limit experiment corresponding to the delta
method asymptotics of Section 3. Since the finite-sample analysis hinges on properties of θ̂ ≡ GX ∼
Nk(θ,GVar(X)G′), and we do not restrict G, there is no loss of generality in assuming Var(X) = Ip.
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A decision rule is a map C : Rp → R from data to k-dimensional bands. We refer to C as

a confidence band and we restrict ourselves to those functions that guarantee a confidence

level of at least 1− α. That is, the set of confidence bands under consideration is

C1−α ≡
{
C : Rp → R

∣∣∣∣ inf
µ∈Rp

Pµ(Gµ ∈ C(X)) ≥ 1− α
}
.

In order to define the loss function, we first introduce the class of functions L that are

increasing with respect to the partial order on Rk:

L ≡
{
L : Rk

+ → R+

∣∣∣ L(r) ≤ L(r̃) for all r, r̃ ∈ Rk
+ s.t. r ≤ r̃ for all elements,

L(r) > 0 whenever r > 0 for all elements
}
.

The decision-maker is assumed to have a loss function of the form

Loss(R;µ) ≡ L(b1 − a1, . . . , bk − ak) for µ ∈ Rp, R =×k
j=1[aj, bj] ∈ R, (8)

which implies that i) the decision maker penalizes bands with large lengths of the component

intervals, and ii) the ranking between bands does not depend on µ. In a slight abuse of

notation, we write L(R) instead of Loss(R;µ) for L ∈ L and R ∈ R.

Translation equivariant bands. For any loss function L in the component-wise length

class L, the decision problem of constructing a confidence band in a Gaussian location model

is invariant under translations of the data X, see Appendix A.3. Motivated by the invariance

of the decision problem, we consider the following class of translation equivariant bands:

Ceq ≡
{
C : Rp → R

∣∣∣ C(x+ λ) = Gλ+ C(x) for all x, λ ∈ Rp
}
.

20



Here we have used the Minkowski sum S + y ≡ {s + y | s ∈ S}, for any set S ⊂ Rp and

vector y ∈ Rp. Lemma 6 in Appendix A.3 shows the simple result that21

Ceq = {C : Rp → R | C(x) = Gx+R, R ∈ R } .

Thus, translation equivariant bands are of the form C(x) = ×k
j=1[θ̂j − aj, θ̂j + bj] for non-

random aj, bj ≥ 0, j = 1, . . . , k. As far as we know, all existing decision theoretic analyses

of simultaneous confidence bands impose translation equivariance, cf. the references in Sec-

tion 1. Bands B̂(c) in the one-parameter class analyzed in Section 3 are all translation

equivariant in the case of linear h(·) and known variance of θ̂. Note that translation equiv-

ariance does not require symmetry of the confidence band around θ̂, nor does it require the

one-parameter structure.

Risk of translation equivariant bands. The risk of a translation equivariant band

equals the realized loss, which depends on neither the data X nor the parameter µ: It is easy

to verify that L(C(X)) = L(R) for every realization of the data and that Pµ(Gµ ∈ C(X)) =

P (GZ ∈ R), where Z ∼ Np(0p, Ip). Moreover, the coverage constraint in the definition of

C1−α reduces the class of bands under consideration to

C1−α ∩ Ceq =
{
C : Rp → R | C(x) = Gx+R, R ∈ R1−α

}
,

where

R1−α ≡
{
R ∈ R

∣∣∣ P (GZ ∈ R) ≥ 1− α, Z ∼ Np(0p, Ip)
}
.

21A similar result appears in Lehmann & Romano (2005, chapter 9.4).
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4.2 Sup-t band minimizes worst-case regret

We now show that the sup-t band minimizes worst-case regret among translation equivariant

confidence bands. Given a loss function, we define regret as the ratio of the actual loss to

the smallest possible loss. We consider a decision-maker looking for a confidence band that

provides the best guarantee on regret across a range of reasonable loss functions. We restrict

the class of loss functions to be homogeneous of degree 1 in lengths.

Smallest possible loss in R1−α. Translation equivariance reduces the decision problem

to a finite-dimensional optimization. Given a particular loss function L ∈ L in component

lengths, an optimal equivariant band equals C(x) = Gx+R∗, where

R∗ ∈ argmin
R∈R1−α

L(R). (9)

This is a 2k-dimensional optimization problem, with the parameters being the endpoints

of the k component intervals of the rectangle R. In general, the solution to the program

(9) is not available in closed form.22 The main practical challenge is that the constraint

set R1−α requires evaluation of the probability that a k-dimensional correlated Gaussian

vector GZ lies in a given rectangle. Freyberger & Rai (2018) develop computational tools to

numerically solve problems of the form (9) (as well as problems with certain different types

of loss functions).

Minimum worst-case regret. In practice, it is difficult to decide on a particular loss

function. Researchers reporting confidence bands may recognize that different audience

members will care about different features of the parameter vector θ = (θ1, . . . , θk)′: For

22In certain special cases the solution is simple. For example, under the worst-case length loss function
L(r) = maxj |rj |, the optimal band is the equal-width band of Gafarian (1964).
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example, one group of people cares only about θ1, another group wishes to compare the

magnitudes of θ1 and θ2, and a third group is interested in the shape of the function j 7→ θj.

In light of this observation, we assume that our decision-maker looks for an equivariant

confidence band C(x) = Gx+R that minimizes the worst-case (relative) regret

sup
L∈LH

L(R)
infR̃∈R1−α

L(R̃)

over R. The worst case is taken over all loss functions in a class LH , to be defined below.

Although we think our definition of worst-case regret is quite reasonable, we were not able to

find applications of this exact criterion in the literature.23 Our definition of regret in terms

of a ratio rather than a difference is in line with the relative width comparisons in Section 3.

Loss functions under consideration. We assume that the decision-maker only con-

siders loss functions that are homogeneous of degree 1 in component interval lengths:

LH ≡
{
L ∈ L

∣∣∣ L(βr) = βL(r) for all r ∈ Rk
+, β > 0

}
.

This class includes the weighted-average loss functions L(r) = ∑k
j=1 wjrj for wj ≥ 0, ∑j wj =

1 (Hoel, 1951), the maximum-length loss function L(r) = maxj |rj| (Gafarian, 1964), and the

Euclidean loss L(r) = ‖r‖ (indeed, any norm on Rk could be used). The class LH excludes

the loss function L(r) = ∏k
j=1 rj, which measures the volume of a rectangle in Rk. Since the

main motivation for using confidence bands is to visualize k-dimensional uncertainty in a

two-dimensional figure, the volume loss function is not of primary concern.

23Notice that this notion of worst-case regret is different from the common notion of minimax regret in
decision theory, where the worst case is taken over possible values for the unknown parameter, here denoted
µ (Berger, 1985, chapter 5). These two notions can be reconciled if we think of the audience’s preferences
L as an unknown parameter that implicitly enters the overall loss function. Our criterion is also different
from that of Naiman (1987), who considers the worst case over possible covariate values at which a linear
regression line is to be evaluated.
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Main result. We are now ready to state the result on worst-case regret. In the present

Gaussian limit experiment, we define the sup-t band as

Csup(x) ≡ Gx+Rsup, Rsup ≡
k×
j=1

[−‖gj‖q1−α(GG′), ‖gj‖q1−α(GG′)] ,

where g′j is the j-th row of G = (g1, . . . , gk)′, ‖ · ‖ is the Euclidean norm, and q1−α(·) is

defined in equation (6).

Proposition 1. For any R ∈ R1−α such that R 6= Rsup,

sup
L∈LH

L(R)
infR̃∈R1−α

L(R̃)
> sup

L∈LH

L(Rsup)
infR̃∈R1−α

L(R̃)
= q1−α(GG′)

χ1−α
.

Proof. See Appendix A.7.7.

Thus, the computationally convenient sup-t band is the translation equivariant band

which provides the best possible guarantee on regret across a range of reasonable loss func-

tions. The sup-t band will generally not be optimal—i.e., solve the optimization problem

(9)—for a particular loss function L.24 However, Proposition 1 gives a sense in which, among

the many possible equivariant confidence bands, the sup-t band is a particularly good default

choice in applications where there is no single appropriate loss function. In particular, any

equivariant simultaneous confidence band other than the sup-t band yields strictly larger

regret than the sup-t band for some loss function L ∈ LH .

24The method of Piegorsch (1985b) may be used to derive a particular loss function with respect to which
the sup-t band is optimal. It is interesting that the sup-t band is very close to the numerically computed
optimal bands in the empirical applications of Freyberger & Rai (2018, section 4).
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5 Application: Impulse response functions

In this section we apply our theory on the relative performance of popular simultaneous confi-

dence bands. As discussed above, our framework applies to many econometric settings where

the researcher seeks to visualize the joint uncertainty across several parameters. Our main

application below shows that the sup-t band improves on popular approaches to construct-

ing simultaneous confidence bands for impulse response functions in VARs. To illustrate

the flexibility of our set-up, the additional application in Appendix A.6 uses a simultaneous

confidence band to visualize joint uncertainty in a sensitivity analysis of a linear regression

coefficient estimated using different sets of control variables.

Here we estimate the effects of monetary policy shocks on output using recursive and

instrumental variable identification strategies for VARs, as in Gertler & Karadi (2015).25

The impulse reponse analysis in their paper suggests that a monetary shock that increases

the one-year government bond yield by 20 basis points on impact causes industrial production

to gradually decline, the maximum decline of 0.4% occurring about 2 years after the shock.

Their reported confidence bands, however, do not account for multiple comparisons.

The VAR literature has developed several procedures for conducting simultaneous infer-

ence on impulse response functions. In our view, theoretical comparisons and recommenda-

tions for practice are still lacking (see Appendix A.4 for a literature review). Our nonlinear

framework in Section 3 allows us to analytically compare the various confidence bands and

provides theoretical support for the sup-t band. To our knowledge, other comprehensive

comparisons of confidence bands for impulse response functions rely exclusively on Monte

Carlo experiments for particular data generating processes (Lütkepohl et al., 2015a,b). Also,

as far as we know, the sup-t band has not previously been exploited to conduct inference on

25Their paper provides a very detailed analysis of the channels of transmission of monetary policy, but we
focus on the effect on output.
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impulse response functions.26

Our empirical analysis shows that the economic conclusions of Gertler & Karadi (2015)

remain valid when adjusting for multiple comparisons using the sup-t band, but not using the

wider Bonferroni or projection bands. The suboptimal—but commonly used—Bonferroni or

projection bands cannot rule out the possibility that the effect of a monetary shock on output

is zero at all horizons. In contrast, with the sup-t band, the effect of surprise monetary policy

tightenings on output is significantly negative 1–3 years after the shock. We now present the

details of the VAR specification and the empirical results. See Appendix A.4 for a review of

the standard structural VAR model.

Specification. We use the data and specification in Gertler & Karadi (2015) to perform

inference on the impulse response function of industrial production (IP) to a contractionary

monetary policy shock. The VAR baseline specification uses monthly U.S. data on industrial

production, the consumer price index, the 1-year government bond yield, and the Excess

Bond Premium (EBP) of Gilchrist & Zakrajšek (2012), from July 1979 to June 2012.27

The VAR is estimated in levels and has 12 lags. The number of model parameters is then

p = 206 (+4 for the external instrument specification mentioned below). We consider impulse

responses out to 36 months, i.e., k = 37 parameters of interest.28

Gertler & Karadi (2015) consider two identification schemes. First, as a baseline, they

use a recursive identification which imposes exclusion restrictions on the impact responses:

Industrial production and the consumer price index do not respond to monetary policy

shocks on impact, and the bond yield does not respond to EBP shocks on impact. Their

preferred specification, however, identifies the monetary shock using an external instrument

26However, we argue in Appendix A.2 that the “adjusted Bonferroni/Wald” methods of Lütkepohl et al.
(2015a,b) are closely related to a bootstrap implementation of the sup-t band.

27The data is available online: https://www.aeaweb.org/articles?id=10.1257/mac.20130329
28Appendix A.4 gives further details of the bootstrap, posterior sampling, and other technical aspects.
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given by changes in federal funds futures prices in small time windows around scheduled

Federal Open Market Committee announcements.29

Results. Figure 2 shows that the sup-t band for the impulse response function of output

is about 35% narrower than the Šidák and Bonferroni bands in the external instrument

specification. The thick line shows the point estimate (the same as in Gertler & Karadi,

2015), while the thin lines show various 68% simultaneous confidence bands, as well as

the 68% pointwise band (the narrowest).30 While the Bonferroni band contains zero at all

horizons, the plug-in sup-t band does not contain zero at any horizon from 13–36 months.

Hence, the sup-t band allows us to reject (at level α = 32%) the null hypothesis that

the monetary shock has no effect on output, while the Bonferroni band does not allow

such rejection. In fact, the sup-t band allows the researcher to reject the null that the

impulse response function is nonnegative at some horizon from 13–36 months. Moreover,

Figure 2 demonstrates the general utility of simultaneous confidence bands: The pointwise

significantly positive response at the 2-month horizon is not statistically significant when we

adjust for multiple comparisons across horizons, even using the sup-t band.

Figure 3 compares the plug-in, bootstrap, and Bayes implementations of the sup-t band

for the case of recursive identification.31 The three bands are similar at short horizons but

diverge somewhat at longer horizons. Even adjusting for multiple comparisons, the output

response at horizons 1–3 months is significantly positive (the impact response is zero by

29We use the three-month-ahead futures series “ff4” preferred by Gertler & Karadi (2015). The data for
this series starts in January 1990.

30The figure shows that the Šidák and Bonferroni bands virtually coincide, although the latter is slightly
wider, which conforms to the theory in Section 3. Appendix A.4 reports that the θ-projection and (especially)
µ-projection bands are much wider than the other bands, as theory predicts.

31We use a homoskedastic recursive residual bootstrap and maximally diffuse normal-inverse-Wishart
prior. See Appendix A.4 for details of the bootstrap/Bayes implementations and for plots of pointwise,
Šidák, Bonferroni, and projection bands for the recursive specification. We do not report bootstrap/Bayes
bands for the external instrument specification, as no off-the-shelf Bayesian implementation currently exists
(Caldara & Herbst, 2016, assume the instrument is white noise, which is counterfactual in our application).
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IRF confidence bands: IV identification, w/o projection

0 12 24 36

months after shock

-1.5

-1

-0.5

0

0.5

pe
rc

en
t

Pointwise
Sup-t: plug-in
Sidak
Bonferroni

Figure 2: 68% confidence bands for impulse response function of industrial production to a
1 standard deviation contractionary monetary policy shock, external instrument identification,
without projection bands. Thick line: point estimate. Thin lines: confidence bands (legend is
ordered with respect to width). Šidák and Bonferroni bands virtually coincide.

assumption). Gertler & Karadi (2015) conclude that the difference between the recursively

identified results and the external instrument results call into question the recursive exclusion

restrictions.

While our results are consistent with some of the simulation evidence provided by Lütke-

pohl et al. (2015a,b), the analytical perspective in this paper yields additional insights. First,

we showed that the narrowness of the Bonferroni approach relative to projection approaches

is not accidental. Second, the theoretical viewpoint suggested an improved band, the sup-t

band, which had not been exploited in a VAR context, despite being well known in nonpara-

metric econometrics. Finally, we proposed a Bayesian version of the sup-t band, which may

be particularly attractive due to the prevalence of Bayesian procedures in VAR studies.

Simulation study. Appendix A.5 presents a modest simulation study of the small-sample

coverage probability and average width of the various simultaneous confidence bands for VAR
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IRF confidence bands: recursive identification, sup-t implementations
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Figure 3: 68% confidence bands for the impulse response function of industrial production to a
1 standard deviation contractionary monetary policy shock, recursive identification, different sup-t
implementations. Thick line: point estimate. Thin lines: confidence bands.

impulse response functions. We consider bivariate VARs identified recursively or using exter-

nal instruments. We find that all versions of the sup-t band yield satisfactory simultaneous

coverage probability when the data is moderately persistent. For highly persistent data, only

the Bayesian sup-t band performs adequately. The sup-t bands tend to be 20–25% narrower

than the Bonferroni and Šidák bands for simultaneous confidence level 1 − α = 68%, and

10–20% narrower for 1− α = 90%. Projection bands tend to be unnecessarily wide.

6 Discussion and extensions

Our analysis provides analytical comparisons between popular simultaneous confidence bands

in a generally applicable nonlinear framework. The sup-t band emerges as a good default

choice, for three reasons. First, it dominates Šidák, Bonferroni, and projection strategies

asymptotically, and we have demonstrated that the gain can be large in applications. Second,
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it uniquely minimizes worst-case regret among translation equivariant confidence bands when

the researcher is unsure about the appropriate choice of loss function, for example because

different audience members have different parameters of interest. Third, the sup-t band

is usually quickly computable in its plug-in, bootstrap, or Bayesian implementations. The

Bayesian band is attractive for finite-sample Bayesian inference, but all implementations are

asymptotically equivalent from a frequentist perspective under weak conditions.

Extension: generalized error rate control. In some applications it is desirable

to replace the simultaneous coverage requirement (2) with the requirement that the band Ĉ

should with probability 1− α cover at least k −m of the parameters, asymptotically:

lim inf
n→∞

P
(∑k

j=11(θj /∈ Ĉj) ≤ m
)
≥ 1− α,

which reduces to condition (2) for m = 0. The above condition is referred to as controlling

the generalized familywise error rate in the multiple testing literature (Romano et al., 2010,

section 8.2; Wolf & Wunderli, 2015). For example, in some applications of Bayesian impulse

response function analysis, it may be more useful to be 95% sure that the band contains the

true responses for at least 20 out of 25 horizons, rather than being 68% sure that the band

covers the true responses for all horizons.32

It is straight-forward to modify the sup-t implementations in this paper to impose the

generalized error rate coverage constraint for a given m. Simply replace all instances of

the “max” operator with the (m + 1)-th order statistic. Similarly, for the quantile-based

32A distinct but related idea is to control the weighted average coverage probability across different hori-
zons, see Wasserman (2006, sec. 5.8). We leave this possibility to future research.
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bootstrap and Bayes bands, we replace the definition of ζ̂ in Algorithm 2 with

ζ̂ = sup

ζ ∈
[
α

2k ,
α

2

] ∣∣∣∣∣ 1
N

N∑
`=1

1

 k∑
j=1

1(θ̂(`)
j /∈ [Q̂j,ζ , Q̂j,1−ζ ]) ≤ m

 ≥ 1− α

 .
Future research directions. Our analysis focused on the case of point identification.

More research is needed on partially identified applications where confidence bands are of

interest, such as VAR analysis under sign restrictions. The results of this paper remain useful

for inference on point identified features of the identified set.33 Moreover, the Bayesian sup-t

band may be used for subjective Bayesian analysis even under partial identification.34

It would be useful to further investigate the small-sample properties of the sup-t band.

Intuitively, the accuracy of the sup-t band will depend on (i) how well n−1Σ̂ estimates

the variance of θ̂, and (ii) how close the distribution of maxj Σ̂−1/2
jj

√
n|θ̂j − θj| is to the

distribution of a maximum of absolute values of correlated normal variables. When k =

dim(θ) is large, it may be possible to improve on the plug-in estimator of Σ̂ using shrinkage.

Furthermore, asymptotics as k →∞ for the maximum t-statistic—as used in the Gaussian

process literature—may yield higher-order refinements of the fixed-k limit theory.

We assumed smoothness of the transformation h(·) mapping underlying model parame-

ters into parameters of interest. In highly nonlinear problems, it is possible that the delta

method linearization of h(·) used in this paper is an unreliable guide to finite-sample per-

formance. In such cases, alternative asymptotic sequences that do not imply asymptotic

linearity may yield more useful results (e.g., Andrews & Mikusheva, 2016). In applications

where continuous differentiability of h(·) fails entirely at economically plausible parameter

values, our limit theory must be appropriately modified (e.g., Kitagawa et al., 2017).

33E.g., the largest VAR impulse responses in the identified set at certain horizons (Giacomini & Kitagawa,
2015; Gafarov et al., 2016), as long as the continuous differentiability assumption is satisfied.

34Baumeister & Hamilton (2018) make this argument for the pointwise credible band.
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